Gene Association: ORAI1
UniProt Search:
ORAI1 (PROTEIN_CODING)
Function Description: ORAI calcium release-activated calcium modulator 1
found 57 associated metabolites with current gene based on the text mining result from the pubmed database.
Lupenone
Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
Zongorine
Songorine is a kaurane diterpenoid. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1]. Songorine is a diterpenoid alkaloid isolated from the genus Aconitum. Songorine is a GABAA receptor antagonist in rat brain and has anti cancer, antiarrhythmic and anti-inflammatory activities. Songorine has the potential for the treatment of Epithelial ovarian cancer (EOC)[1].
6'-O-p-Coumaroyltrifolin
Kaempferol 3-(6-p-coumaroylgalactoside) is a member of the class of compounds known as flavonoid 3-o-p-coumaroyl glycosides. Flavonoid 3-o-p-coumaroyl glycosides are flavonoid 3-O-glycosides where the carbohydrate moiety is esterified with a p-coumaric acid. P-coumaric acid is an organic derivative of cinnamic acid, that carries a hydroxyl group at the 4-position of the benzene ring. Kaempferol 3-(6-p-coumaroylgalactoside) is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Within the cell, kaempferol 3-(6-p-coumaroylgalactoside) is primarily located in the membrane (predicted from logP). Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. 6-O-p-Coumaroyltrifolin is a constituent of Pinus sylvestris (Scotch pine). Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
Ryanodine
An insecticide alkaloid isolated from South American plant Ryania speciosa. Ryania is a natural product found in Ryania speciosa and Spigelia anthelmia with data available. Ryanodine is a poisonous alkaloid found in the South American plant Ryania speciosa (Flacourtiaceae). It was originally used as an insecticide. The compound has extremely high affinity to the open-form ryanodine receptor, a group of calcium channels found in skeletal muscle, smooth muscle, and heart muscle cells. It binds with such high affinity to the receptor that it was used as a label for the first purification of that class of ion channels and gave its name to it. A methylpyrrole-carboxylate from RYANIA that disrupts the RYANODINE RECEPTOR CALCIUM RELEASE CHANNEL to modify CALCIUM release from SARCOPLASMIC RETICULUM resulting in alteration of MUSCLE CONTRACTION. It was previously used in INSECTICIDES. It is used experimentally in conjunction with THAPSIGARGIN and other inhibitors of CALCIUM ATPASE uptake of calcium into SARCOPLASMIC RETICULUM.
Thapsigargin
Thapsigargin is an organic heterotricyclic compound that is a hexa-oxygenated 6,7-guaianolide isolated fron the roots of Thapsia garganica L., Apiaceae. A potent skin irritant, it is used in traditional medicine as a counter-irritant. Thapsigargin inhibits Ca(2+)-transporting ATPase mediated uptake of calcium ions into sarcoplasmic reticulum and is used in experimentation examining the impacts of increasing cytosolic calcium concentrations. It has a role as an EC 3.6.3.8 (Ca(2+)-transporting ATPase) inhibitor and a calcium channel blocker. It is a sesquiterpene lactone, an organic heterotricyclic compound and a butyrate ester. Thapsigargin is a natural product found in Thapsia gymnesica, Thapsia villosa, and Thapsia garganica with data available. A sesquiterpene lactone found in roots of THAPSIA. It inhibits SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. C1907 - Drug, Natural Product > C28269 - Phytochemical > C93252 - Sesquiterpene Lactone D004791 - Enzyme Inhibitors (-)-Thapsigargin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67526-95-8 (retrieved 2024-11-06) (CAS RN: 67526-95-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
(+)-Fargesin
Fargesin is a lignan. Planinin is a natural product found in Piper mullesua and Magnolia coco with data available. Constituent of Artemisia absinthium (wormwood). (+)-Fargesin is found in alcoholic beverages and herbs and spices. (+)-Spinescin is found in herbs and spices. (+)-Spinescin is a constituent of sassafras root. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3]. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3].
Valencene
(+)-valencene is a carbobicyclic compound and sesquiterpene that is 1,2,3,4,4a,5,6,7-octahydronaphthalene which is substituted a prop-1-en-2-yl group at position 3 and by methyl groups at positions 4a and 5 (the 3R,4aS,5R- diastereoisomer). It is a sesquiterpene, a carbobicyclic compound and a polycyclic olefin. Valencene is a natural product found in Xylopia sericea, Helichrysum odoratissimum, and other organisms with data available. Valencene is found in citrus. Valencene is a constituent of orange oil Valencene is a sesquiterpene isolated from Cyperus rotundus, possesses antiallergic, antimelanogenesis, anti-infammatory, and antioxidant activitivies. Valencene inhibits the exaggerated expression of Th2 chemokines and proinflammatory chemokines through blockade of the NF-κB pathway. Valencene is used to flavor foods and drinks[1][2][3].
Taurolithocholate 3-sulfate
Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in the bile of mammals. The distinction between different bile acids is minute, depending only on the presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g. membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues (PMID: 11316487, 16037564, 12576301, 11907135). Taurolithocholic acid 3-sulfate is a sulfated bile acid. Under normal circumstances, bile acid sulfation is a minor pathway. However in the presence of cholestasis, the fraction of the bile acid pool which is sulfated increases. Sulfation of bile acids increases the aqueous solubility of the amphipathic compounds and results in more efficient renal clearance as well as in decreased reabsorption from the intestinal lumen. Bile acids are steroid acids found predominantly in bile of mammals. The distinction between different bile acids is minute, depends only on presence or absence of hydroxyl groups on positions 3, 7, and 12. Bile acids are physiological detergents that facilitate excretion, absorption, and transport of fats and sterols in the intestine and liver. Bile acids are also steroidal amphipathic molecules derived from the catabolism of cholesterol. They modulate bile flow and lipid secretion, are essential for the absorption of dietary fats and vitamins, and have been implicated in the regulation of all the key enzymes involved in cholesterol homeostasis. Bile acids recirculate through the liver, bile ducts, small intestine and portal vein to form an enterohepatic circuit. They exist as anions at physiological pH and, consequently, require a carrier for transport across the membranes of the enterohepatic tissues. The unique detergent properties of bile acids are essential for the digestion and intestinal absorption of hydrophobic nutrients. Bile acids have potent toxic properties (e.g., membrane disruption) and there are a plethora of mechanisms to limit their accumulation in blood and tissues. (PMID: 11316487, 16037564, 12576301, 11907135) [HMDB] D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids KEIO_ID T072
Dihydrodiethylstilbestrol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D000970 - Antineoplastic Agents
Propanil
CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4459; ORIGINAL_PRECURSOR_SCAN_NO 4456 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4491; ORIGINAL_PRECURSOR_SCAN_NO 4488 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4496; ORIGINAL_PRECURSOR_SCAN_NO 4493 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4487; ORIGINAL_PRECURSOR_SCAN_NO 4485 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4491; ORIGINAL_PRECURSOR_SCAN_NO 4487 CONFIDENCE standard compound; INTERNAL_ID 1341; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4473; ORIGINAL_PRECURSOR_SCAN_NO 4470 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3051 CONFIDENCE standard compound; INTERNAL_ID 2331 CONFIDENCE standard compound; INTERNAL_ID 8484 D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals
Oxybutynin
Oxybutynin is an anticholinergic medication used to relieve urinary and bladder difficulties, including frequent urination and inability to control urination, by decreasing muscle spasms of the bladder. It competitively antagonizes the M1, M2, and M3 subtypes of the muscarinic acetylcholine receptor. G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 3025 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Wogonin
Wogonin is a dihydroxy- and monomethoxy-flavone in which the hydroxy groups are positioned at C-5 and C-7 and the methoxy group is at C-8. It has a role as a cyclooxygenase 2 inhibitor, an antineoplastic agent, an angiogenesis inhibitor and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is a conjugate acid of a wogonin(1-). Wogonin is a natural product found in Scutellaria likiangensis, Scutellaria amoena, and other organisms with data available. A dihydroxy- and monomethoxy-flavone in which the hydroxy groups are positioned at C-5 and C-7 and the methoxy group is at C-8. Annotation level-1 Wogonin is a naturally occurring mono-flavonoid, can inhibit the activity of CDK8 and Wnt, and exhibits anti-inflammatory and anti-tumor effects. Wogonin is a naturally occurring mono-flavonoid, can inhibit the activity of CDK8 and Wnt, and exhibits anti-inflammatory and anti-tumor effects.
Dantrolene
Dantrolene is only found in individuals that have used or taken this drug.Chemically, dantrolene is a hydantoin derivative, but does not exhibit antiepileptic activity like other hydantoin derivates such as phenytoin.Dantrolene depresses excitation-contraction coupling in skeletal muscle by binding to the ryanodine receptor 1, and decreasing intracellular calcium concentration. Ryanodine receptors mediate the release of calcium from the sarcoplasmic reticulum, an essential step in muscle contraction. M - Musculo-skeletal system > M03 - Muscle relaxants > M03C - Muscle relaxants, directly acting agents > M03CA - Dantrolene and derivatives D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents
4-Chloro-3-methylphenol
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468
Pyridostigmine
Pyridostigmine is only found in individuals that have used or taken this drug. It is a cholinesterase inhibitor with a slightly longer duration of action than neostigmine. It is used in the treatment of myasthenia gravis and to reverse the actions of muscle relaxants. [PubChem]Pyridostigmine inhibits acetylcholinesterase in the synaptic cleft by competing with acetylcholine for attachment to acetylcholinesterase, thus slowing down the hydrolysis of acetylcholine, and thereby increases efficiency of cholinergic transmission in the neuromuscular junction and prolonges the effects of acetylcholine. N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics > N07AA - Anticholinesterases D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors
Leukotriene C4
Leukotriene C4 (LTC4) is a cysteinyl leukotriene (CysLT), a family of potent inflammatory mediators. Eosinophils, one of the principal cell types recruited to and activated at sites of allergic inflammation, is capable of elaborating lipid mediators, including leukotrienes derived from the oxidative metabolism of arachidonic acid (AA). Potentially activated eosinophils may elaborate greater quantities of LTC4, than normal eosinophils. These activated eosinophils thus are primed for enhanced LTC4 generation in response to subsequent stimuli. Some recognized priming stimuli are chemoattractants (e.g. eotaxin, PAF) that may participate in the recruitment of eosinophils to sites of allergic inflammation. The mechanisms by which chemoattractants and other activating cytokines (e.g. interleukin (IL)-5) or extracellular matrix components (e.g. fibronectin) enhance eosinophil eicosanoid formation are pertinent to the functions of these eicosanoids as paracrine mediators of allergic inflammation. Some eosinophil-derived eicosanoids may be active in down-regulating inflammation. It is increasingly likely that eicosanoids synthesized within cells, including eosinophils, may have intracellular (e.g. intracrine) roles in regulating cell functions, in addition to the more recognized activities of eicosanoids as paracrine mediators of inflammation. Acting extracellularly, the cysteinyl leukotrienes (CysLTs) LTC4 and its extracellular derivatives, LTD4 and LTE4 are key paracrine mediators pertinent to asthma and allergic diseases. Based on their receptor-mediated capabilities, they can elicit bronchoconstriction, mucus hypersecretion, bronchial hyperresponsiveness, increased microvascular permeability, and additional eosinophil infiltration. Eosinophils are a major source of CysLTs and have been identified as the principal LTC4 synthase expressing cells in bronchial mucosal biopsies of asthmatic subjects (PMID: 12895596). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Leukotriene c4, also known as ltc4 or 5s,6r-ltc(sub 4), is a member of the class of compounds known as oligopeptides. Oligopeptides are organic compounds containing a sequence of between three and ten alpha-amino acids joined by peptide bonds. Thus, leukotriene c4 is considered to be an eicosanoid lipid molecule. Leukotriene c4 is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Leukotriene c4 can be synthesized from icosa-7,9,11,14-tetraenoic acid. Leukotriene c4 is also a parent compound for other transformation products, including but not limited to, leukotriene C4 methyl ester, 11,12-dihydro-(12R)-hydroxyleukotriene C4, and 11,12-dihydro-12-oxoleukotriene C4. Leukotriene c4 can be found in a number of food items such as gram bean, maitake, caraway, and burbot, which makes leukotriene c4 a potential biomarker for the consumption of these food products. Leukotriene c4 can be found primarily in blood and cerebrospinal fluid (CSF), as well as throughout most human tissues. In humans, leukotriene c4 is involved in several metabolic pathways, some of which include trisalicylate-choline action pathway, antipyrine action pathway, nepafenac action pathway, and fenoprofen action pathway. Leukotriene c4 is also involved in a couple of metabolic disorders, which include leukotriene C4 synthesis deficiency and tiaprofenic acid action pathway. Moreover, leukotriene c4 is found to be associated with eczema. Leukotriene C4 (LTC4) is a leukotriene. LTC4 has been extensively studied in the context of allergy and asthma. In cells of myeloid origin such as mast cells, its biosynthesis is orchestrated by translocation to the nuclear envelope along with co-localization of cytosolic phospholipase A2 (cPLA2), Arachidonate 5-lipoxygenase (5-LO), 5-lipoxygenase-activating protein (FLAP) and LTC4 synthase (LTC4S), which couples glutathione to an LTA4 intermediate.The MRP1 transporter then secretes cytosolic LTC4 and cell surface proteases further metabolize it by sequential cleavage of the γ-glutamyl and glycine residues off its glutathione segment, generating the more stable products LTD4 and LTE4. All three leukotrienes then bind at different affinities to two G-protein coupled receptors: CYSLTR1 and CYSLTR2, triggering pulmonary vasoconstriction and bronchoconstriction .
beta-Glycerophosphoric acid
beta-Glycerophosphoric acid, also known as BGA or glycerol 2-phosphate, is a component of glycerolipid metabolism. It is formed in minor quanitites because the alpha glycerophosphorate is preferentially formed in this manner. beta-Glycerophosphoric acid is used as a biological buffer (Sigma-Aldrich). Glycerol-2-phosphate is a component of glycerolipid metabolism. It is formed in minor quanitites, as the alpha glycerophosphorate is preferentially formed in this manner. Also used as a biological buffer (Sigma-Aldrich) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST.
Eudesmin
(+)-Eudesmin is a lignan. (+)-Eudesmin is a natural product found in Pandanus utilis, Zanthoxylum fagara, and other organisms with data available. Origin: Plant Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1]. Eudesmin ((-)-Eudesmin) impairs adipogenic differentiation via inhibition of S6K1 signaling pathway. Eudesmin possesses diverse therapeutic effects, including anti-tumor, anti-inflammatory, and anti-bacterial activities[1]. Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2]. Pinoresinol dimethyl ether ((+)-Eudesmin) is a non-phenolic furofuran lignan isolated from Magnolia biondii with neuritogenic activity. Pinoresinol dimethyl ether ((+)-Eudesmin) can induce neuritis outgrowth from PC12 cells by stimulating up-stream MAPK, PKC and PKA pathways[1][2].
Mibefradil
C - Cardiovascular system > C08 - Calcium channel blockers > C08C - Selective calcium channel blockers with mainly vascular effects D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent > C333 - Calcium Channel Blocker D002317 - Cardiovascular Agents > D002121 - Calcium Channel Blockers D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D000077264 - Calcium-Regulating Hormones and Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker
Usnic acid
A member of the class of dibenzofurans that is dibenzo[b,d]furan-1(9bH)-one substituted by acetyl groups at positions 2 and 6, hydroxy groups at positions 3 and 7 and methyl groups at positions 8 and 9b. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.457 D000890 - Anti-Infective Agents > D000935 - Antifungal Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 1.456 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.458 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.459 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.455 (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. (+)-Usnic acid is isolated from isolated from lichens, binds at the ATP-binding pocket of mTOR, and inhibits mTORC1/2 activity. (+)-Usnic acid inhibits the phosphorylation of mTOR downstream effectors: Akt (Ser473), 4EBP1, S6K, induces autophay, with anti-cancer activity[1]. (+)-Usnic acid possesses antimicrobial activity against a number of planktonic gram-positive bacteria, including Staphylococcus aureus, Enterococcus faecalis, and Enterococcus faecium[2]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].
Fluo-3
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes
Dihydrogenistein
Dihydrogenistein is a metabolite of the soy isoflavone genistin (the glycoside conjugate of genistein) by intestinal bacteria. Isoflavones are one of the three major classes of phytoestrogens; phytoestrogens are a diverse group of plant-derived compounds that structurally and functionally mimic mammalian estrogen. The isoflavone genistin is one of the most prevalent in soy foods. They are biologically inactive; once ingested, they are cleaved by glucosidases to "aglycones", genistein. Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent disease. Many studies reveal that the incidence of prostate cancer and breast cancer is much lower in Asian people in comparison to people from the West and, and the prevailing contribution to this difference has been attributed to the diet. Soy foods and soy-derived products which contain abundant isoflavones are consumed in large quantities by Asian people. In vitro, isoflavone metabolites have dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. (PMID: 17499260, 16965913) [HMDB]. Dihydrogenistein is a biomarker for the consumption of soy beans and other soy products. Dihydrogenistein is a metabolite of the soy isoflavone genistin (the glycoside conjugate of genistein) by intestinal bacteria. Isoflavones are one of the three major classes of phytoestrogens; phytoestrogens are a diverse group of plant-derived compounds that structurally and functionally mimic mammalian estrogen. The isoflavone genistin is one of the most prevalent in soy foods. They are biologically inactive; once ingested, they are cleaved by glucosidases to "aglycones", genistein. Epidemiological studies have associated high soy intake with a lowered risk for certain hormone-dependent disease. Many studies reveal that the incidence of prostate cancer and breast cancer is much lower in Asian people in comparison to people from the West and, and the prevailing contribution to this difference has been attributed to the diet. Soy foods and soy-derived products which contain abundant isoflavones are consumed in large quantities by Asian people. In vitro, isoflavone metabolites have dual functions: they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. (PMID: 17499260, 16965913). Dihydrogenistein is a biomarker for the consumption of soy beans and other soy products.
Jaspamide
A cyclodepsipeptide isolated from Jaspis splendens and has been shown to exhibit antineoplastic activity. It is an actin polymerization and stabilization inducer. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D000970 - Antineoplastic Agents D016573 - Agrochemicals
Nootkatol
Nootkatol (cis or trans) is known to produce during synthetic (+)-nootkatone production from (+)-valencene by oxidation. Nootkatol is also reported as a precursor in several enzymatic oxidation of (+)-valencene to (+)-nootkatone. Nootkatone is an important oxidised sesquiterpene used in flavour and fragrance industry. Natural (+)-nootkatone can be extracted from grapefruit.
hexestrol
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens D000970 - Antineoplastic Agents CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4806; ORIGINAL_PRECURSOR_SCAN_NO 4804 C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4817; ORIGINAL_PRECURSOR_SCAN_NO 4815 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4774; ORIGINAL_PRECURSOR_SCAN_NO 4772 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4796; ORIGINAL_PRECURSOR_SCAN_NO 4794 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4834; ORIGINAL_PRECURSOR_SCAN_NO 4832 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4799; ORIGINAL_PRECURSOR_SCAN_NO 4795 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8887; ORIGINAL_PRECURSOR_SCAN_NO 8882 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8903; ORIGINAL_PRECURSOR_SCAN_NO 8901 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8923; ORIGINAL_PRECURSOR_SCAN_NO 8921 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8953; ORIGINAL_PRECURSOR_SCAN_NO 8951 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8970; ORIGINAL_PRECURSOR_SCAN_NO 8969 CONFIDENCE standard compound; INTERNAL_ID 826; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8944; ORIGINAL_PRECURSOR_SCAN_NO 8942
Usnic_acid
7-Hydroxy-(S)-usnate is a member of benzofurans. Usnic acid is a natural product found in Lecanora muralis, Usnea florida, and other organisms with data available. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1]. Usnic acid, a lichen-derived secondary metabolite, has a unique dibenzofuran skeleton. Usnic acid has excellent anticancer and antimicrobial properties. Usnic acid significantly inhibits RANKL-mediated osteoclast formation and function by reducing the transcriptional and translational expression of NFATc1[1].
Fargesin
Fargesin is a lignan. Planinin is a natural product found in Piper mullesua and Magnolia coco with data available. (+/-)-Fargesin is a natural product found in Piper mullesua, Aristolochia cymbifera, and other organisms with data available. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3]. Fargesin is a bioactive neolignan isolated from magnolia plants, with antihypertensive and anti-inflammatory effects[1][2][3].
Tiliroside
Acquisition and generation of the data is financially supported in part by CREST/JST. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
(+)-Fargesin
Constituent of Artemisia absinthium (wormwood). (+)-Fargesin is found in alcoholic beverages and herbs and spices. (+)-Spinescin is found in herbs and spices. (+)-Spinescin is a constituent of sassafras root. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2]. Kobusin is a bisepoxylignan isolated from the Pnonobio biondii Pamp. Kobusin is an activator of CFTR and CaCCgie chloride channels and a inhibitor of ANO1/CaCC (calcium-activated chloride channel) channel[1][2].
Lupenone
Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].
Oxybutynin
G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BD - Drugs for urinary frequency and incontinence C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D010276 - Parasympatholytics D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D000089162 - Genitourinary Agents > D064804 - Urological Agents CONFIDENCE standard compound; INTERNAL_ID 2516 CONFIDENCE standard compound; INTERNAL_ID 8497 Oxybutynin is an anticholinergic agent, which inhibits vascular Kv channels in a concentration-dependent manner, with an IC50 of 11.51 μM[1]. Oxybutynin is a click chemistry reagent, it contains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Leukotriene C4
A leukotriene that is (5S,7E,9E,11Z,14Z)-5-hydroxyicosa-7,9,11,14-tetraenoic acid in which a glutathionyl group is attached at position 6 via a sulfide linkage.
4-Chloro-3-methylphenol
CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4527; ORIGINAL_PRECURSOR_SCAN_NO 4526 C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4489; ORIGINAL_PRECURSOR_SCAN_NO 4487 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4509; ORIGINAL_PRECURSOR_SCAN_NO 4507 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4544; ORIGINAL_PRECURSOR_SCAN_NO 4540 CONFIDENCE standard compound; INTERNAL_ID 986; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4535; ORIGINAL_PRECURSOR_SCAN_NO 4534
dantrolene
M - Musculo-skeletal system > M03 - Muscle relaxants > M03C - Muscle relaxants, directly acting agents > M03CA - Dantrolene and derivatives D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3945; ORIGINAL_PRECURSOR_SCAN_NO 3940 CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3956; ORIGINAL_PRECURSOR_SCAN_NO 3954 CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3932; ORIGINAL_PRECURSOR_SCAN_NO 3929 CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3942; ORIGINAL_PRECURSOR_SCAN_NO 3939 CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3694; ORIGINAL_PRECURSOR_SCAN_NO 3692 CONFIDENCE standard compound; INTERNAL_ID 992; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3687; ORIGINAL_PRECURSOR_SCAN_NO 3685
Valencene
(+)-valencene is a carbobicyclic compound and sesquiterpene that is 1,2,3,4,4a,5,6,7-octahydronaphthalene which is substituted a prop-1-en-2-yl group at position 3 and by methyl groups at positions 4a and 5 (the 3R,4aS,5R- diastereoisomer). It is a sesquiterpene, a carbobicyclic compound and a polycyclic olefin. Valencene is a natural product found in Xylopia sericea, Helichrysum odoratissimum, and other organisms with data available. Constituent of orange oil. Valencene is found in many foods, some of which are citrus, common oregano, rosemary, and sweet orange. Valencene is a sesquiterpene isolated from Cyperus rotundus, possesses antiallergic, antimelanogenesis, anti-infammatory, and antioxidant activitivies. Valencene inhibits the exaggerated expression of Th2 chemokines and proinflammatory chemokines through blockade of the NF-κB pathway. Valencene is used to flavor foods and drinks[1][2][3].
Tiliroside
Tribuloside is a glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite. It is a glycosyloxyflavone, a cinnamate ester, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol and a trans-4-coumaric acid. Tiliroside is a natural product found in Phlomoides spectabilis, Anaphalis contorta, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to a 6-O-[(2E)-3-(4-hydroxyphenyl)prop-2-enoyl]-beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tiliroside, a glycosidic flavonoid, possesses anti-diabetic activities. Tiliroside is a noncompetitive inhibitor of α-amylase with a Ki value of 84.2? μM. Tiliroside inhibits carbohydrate digestion and glucose absorption in the gastrointestinal tract[1]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2]. Tribuloside is a flavonoid that can be isolated from Tribulus terrestris L[1]. Tribuloside exhibits anti-mycobacterial activity against the non-pathogenic Mycobacterium species with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Tribuloside has 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity[2].
pyridostigmine
N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics > N07AA - Anticholinesterases D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors
Taurolithocholic acid 3-sulfate
D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids
jasplakinolide
D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D000970 - Antineoplastic Agents D016573 - Agrochemicals
Chlorocresol
C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D016573 - Agrochemicals D010575 - Pesticides Same as: D03468
Dihydrogenistein
A hydroxyisoflavanone comprising isoflavanone carrying three hydroxy substituents at positions 5, 7 and 4.
Fluo-3
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes