linolenate(18:3)

(9Z,12Z,15Z)-octadeca-9,12,15-trienoic acid

C18H30O2 (278.224568)


alpha-Linolenic acid (ALA) is a polyunsaturated fatty acid (PUFA). It is a member of the group of essential fatty acids called omega-3 fatty acids. alpha-Linolenic acid, in particular, is not synthesized by mammals and therefore is an essential dietary requirement for all mammals. Certain nuts (English walnuts) and vegetable oils (canola, soybean, flaxseed/linseed, olive) are particularly rich in alpha-linolenic acid. Omega-3 fatty acids get their name based on the location of one of their first double bond. In all omega-3 fatty acids, the first double bond is located between the third and fourth carbon atom counting from the methyl end of the fatty acid (n-3). Although humans and other mammals can synthesize saturated and some monounsaturated fatty acids from carbon groups in carbohydrates and proteins, they lack the enzymes necessary to insert a cis double bond at the n-6 or the n-3 position of a fatty acid. Omega-3 fatty acids like alpha-linolenic acid are important structural components of cell membranes. When incorporated into phospholipids, they affect cell membrane properties such as fluidity, flexibility, permeability, and the activity of membrane-bound enzymes. Omega-3 fatty acids can modulate the expression of a number of genes, including those involved with fatty acid metabolism and inflammation. alpha-Linolenic acid and other omega-3 fatty acids may regulate gene expression by interacting with specific transcription factors, including peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). alpha-Linolenic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. α-Linolenic acid can be obtained by humans only through their diets. Humans lack the desaturase enzymes required for processing stearic acid into A-linoleic acid or other unsaturated fatty acids. Dietary α-linolenic acid is metabolized to stearidonic acid, a precursor to a collection of polyunsaturated 20-, 22-, 24-, etc fatty acids (eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid, tetracosapentaenoic acid, 6,9,12,15,18,21-tetracosahexaenoic acid, docosahexaenoic acid).[12] Because the efficacy of n−3 long-chain polyunsaturated fatty acid (LC-PUFA) synthesis decreases down the cascade of α-linolenic acid conversion, DHA synthesis from α-linolenic acid is even more restricted than that of EPA.[13] Conversion of ALA to DHA is higher in women than in men.[14] α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha meaning "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils. In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid.[2] In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds). Alpha-linolenic acid is a linolenic acid with cis-double bonds at positions 9, 12 and 15. Shown to have an antithrombotic effect. It has a role as a micronutrient, a nutraceutical and a mouse metabolite. It is an omega-3 fatty acid and a linolenic acid. It is a conjugate acid of an alpha-linolenate and a (9Z,12Z,15Z)-octadeca-9,12,15-trienoate. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. alpha-Linolenic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Linolenic Acid is a natural product found in Prunus mume, Dipteryx lacunifera, and other organisms with data available. Linolenic Acid is an essential fatty acid belonging to the omega-3 fatty acids group. It is highly concentrated in certain plant oils and has been reported to inhibit the synthesis of prostaglandin resulting in reduced inflammation and prevention of certain chronic diseases. Alpha-linolenic acid (ALA) is a polyunsaturated omega-3 fatty acid. It is a component of many common vegetable oils and is important to human nutrition. A fatty acid that is found in plants and involved in the formation of prostaglandins. Seed oils are the richest sources of α-linolenic acid, notably those of hempseed, chia, perilla, flaxseed (linseed oil), rapeseed (canola), and soybeans. α-Linolenic acid is also obtained from the thylakoid membranes in the leaves of Pisum sativum (pea leaves).[3] Plant chloroplasts consisting of more than 95 percent of photosynthetic thylakoid membranes are highly fluid due to the large abundance of ALA, evident as sharp resonances in high-resolution carbon-13 NMR spectra.[4] Some studies state that ALA remains stable during processing and cooking.[5] However, other studies state that ALA might not be suitable for baking as it will polymerize with itself, a feature exploited in paint with transition metal catalysts. Some ALA may also oxidize at baking temperatures. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Myristic acid

tetradecanoic acid

C14H28O2 (228.20891880000002)


Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402172)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

12-O-Tetradecanoylphorbol-13-acetate

Tetradecanoic acid, 9a-(acetyloxy)-1a,1b,4,4a,5,7a,7b,8,9,9a-decahydro-4a,7b-dihydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-5-oxo-1H-cyclopropa(3,4)benz(1,2-e)azulen-9-yl ester, (1aR-(1aalpha,1bbeta,4abeta,7aalpha,7balpha,8alpha,9beta,9aalpha))-

C36H56O8 (616.3974976000001)


12-o-tetradecanoylphorbol-13-acetate appears as white crystals. (NTP, 1992) Phorbol 13-acetate 12-myristate is a phorbol ester that is phorbol in which the hydroxy groups at the cyclopropane ring juction (position 13) and the adjacent carbon (position 12) have been converted into the corresponding acetate and myristate esters. It is a major active constituent of the seed oil of Croton tiglium. It has been used as a tumour promoting agent for skin carcinogenesis in rodents and is associated with increased cell proliferation of malignant cells. However its function is controversial since a decrease in cell proliferation has also been observed in several cancer cell types. It has a role as a protein kinase C agonist, an antineoplastic agent, a reactive oxygen species generator, a plant metabolite, a mitogen, a carcinogenic agent and an apoptosis inducer. It is an acetate ester, a tetradecanoate ester, a diester, a tertiary alpha-hydroxy ketone and a phorbol ester. Phorbol 12-myristate 13-acetate diester is an inducer of neutrophil extracellular traps (NETs). Phorbol 12-myristate 13-acetate is a natural product found in Iris tectorum, Phormidium tenue, and other organisms with data available. Tetradecanoylphorbol Acetate is a phorbol ester with potential antineoplastic effects. Tetradecanoylphorbol acetate (TPA) induces maturation and differentiation of hematopoietic cell lines, including leukemic cells. This agent may induce gene expression and protein kinase C (PKC) activity. In addition to potential antineoplastic effects, TPA may exhibit tumor promoting activity. (NCI04) A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. A phorbol ester that is phorbol in which the hydroxy groups at the cyclopropane ring juction (position 13) and the adjacent carbon (position 12) have been converted into the corresponding acetate and myristate esters. It is a major active constituent of the seed oil of Croton tiglium. It has been used as a tumour promoting agent for skin carcinogenesis in rodents and is associated with increased cell proliferation of malignant cells. However its function is controversial since a decrease in cell proliferation has also been observed in several cancer cell types. C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D009676 - Noxae > D002273 - Carcinogens > D010703 - Phorbol Esters Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Phorbol 12-myristate 13-acetate (PMA), a phorbol ester, is a dual SphK and protein kinase C (PKC) activator[1][2]. Phorbol 12-myristate 13-acetate is a NF-κB activator. Phorbol 12-myristate 13-acetate induces differentiation in THP-1 cells[3][7]. Phorbol 12-myristate 13-acetate (PMA), a phorbol ester, is a dual SphK and protein kinase C (PKC) activator[1][2]. Phorbol 12-myristate 13-acetate is a NF-κB activator. Phorbol 12-myristate 13-acetate induces differentiation in THP-1 cells[3][7].

   

Palmitoleic acid

cis-Delta(9)-Hexadecenoic acid

C16H30O2 (254.224568)


Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as mixed nuts, carrot, hedge mustard, and chanterelle, which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH that is a common constituent of the glycerides of human adipose tissue. Present in all tissues, it is generally found in higher concentrations in the liver. Macadamia oil (Macadamia integrifolia) and sea buckthorn oil (Hippophae rhamnoides) are botanical sources of palmitoleic acid, containing 22 and 40\\\\\% respectively. Palmitoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Palmitoleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=373-49-9 (retrieved 2024-07-15) (CAS RN: 373-49-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2558664)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Linoleic acid

C18:2 9C, 12C Omega6 todos cis-9,12-octadienoico

C18H32O2 (280.2402172)


Linoleic acid is a doubly unsaturated fatty acid, also known as an omega-6 fatty acid, occurring widely in plant glycosides. In this particular polyunsaturated fatty acid (PUFA), the first double bond is located between the sixth and seventh carbon atom from the methyl end of the fatty acid (n-6). Linoleic acid is an essential fatty acid in human nutrition because it cannot be synthesized by humans. It is used in the biosynthesis of prostaglandins (via arachidonic acid) and cell membranes (From Stedman, 26th ed). Linoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Linoleic acid (LA) is an organic compound with the formula HOOC(CH2)7CH=CHCH2CH=CH(CH2)4CH3. Both alkene groups (−CH=CH−) are cis. It is a fatty acid sometimes denoted 18:2 (n-6) or 18:2 cis-9,12. A linoleate is a salt or ester of this acid.[5] Linoleic acid is a polyunsaturated, omega-6 fatty acid. It is a colorless liquid that is virtually insoluble in water but soluble in many organic solvents.[2] It typically occurs in nature as a triglyceride (ester of glycerin) rather than as a free fatty acid.[6] It is one of two essential fatty acids for humans, who must obtain it through their diet,[7] and the most essential, because the body uses it as a base to make the others. The word "linoleic" derives from Latin linum 'flax', and oleum 'oil', reflecting the fact that it was first isolated from linseed oil.

   

Vaccenic acid

11-Octadecenoic acid, (e)-isomer

C18H34O2 (282.2558664)


Vaccenic acid is a naturally occurring trans fatty acid. It is the predominant kind of trans-fatty acid found in human milk, in the fat of ruminants, and in dairy products such as milk, butter, and yogurt. Trans fat in human milk may depend on trans fat content in food. Its IUPAC name is (11E)-11-octadecenoic acid, and its lipid shorthand name is 18:1 trans-11. The name was derived from the Latin vacca (cow). Vaccenic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Vaccenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

cis-vaccenic acid

Vaccenic acid, cis-

C18H34O2 (282.2558664)


The cis- isomer of vaccenic acid.

   

2,6-Di-tert-butylbenzoquinone

2,6-Bis(1, 1-dimethylethyl)-2,5-cyclohexadiene-1,4-dione

C14H20O2 (220.14632200000003)


Detected in tapwater as presumed oxidant of 2,6-Di-tert-butyl-4-methylphenol HCH42-H. Formed as dec. production of 2,6-Di-tert-butyl-4-methylphenol HCH42-H in fat frying. 2,6-di-tert-butylbenzoquinone is not used for fragrances or flavors.

   

Linolenelaidic acid

(9E,12E,15E)-9,12,15-Octadecatrienoic acid

C18H30O2 (278.224568)


Linolenelaidic acid is found in fats and oils. Linolenelaidic acid is isolated from seed oil of safflower (Carthamus tinctorius Isolated from seed oil of safflower (Carthamus tinctorius). Linolenelaidic acid is found in fats and oils.

   

Octadec-9-enoic Acid

Delta(9)-Octadecenoic acid

C18H34O2 (282.2558664)


Octadec-9-enoic Acid, also known as 18:1, N-9 or Delta(9)-Octadecenoic acid, is classified as a member of the Long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Octadec-9-enoic Acid is considered to be practically insoluble (in water) and acidic. Octadec-9-enoic Acid can be synthesized from octadec-9-ene. It is also a parent compound for other transformation products, including but not limited to, 1-octadec-9-enoylglycero-3-phosphate, N-(2-hydroxy-1-methylethyl)-9-octadecenamide, and sterculic acid

   

cis-Vaccenic acid

(11Z)-octadec-11-enoic acid

C18H34O2 (282.2558664)


cis-11-Octadecenoic acid, also known as (Z)-octadec-11-enoic acid or asclepic acid, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. cis-11-Octadecenoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Phorbol 12-myristate 13-acetate

13-(acetyloxy)-1,6-dihydroxy-8-(hydroxymethyl)-4,12,12,15-tetramethyl-5-oxotetracyclo[8.5.0.0²,⁶.0¹¹,¹³]pentadeca-3,8-dien-14-yl tetradecanoate

C36H56O8 (616.3974976000001)


D009676 - Noxae > D002273 - Carcinogens > D010703 - Phorbol Esters

   

9-Hexadecenoic acid, (9Z)-

9-Hexadecenoic acid, (9Z)-

C16H30O2 (254.224568)


   

9Z,12E-Octadecadienoic acid

Linoleic acid, potassium salt, (Z,Z)-isomer

C18H32O2 (280.2402172)


   

C14:0

Tetradecanoic acid

C14H28O2 (228.20891880000002)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Linoleate

cis-9, cis-12-octadecadienoic acid

C18H32O2 (280.2402172)


COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

FA(16:1)

cis-9-hexadecenoic acid

C16H30O2 (254.224568)


Palmitoleic acid (FA 16:1), also known as hexadecenoic acid, is a monounsaturated omega-7 fatty acid with a 16-carbon chain and a double bond at the 9th position. In biological terms, palmitoleic acid serves several important functions: 1. **Energy Source:** Like other fatty acids, palmitoleic acid is a significant source of energy. It can be oxidized through beta-oxidation to produce ATP, the energy currency of the cell. 2. **Cell Membrane Structure:** Palmitoleic acid is a component of phospholipids, which are major constituents of cell membranes. The presence of monounsaturated fatty acids like palmitoleic acid helps maintain the fluidity and flexibility of cell membranes, which is crucial for various cellular processes. 3. **Lipid Signaling:** Palmitoleic acid and its derivatives can act as signaling molecules. For example, it is converted into the lipid mediator called palmitoleoyl-lysophosphatidylcholine (LPC), which plays a role in inflammation and blood clotting. 4. **Insulin Sensitivity:** Palmitoleic acid has been shown to improve insulin sensitivity, which is important for glucose metabolism and can help in the prevention and treatment of type 2 diabetes. 5. **Inflammation Modulation:** Some studies suggest that palmitoleic acid may have anti-inflammatory effects, which could be beneficial in reducing the risk of chronic diseases associated with inflammation. 6. **Skin Health:** Palmitoleic acid is naturally present in the skin and is considered a component of the skin's surface lipids, contributing to the skin's barrier function and helping to prevent water loss. 7. **Biosynthesis of Other Lipids:** Palmitoleic acid serves as a precursor for the synthesis of other complex lipids, including prostaglandins and other eicosanoids, which are involved in a wide range of physiological processes such as inflammation and blood pressure regulation. 8. **Cardiovascular Health:** The consumption of monounsaturated fatty acids like palmitoleic acid is often associated with a lower risk of cardiovascular diseases, although the direct role of palmitoleic acid in this context is still under investigation. It's important to note that while palmitoleic acid has these potential biological functions, the overall impact on health can depend on the balance of fatty acids in the diet and the context of the individual's overall metabolic health. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Oleate

cis-9-octadecenoic acid

C18H34O2 (282.2558664)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402172)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

VACCENIC ACID

trans-Vaccenic acid

C18H34O2 (282.2558664)


An octadecenoic acid having a double bond at position 11; and which can occur in cis- or trans- configurations. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

9-Hexadecenoic acid

Hexadec-9-enoic acid

C16H30O2 (254.224568)


   

Linolenic Acid

α-Linolenic acid

C18H30O2 (278.224568)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.566 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.567 α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

Myristic Acid

Tetradecanoic acid

C14H28O2 (228.20891880000002)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Oleic acid

cis-9-Octadecenoic acid

C18H34O2 (282.2558664)


An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Palmitoleic acid

Trans-Hexa-dec-2-enoic acid

C16H30O2 (254.224568)


A hexadec-9-enoic acid in which the double bond at position C-9 has cis configuration. In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. Trans-hexa-dec-2-enoic acid is an intermediate in fatty acid biosynthesis. Specifically, trans-hexa-dec-2-enoic acid converted from (R)-3-Hydroxy-hexadecanoic acid via two enzymes; fatty-acid Synthase and 3- Hydroxypalmitoyl- [acyl-carrier-protein] dehydratase (EC: 2.3.1.85 and EC: 4.2.1.61). [HMDB] Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as red huckleberry, highbush blueberry, butternut, and macadamia nut (m. tetraphylla), which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including blood, saliva, feces, and urine, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5949; ORIGINAL_PRECURSOR_SCAN_NO 5948 INTERNAL_ID 900; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5959; ORIGINAL_PRECURSOR_SCAN_NO 5958 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5959; ORIGINAL_PRECURSOR_SCAN_NO 5958 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5926; ORIGINAL_PRECURSOR_SCAN_NO 5924 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5944; ORIGINAL_PRECURSOR_SCAN_NO 5943 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5997; ORIGINAL_PRECURSOR_SCAN_NO 5996 CONFIDENCE standard compound; INTERNAL_ID 900; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5943; ORIGINAL_PRECURSOR_SCAN_NO 5941 Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

α-Linolenic acid

alpha-Linolenic acid

C18H30O2 (278.224568)


α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

FA 18:3

(-)-lamenallenic acid;(-)-octadeca-5,6-trans-16-trienoic acid

C18H30O2 (278.224568)


CONFIDENCE standard compound; INTERNAL_ID 143 COVID info from WikiPathways D - Dermatologicals Same as: D07213 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1]. α-Linolenic acid, isolated from Perilla frutescens, is an essential fatty acid that cannot be synthesized by humans. α-Linolenic acid can affect the process of thrombotic through the modulation of PI3K/Akt signaling. α-Linolenic acid possess the anti-arrhythmic properties and is related to cardiovascular disease and cancer[1].

   

2,6-Di-tert-butyl-P-benzoquinone

2,6-Di-tert-butyl-1,4-benzoquinone

C14H20O2 (220.14632200000003)


CONFIDENCE standard compound; INTERNAL_ID 2460

   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402172)


   
   

2,6-Di-tert-butylquinone

2,6-Bis(1, 1-dimethylethyl)-2,5-cyclohexadiene-1,4-dione

C14H20O2 (220.14632200000003)


   

MGDG 32:2

1-tetradecanoyl-2-(9Z,12Z-octadecadienoyl)-3-O-beta-D-galactosyl-sn-glycerol

C41H74O10 (726.5281704)


   

DGDG 30:0

1-myristoyl-2-palmitoyl-3-O-(alpha-galactopyranosyl-(1,6)-O-beta-D-galactopyranosyl)-sn-glycerol

C45H84O15 (864.5809914)


   

2-Methylisoborneol

(2R,4R)-1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol

C11H20O (168.151407)


   

octadeca-9,12,15-trienoic acid

octadeca-9,12,15-trienoic acid

C18H30O2 (278.224568)


   

Cognac oil

9,12-Octadecadienoic acid, (Z,Z)-, labeled with carbon-14

C18H32O2 (280.2402172)


An octadecadienoic acid in which the two double bonds are at positions 9 and 12 and have Z (cis) stereochemistry. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Red oil

4-02-00-01641 (Beilstein Handbook Reference)

C18H34O2 (282.2558664)


COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

linoleic

9,12-Octadecadienoic acid, (9E,12E)-

C18H32O2 (280.2402172)


Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].

   

Crodacid

4-02-00-01126 (Beilstein Handbook Reference)

C14H28O2 (228.20891880000002)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Zoomaric acid

cis-Delta(9)-Hexadecenoic acid

C16H30O2 (254.224568)


Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

AI3-61049

InChI=1\C14H20O2\c1-13(2,3)10-7-9(15)8-11(12(10)16)14(4,5)6\h7-8H,1-6H

C14H20O2 (220.14632200000003)


   

Hexadec-9-enoic acid

Hexadec-9-enoic acid

C16H30O2 (254.224568)


A hexadecenoic acid in which the double bond is located at position 9.

   

Octadec-9-enoic acid

Octadec-9-enoic acid

C18H34O2 (282.2558664)


An octadecenoic acid with a double bond at C-9.

   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

C47H84O15 (888.5809914)


   

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

C51H84O15 (936.5809914)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

C47H86O15 (890.5966406)


   

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

C43H78O10 (754.5594688)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

C41H74O10 (726.5281704)


   

(1s,2s,4s)-1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol

(1s,2s,4s)-1,2,7,7-tetramethylbicyclo[2.2.1]heptan-2-ol

C11H20O (168.151407)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C47H82O15 (886.5653422)


   

2-(hexadec-9-enoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-(hexadec-9-enoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C43H76O10 (752.5438196)


   

(2s)-2-[(9e)-hexadec-9-enoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-[(9e)-hexadec-9-enoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C43H74O10 (750.5281704)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadec-9-enoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadec-9-enoate

C41H76O10 (728.5438196)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z)-octadec-9-enoate

C41H76O10 (728.5438196)


   

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C49H88O15 (916.6122898)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadecanoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadecanoate

C45H84O15 (864.5809914)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C47H84O15 (888.5809914)


   

2-(octadeca-9,12-dienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(octadeca-9,12-dienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C51H86O15 (938.5966406)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z)-hexadec-9-enoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z)-hexadec-9-enoate

C39H72O10 (700.5125212)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadecanoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadecanoate

C39H74O10 (702.5281704)


   

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

C49H88O15 (916.6122898)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadecanoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadecanoate

C45H84O15 (864.5809914)


   

1-(octadeca-9,12,15-trienoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

1-(octadeca-9,12,15-trienoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

C45H74O10 (774.5281704)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9e)-hexadec-9-enoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9e)-hexadec-9-enoate

C45H82O15 (862.5653422)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadec-9-enoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadec-9-enoate

C39H72O10 (700.5125212)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadec-9-enoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl hexadec-9-enoate

C45H82O15 (862.5653422)


   

1-(octadeca-9,12-dienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12-dienoate

1-(octadeca-9,12-dienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12-dienoate

C51H88O15 (940.6122898)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C41H74O10 (726.5281704)


   

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C43H76O10 (752.5438196)


   

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

2-(hexadecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12-dienoate

C43H78O10 (754.5594688)


   

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-(hexadecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C43H76O10 (752.5438196)


   

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-1-[(9z,12z,15z)-octadeca-9,12,15-trienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-yl (9z,12z,15z)-octadeca-9,12,15-trienoate

C45H74O10 (774.5281704)


   

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-(tetradecanoyloxy)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C41H72O10 (724.5125212)


   

2-(hexadec-9-enoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(hexadec-9-enoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C43H74O10 (750.5281704)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C41H72O10 (724.5125212)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadeca-9,12,15-trienoate

C47H82O15 (886.5653422)


   

(2s)-2-[(9z,12z)-octadeca-9,12-dienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

(2s)-2-[(9z,12z)-octadeca-9,12-dienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl (9z,12z,15z)-octadeca-9,12,15-trienoate

C51H86O15 (938.5966406)


   

(2s)-1-[(9z,12z)-octadeca-9,12-dienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z)-octadeca-9,12-dienoate

(2s)-1-[(9z,12z)-octadeca-9,12-dienoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl (9z,12z)-octadeca-9,12-dienoate

C51H88O15 (940.6122898)


   

(2s)-2-[(9e)-hexadec-9-enoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

(2s)-2-[(9e)-hexadec-9-enoyloxy]-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl (9z,12z)-octadeca-9,12-dienoate

C43H76O10 (752.5438196)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadecanoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propyl hexadecanoate

C39H74O10 (702.5281704)


   

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadec-9-enoate

2-(tetradecanoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propyl octadec-9-enoate

C47H86O15 (890.5966406)


   

1-(octadeca-9,12,15-trienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

1-(octadeca-9,12,15-trienoyloxy)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}propan-2-yl octadeca-9,12,15-trienoate

C51H84O15 (936.5809914)