Lupenone (BioDeep_00000000090)

 

Secondary id: BioDeep_00000313760

PANOMIX_OTCML-2023 Antitumor activity natural product


代谢物信息卡片


(1S,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a]chrysen-9-one

化学式: C30H48O (424.3705)
中文名称: 羽扇烯酮
谱图信息: 最多检出来源 Viridiplantae(otcml) 72.37%

Reviewed

Last reviewed on 2024-10-23.

Cite this Page

Lupenone. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/lupenone (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000090). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C=C(C)C1CCC2(C)CCC3(C)C(CCC4C5(C)CCC(=O)C(C)(C)C5CCC43C)C12
InChI: InChI=1S/C30H48O/c1-19(2)20-11-14-27(5)17-18-29(7)21(25(20)27)9-10-23-28(6)15-13-24(31)26(3,4)22(28)12-16-30(23,29)8/h20-23,25H,1,9-18H2,2-8H3

描述信息

Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane.
Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available.
A natural product found in Cupania cinerea.
Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3].
Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

同义名列表

9 个代谢物同义名

(1S,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a]chrysen-9-one; (1R,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-2,3,4,5,6,7,7a,10,11,11b,12,13,13a,13b-tetradecahydro-1H-cyclopenta[a]chrysen-9-one; (1R,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-2,3,4,5,6,7,7a,10,11,11b,12,13,13a,13b-tetradecahydro-1H-cyclopenta[a]chrysen-9-one; (1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one; Lup-20(29)-en-3-one; Lup-20(30)-en-3-one; Lupenone; lupeone; Lupenone



数据库引用编号

16 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

166 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 ALB, ATF4, BCL2, MAPK3, MAPK8, MTOR, NLRP3, PIK3CA, PPARG, PTK2, TYR
Peripheral membrane protein 3 GORASP1, MTOR, PTK2
Endoplasmic reticulum membrane 2 BCL2, MTOR
Nucleus 10 ALB, ATF4, BCL2, MAPK3, MAPK8, MTOR, NLRP3, PARP1, PPARG, PTK2
cytosol 11 ALB, ATF4, BCL2, MAPK3, MAPK8, MTOR, NLRP3, PARP1, PIK3CA, PPARG, PTK2
dendrite 1 MTOR
nuclear body 1 PARP1
phagocytic vesicle 1 MTOR
centrosome 3 ALB, ATF4, PTK2
nucleoplasm 6 ATF4, MAPK3, MAPK8, MTOR, PARP1, PPARG
RNA polymerase II transcription regulator complex 2 ATF4, PPARG
Cell membrane 4 ATF4, ORAI1, PTK2, TNF
Cytoplasmic side 3 GORASP1, MTOR, PTK2
lamellipodium 1 PIK3CA
Multi-pass membrane protein 1 ORAI1
Golgi apparatus membrane 3 GORASP1, MTOR, NLRP3
Synapse 1 MAPK8
cell cortex 1 PTK2
cell surface 1 TNF
glutamatergic synapse 1 MAPK3
Golgi apparatus 4 ALB, CCN2, GORASP1, MAPK3
Golgi membrane 4 GORASP1, INS, MTOR, NLRP3
lysosomal membrane 3 EGF, GAA, MTOR
neuronal cell body 1 TNF
Cytoplasm, cytosol 2 NLRP3, PARP1
Lysosome 3 GAA, MTOR, TYR
plasma membrane 8 CCN2, EGF, GAA, MAPK3, ORAI1, PIK3CA, PTK2, TNF
Membrane 7 BCL2, EGF, GAA, MTOR, NLRP3, ORAI1, PARP1
axon 1 MAPK8
basolateral plasma membrane 1 ORAI1
caveola 1 MAPK3
extracellular exosome 3 ALB, EGF, GAA
Lysosome membrane 2 GAA, MTOR
endoplasmic reticulum 3 ALB, BCL2, NLRP3
extracellular space 5 ALB, CCN2, EGF, INS, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 4 PIK3CA, PPARG, PTK2, TYR
intercalated disc 1 PIK3CA
mitochondrion 4 BCL2, MAPK3, NLRP3, PARP1
protein-containing complex 4 ALB, ATF4, BCL2, PARP1
intracellular membrane-bounded organelle 5 CCN2, GAA, PPARG, PTK2, TYR
Microsome membrane 1 MTOR
TORC1 complex 1 MTOR
TORC2 complex 1 MTOR
Single-pass type I membrane protein 1 TYR
Secreted 5 ALB, CCN2, GAA, INS, NLRP3
extracellular region 8 ALB, CCN2, DNAH9, EGF, GAA, INS, NLRP3, TNF
Mitochondrion outer membrane 2 BCL2, MTOR
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, MTOR
anchoring junction 2 ALB, PTK2
transcription regulator complex 1 PARP1
motile cilium 1 DNAH9
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 ATF4, PTK2
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
Secreted, extracellular space, extracellular matrix 1 CCN2
dendritic spine 1 PTK2
nucleolus 1 PARP1
Melanosome membrane 1 TYR
Early endosome 1 MAPK3
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cytoplasm, perinuclear region 1 PTK2
Membrane raft 2 ORAI1, TNF
pore complex 1 BCL2
Cell junction, focal adhesion 2 MAPK3, PTK2
Cytoplasm, cytoskeleton 1 PTK2
focal adhesion 2 MAPK3, PTK2
microtubule 1 DNAH9
cis-Golgi network 1 GORASP1
extracellular matrix 1 CCN2
Nucleus, PML body 1 MTOR
PML body 1 MTOR
axoneme 1 DNAH9
nuclear speck 1 ATF4
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Late endosome 1 MAPK3
receptor complex 1 PPARG
neuron projection 1 ATF4
ciliary basal body 2 ALB, PTK2
chromatin 3 ATF4, PARP1, PPARG
cell projection 1 PTK2
phagocytic cup 1 TNF
Chromosome 1 PARP1
cytoskeleton 2 MAPK3, PTK2
Cytoplasm, cytoskeleton, cilium basal body 1 PTK2
centriole 1 ALB
Nucleus, nucleolus 1 PARP1
spindle pole 1 ALB
nuclear replication fork 1 PARP1
chromosome, telomeric region 1 PARP1
Cytoplasm, cell cortex 1 PTK2
blood microparticle 1 ALB
Cytoplasm, cytoskeleton, cilium axoneme 1 DNAH9
Basolateral cell membrane 1 ORAI1
site of double-strand break 1 PARP1
nuclear envelope 3 MAPK3, MTOR, PARP1
Endomembrane system 2 MTOR, NLRP3
endosome lumen 1 INS
Membrane, caveola 1 MAPK3
microtubule organizing center 1 NLRP3
tertiary granule membrane 1 GAA
Melanosome 1 TYR
Nucleus speckle 1 ATF4
myelin sheath 1 BCL2
pseudopodium 1 MAPK3
stress fiber 1 PTK2
plasma membrane raft 1 ORAI1
secretory granule lumen 1 INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 ALB, INS, MAPK3
platelet alpha granule lumen 2 ALB, EGF
phosphatidylinositol 3-kinase complex 1 PIK3CA
phosphatidylinositol 3-kinase complex, class IA 1 PIK3CA
transport vesicle 1 INS
azurophil granule membrane 1 GAA
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
9+2 motile cilium 1 DNAH9
dynein complex 1 DNAH9
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
clathrin-coated endocytic vesicle membrane 1 EGF
calcium channel complex 1 ORAI1
protein-DNA complex 1 PARP1
ficolin-1-rich granule membrane 1 GAA
basal dendrite 1 MAPK8
dendrite membrane 1 ATF4
Cytoplasmic vesicle, phagosome 1 MTOR
site of DNA damage 1 PARP1
nuclear periphery 1 ATF4
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Poly [ADP-ribose] polymerase 1, processed N-terminus]: Chromosome 1 PARP1
[Poly [ADP-ribose] polymerase 1, processed C-terminus]: Cytoplasm 1 PARP1
autolysosome lumen 1 GAA
BAD-BCL-2 complex 1 BCL2
ATF4-CREB1 transcription factor complex 1 ATF4
ATF1-ATF4 transcription factor complex 1 ATF4
CHOP-ATF4 complex 1 ATF4
Lewy body core 1 ATF4
phosphatidylinositol 3-kinase complex, class IB 1 PIK3CA
ciliary transition fiber 1 ALB
[Isoform Alpha]: Cell membrane 1 ORAI1
outer dynein arm 1 DNAH9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF
[Isoform beta]: Cell membrane 1 ORAI1
distal portion of axoneme 1 DNAH9


文献列表

  • Xiangpei Wang, Mei Liu, Xiaofen Li, Mei Zhang, Feng Xu, Hongyun Liu, Hongmei Wu. Utilizing molecular docking and cell validation to explore the potential mechanisms of lupenone attenuating the inflammatory response via NF-κB pathway. Scientific reports. 2024 01; 14(1):625. doi: 10.1038/s41598-024-51150-3. [PMID: 38182871]
  • Hongmei Wu, Feng Xu, Xulong Huang, Xiaofen Li, Piao Yu, Lingling Zhang, Xiaosong Yang, Juan Kong, Cheng Zhen, Xiangpei Wang. Lupenone improves type 2 diabetic nephropathy by regulating NF-κB pathway-mediated inflammation and TGF-β1/Smad/CTGF-associated fibrosis. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2023 Sep; 118(?):154959. doi: 10.1016/j.phymed.2023.154959. [PMID: 37478684]
  • Sandip Debnath, Taha Alqahtani, Ali Alqahtani, Hanan M Alharbi, Shopnil Akash. Lupenone, a wonder chemical obtained from Euphorbia segetalis to boost affinity for the transcriptional factor escalating drought-tolerance in Solanum Lycopersicum: A cutting-edge computational biology approach. PloS one. 2023; 18(11):e0281293. doi: 10.1371/journal.pone.0281293. [PMID: 37939107]
  • Feng Xu, Mei Zhang, Hongmei Wu, Yuanmin Wang, Ye Yang, Xiangpei Wang. Study on the mechanism of lupenone for treating type 2 diabetes by integrating pharmacological evaluation and network pharmacology. Pharmaceutical biology. 2022 Dec; 60(1):997-1010. doi: 10.1080/13880209.2022.2067568. [PMID: 35635284]
  • Emanuelle M B M da Silva Landim, Ana Lúcia T G Ruiz, João E de Carvalho, Armando M Pomini, Lindamir H Pastorini, Silvana M Oliveira Santin. Antiproliferative activity and chemical constituents of Lonchocarpus cultratus (Fabaceae). Natural product research. 2021 Jun; 35(12):2056-2059. doi: 10.1080/14786419.2019.1647427. [PMID: 31401870]
  • Ashish Kumar, Vijai K Agnihotri. Phytochemical studies of Jurinea macrocephala roots from Western Himalaya. Natural product research. 2020 Feb; 34(3):421-424. doi: 10.1080/14786419.2018.1530233. [PMID: 30499332]
  • Lía S Valencia-Chan, Isabel García-Cámara, Luis W Torres-Tapia, Rosa E Moo-Puc, Sergio R Peraza-Sánchez. Lupane-Type Triterpenes of Phoradendron vernicosum. Journal of natural products. 2017 11; 80(11):3038-3042. doi: 10.1021/acs.jnatprod.7b00177. [PMID: 29120172]
  • Feng Xu, Hongmei Wu, Yuanmin Wang, Ye Yang, Yuan Gao, Xiangpei Wang. Determination of lupenone and β-sitosterol in Rhizoma Musae by UPLC with DAD and ELSD. Journal of chromatographic science. 2015 Nov; 53(10):1714-9. doi: 10.1093/chromsci/bmv079. [PMID: 26126840]
  • Oliver Callies, Luis M Bedoya, Manuela Beltrán, Alejandro Muñoz, Patricia Obregón Calderón, Alex A Osorio, Ignacio A Jiménez, José Alcamí, Isabel L Bazzocchi. Isolation, Structural Modification, and HIV Inhibition of Pentacyclic Lupane-Type Triterpenoids from Cassine xylocarpa and Maytenus cuzcoina. Journal of natural products. 2015 May; 78(5):1045-55. doi: 10.1021/np501025r. [PMID: 25927586]
  • Panawan Suttiarporn, Watcharapong Chumpolsri, Sugunya Mahatheeranont, Suwaporn Luangkamin, Somsuda Teepsawang, Vijittra Leardkamolkarn. Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients. 2015 Mar; 7(3):1672-87. doi: 10.3390/nu7031672. [PMID: 25756784]
  • M Punnam Chander, K Vinod Kumar, A N Shriram, P Vijayachari. Anti-leptospiral activities of an endemic plant Glyptopetalum calocarpum (Kurz.) Prain used as a medicinal plant by Nicobarese of Andaman and Nicobar Islands. Natural product research. 2015; 29(16):1575-7. doi: 10.1080/14786419.2014.985679. [PMID: 25482276]
  • Feng Xu, Hongmei Wu, Xiangpei Wang, Ye Yang, Yuanmin Wang, Haibing Qian, Yanyan Zhang. RP-HPLC characterization of lupenone and β-sitosterol in rhizoma musae and evaluation of the anti-diabetic activity of lupenone in diabetic Sprague-Dawley rats. Molecules (Basel, Switzerland). 2014 Sep; 19(9):14114-27. doi: 10.3390/molecules190914114. [PMID: 25207716]
  • L M Ramadhan Al Muqarrabun, Norizan Ahmat, S Ruzaina S Aris, Nurdiana Shamsulrijal, Syarul N Baharum, Rafidah Ahmad, A Rifki Rosandy, M Nazip Suratman, H Takayama. A new sesquiterpenoid from Scaphium macropodum (Miq.) Beumee. Natural product research. 2014; 28(9):597-605. doi: 10.1080/14786419.2014.886211. [PMID: 24568340]
  • Eun-Kyung Ahn, Joa Sub Oh. Lupenone isolated from Adenophora triphylla var. japonica extract inhibits adipogenic differentiation through the downregulation of PPARγ in 3T3-L1 cells. Phytotherapy research : PTR. 2013 May; 27(5):761-6. doi: 10.1002/ptr.4779. [PMID: 22848028]
  • Myra O Villareal, Junkyu Han, Kyoko Matsuyama, Yukiko Sekii, Abderrazek Smaoui, Hideyuki Shigemori, Hiroko Isoda. Lupenone from Erica multiflora leaf extract stimulates melanogenesis in B16 murine melanoma cells through the inhibition of ERK1/2 activation. Planta medica. 2013 Mar; 79(3-4):236-43. doi: 10.1055/s-0032-1328189. [PMID: 23408272]
  • Mélanie Bourjot, Pieter Leyssen, Cécilia Eydoux, Jean-Claude Guillemot, Bruno Canard, Philippe Rasoanaivo, Françoise Guéritte, Marc Litaudon. Chemical constituents of Anacolosa pervilleana and their antiviral activities. Fitoterapia. 2012 Sep; 83(6):1076-80. doi: 10.1016/j.fitote.2012.05.004. [PMID: 22613073]
  • J P Dzoyem, F A Kechia, V Kuete, A C Pieme, C M Akak, J G Tangmouo, P J Lohoue. Phytotoxic, antifungal activities and acute toxicity studies of the crude extract and compounds from Diospyros canaliculata. Natural product research. 2011 Apr; 25(7):741-9. doi: 10.1080/14786419.2010.531392. [PMID: 21462073]
  • Guohui Li, Qingwen Zhang, Yitao Wang. [Chemical constituents from roots of Pueraria lobata]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2010 Dec; 35(23):3156-60. doi: . [PMID: 21355238]
  • Pilar Puebla, Yoko Oshima-Franco, Luiz M Franco, Marcio G Dos Santos, Renata V da Silva, Leandro Rubem-Mauro, Arturo San Feliciano. Chemical constituents of the bark of Dipteryx alata vogel, an active species against Bothrops jararacussu venom. Molecules (Basel, Switzerland). 2010 Nov; 15(11):8193-204. doi: 10.3390/molecules15118193. [PMID: 21076386]
  • Yu-lan Li, Xian Fan, Yong-liang Wang, Yao-lan Li, Shao-yu Xu, Ying-zhou Cen. [Studies on the triterpenoids constituents from Phyllodium elegans]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2010 May; 33(5):720-1. doi: ". [PMID: 20873553]
  • Minkyun Na, Bo Yeon Kim, Hiroyuki Osada, Jong Seog Ahn. Inhibition of protein tyrosine phosphatase 1B by lupeol and lupenone isolated from Sorbus commixta. Journal of enzyme inhibition and medicinal chemistry. 2009 Aug; 24(4):1056-9. doi: 10.1080/14756360802693312. [PMID: 19548777]
  • Tao Jiang, Bao-kang Huang, Qiao-yan Zhang, Ting Han, Han-chen Zheng, Lu-ping Qin. [Studies on chemical constituents of Liriope platyphylla]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2007 Sep; 30(9):1079-81. doi: ". [PMID: 18236747]
  • Shehla Imam, Iqbal Azhar, M Mohtaseemul Hasan, M S Ali, S Waseemuddin Ahmed. Two triterpenes lupanone and lupeol isolated and identified from Tamarindus indica linn. Pakistan journal of pharmaceutical sciences. 2007 Apr; 20(2):125-7. doi: ". [PMID: 17416567]
  • Shun Yao, Renming Liu, Xuefeng Huang, Lingyi Kong. Preparative isolation and purification of chemical constituents from the root of Adenophora tetraphlla by high-speed counter-current chromatography with evaporative light scattering detection. Journal of chromatography. A. 2007 Jan; 1139(2):254-62. doi: 10.1016/j.chroma.2006.11.056. [PMID: 17150224]
  • Xiao-ya Shang, Shuai Li, Ying-hong Wang, Su-juan Wang, Yong-chun Yang, Jian-gong Shi. [Chemical constitutents of Bauhinia aurea]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Dec; 31(23):1953-5. doi: ". [PMID: 17348187]
  • Zhong Dai, Feng Wang, Gang-Li Wang, Rui-Chao Lin. [Studies on chemical constituents of Balanophora spicata]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Nov; 31(21):1798-800. doi: ". [PMID: 17260797]
  • Lu-xin Chen, Hong-yan Ma, Mian Zhang, Chao-feng Zhang, Zheng-tao Wang. [Studies on constituents in herb of Senecio scandens]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Nov; 31(22):1872-5. doi: ". [PMID: 17285987]
  • Shu-Yun Bao, Wen-Han Lin. [Compounds from marine mangrove plant Bruguiera sexangula var. rhynchopetala]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2006 Jul; 31(14):1168-71. doi: . [PMID: 17048587]
  • J D Wansi, J Wandji, W A F Kamdem, J C Ndom, H E Ngeufa, D D Chiozem, J Chi Shirri, M I Choudhary, N Tsabang, F Tillequin, Z T Fomum. Triterpenoids from Drypetes chevalieri Beille (euphorbiaceae). Natural product research. 2006 May; 20(6):586-92. doi: 10.1080/14786410500185451. [PMID: 16835092]
  • Qing-fei Ji, Wen-han Lin, Jun Li, Wei Li, Koike Kazuo, Nikaido Tamotsu, Hong-zheng Fu. [Chemical investingation of Chinese mangrove Sonneratia apetala II]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica. 2005 Aug; 30(16):1258-60. doi: . [PMID: 16245903]
  • M Mukhlesur Rahman, David Polfreman, Jodie MacGeachan, Alexander I Gray. Antimicrobial activities of Barringtonia acutangula. Phytotherapy research : PTR. 2005 Jun; 19(6):543-5. doi: 10.1002/ptr.1341. [PMID: 16114086]
  • Sabrina Dallavalle, Lalith Jayasinghe, B M M Kumarihamy, Lucio Merlini, Loana Musso, Leonardo Scaglioni. A new 3,4-seco-lupane derivative from Lasianthus gardneri. Journal of natural products. 2004 May; 67(5):911-3. doi: 10.1021/np030374g. [PMID: 15165165]
  • Esperanza J Carcache-Blanco, Young-Hwa Kang, Eun Jung Park, Bao-Ning Su, Leonardus B S Kardono, Soedarsono Riswan, Harry H S Fong, John M Pezzuto, A Douglas Kinghorn. Constituents of the stem bark of Pongamia pinnata with the potential to induce quinone reductase. Journal of natural products. 2003 Sep; 66(9):1197-202. doi: 10.1021/np030207g. [PMID: 14510596]
  • Tian-Shung Wu, Meei-Yu Hsu, Ping-Chung Kuo, B Sreenivasulu, A G Damu, Chung-Ren Su, Chia-Ying Li, Hsien-Chang Chang. Constituents from the leaves of Phellodendron amurense var. wilsonii and their bioactivity. Journal of natural products. 2003 Sep; 66(9):1207-11. doi: 10.1021/np030034v. [PMID: 14510598]
  • C L Cantrell, S G Franzblau, N H Fischer. Antimycobacterial plant terpenoids. Planta medica. 2001 Nov; 67(8):685-94. doi: 10.1055/s-2001-18365. [PMID: 11731906]
  • T Akihisa, J Ogihara, J Kato, K Yasukawa, M Ukiya, S Yamanouchi, K Oishi. Inhibitory effects of triterpenoids and sterols on human immunodeficiency virus-1 reverse transcriptase. Lipids. 2001 May; 36(5):507-12. doi: 10.1007/s11745-001-0750-4. [PMID: 11432464]
  • A Hisham, A Bai, G JayaKumar, M S Nair, Y Fujimoto. Triterpenoids from Dysoxylum malabaricum. Phytochemistry. 2001 Feb; 56(4):331-4. doi: 10.1016/s0031-9422(00)00413-1. [PMID: 11249096]