Brassicasterol (BioDeep_00000398241)

Main id: BioDeep_00000004166

 

PANOMIX_OTCML-2023 Chemicals and Drugs Marine Natural Products Antitumor activity natural product


代谢物信息卡片


ergosta-5,22E-dien-3beta-ol

化学式: C28H46O (398.3548)
中文名称: 芸苔甾醇
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: C(C(C=CC(C)C(C4)C(C3C4)(C)CCC(C13)C(C2)(C(CC(C2)O)=CC1)C)C)(C)C
InChI: InChI=1S/C28H46O/c1-18(2)19(3)7-8-20(4)24-11-12-25-23-10-9-21-17-22(29)13-15-27(21,5)26(23)14-16-28(24,25)6/h7-9,18-20,22-26,29H,10-17H2,1-6H3/b8-7+/t19-,20+,22-,23-,24+,25-,26-,27-,28+/m0/s1

描述信息

An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil.
C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.
Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].
Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6].
Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

同义名列表

5 个代谢物同义名

Ergosta-5,22-dien-3β-ol; Brassicasterol; ergosta-5,22E-dien-3beta-ol; ST 28:2;O; Brassicasterol



数据库引用编号

21 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(1)

PlantCyc(1)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

425 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ACE, AIMP2, ALB, AR, DHCR24, MAPT, PPARG, PTGS2
Peripheral membrane protein 3 CYP1B1, MAPT, PTGS2
Endoplasmic reticulum membrane 6 CYP1B1, DHCR24, DHCR7, EBP, HMGCR, PTGS2
Nucleus 6 AIMP2, ALB, AR, DHCR24, MAPT, PPARG
cytosol 7 AIMP2, ALB, APOA1, AR, IL1B, MAPT, PPARG
dendrite 1 MAPT
centrosome 1 ALB
nucleoplasm 2 AR, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 6 ABCG5, ABCG8, ACE, AGTR1, MAPT, TNF
Cytoplasmic side 1 MAPT
Cell projection, axon 1 MAPT
Multi-pass membrane protein 6 ABCG5, ABCG8, AGTR1, DHCR7, EBP, HMGCR
Golgi apparatus membrane 1 DHCR24
cell surface 1 TNF
Golgi apparatus 1 ALB
Golgi membrane 1 DHCR24
growth cone 1 MAPT
lysosomal membrane 1 GAA
neuronal cell body 2 MAPT, TNF
Cytoplasm, cytosol 3 AIMP2, IL1B, MAPT
Lysosome 3 ACE, GAA, IL1B
endosome 1 ACE
plasma membrane 9 ABCG5, ABCG8, ACE, AGTR1, APOA1, AR, GAA, MAPT, TNF
Membrane 11 ABCG5, ABCG8, ACE, AGTR1, AIMP2, AR, CYP1B1, DHCR24, DHCR7, GAA, HMGCR
apical plasma membrane 2 ABCG5, ABCG8
axon 1 MAPT
caveola 1 PTGS2
extracellular exosome 4 ACE, ALB, APOA1, GAA
Lysosome membrane 1 GAA
endoplasmic reticulum 6 ALB, DHCR24, DHCR7, EBP, HMGCR, PTGS2
extracellular space 5 ACE, ALB, APOA1, IL1B, TNF
lysosomal lumen 1 GAA
perinuclear region of cytoplasm 1 PPARG
mitochondrion 2 CYP1B1, MAPT
protein-containing complex 3 ALB, AR, PTGS2
intracellular membrane-bounded organelle 3 CYP1B1, GAA, PPARG
Microsome membrane 2 CYP1B1, PTGS2
Single-pass type I membrane protein 1 ACE
Secreted 6 ACE, ALB, APOA1, GAA, IL1B, MAPT
extracellular region 7 ACE, ALB, APOA1, GAA, IL1B, MAPT, TNF
Single-pass membrane protein 1 DHCR24
anchoring junction 1 ALB
nuclear membrane 1 EBP
external side of plasma membrane 2 ACE, TNF
Extracellular vesicle 1 APOA1
chylomicron 1 APOA1
high-density lipoprotein particle 1 APOA1
low-density lipoprotein particle 1 APOA1
very-low-density lipoprotein particle 1 APOA1
dendritic spine 1 MAPT
cytoplasmic vesicle 2 APOA1, EBP
microtubule cytoskeleton 1 MAPT
axon cytoplasm 1 MAPT
Early endosome 1 APOA1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Apical cell membrane 2 ABCG5, ABCG8
Membrane raft 2 MAPT, TNF
Cytoplasm, cytoskeleton 1 MAPT
microtubule 1 MAPT
axolemma 1 MAPT
peroxisomal membrane 1 HMGCR
collagen-containing extracellular matrix 1 APOA1
secretory granule 1 IL1B
nuclear speck 2 AR, MAPT
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 2 DHCR7, PTGS2
receptor complex 3 ABCG5, ABCG8, PPARG
neuron projection 2 MAPT, PTGS2
ciliary basal body 1 ALB
chromatin 2 AR, PPARG
phagocytic cup 1 TNF
centriole 1 ALB
cytoplasmic ribonucleoprotein granule 1 MAPT
brush border membrane 1 ACE
spindle pole 1 ALB
blood microparticle 2 ALB, APOA1
sperm midpiece 1 ACE
nuclear envelope 1 EBP
Nucleus envelope 1 EBP
Cell projection, dendrite 1 MAPT
tertiary granule membrane 1 GAA
cell body 1 MAPT
Peroxisome membrane 1 HMGCR
basal plasma membrane 1 ACE
secretory granule lumen 1 APOA1
endoplasmic reticulum lumen 3 ALB, APOA1, PTGS2
platelet alpha granule lumen 1 ALB
endocytic vesicle 1 APOA1
azurophil granule membrane 1 GAA
Secreted, extracellular exosome 1 IL1B
ATP-binding cassette (ABC) transporter complex 2 ABCG5, ABCG8
ficolin-1-rich granule membrane 1 GAA
aminoacyl-tRNA synthetase multienzyme complex 1 AIMP2
somatodendritic compartment 1 MAPT
nuclear periphery 1 MAPT
spherical high-density lipoprotein particle 1 APOA1
glial cell projection 1 MAPT
endocytic vesicle lumen 1 APOA1
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
neurofibrillary tangle 1 MAPT
autolysosome lumen 1 GAA
main axon 1 MAPT
tubulin complex 1 MAPT
[Angiotensin-converting enzyme, soluble form]: Secreted 1 ACE
[Isoform Testis-specific]: Cell membrane 1 ACE
ciliary transition fiber 1 ALB
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Yasuharu Yazawa, Nobutomo Ikarashi, Motohiro Hoshino, Hironori Kikkawa, Fumiyo Sakuma, Kiyoshi Sugiyama. Inhibitory effect of ergosterol on bladder carcinogenesis is due to androgen signaling inhibition by brassicasterol, a metabolite of ergosterol. Journal of natural medicines. 2020 Sep; 74(4):680-688. doi: 10.1007/s11418-020-01419-4. [PMID: 32488609]
  • Sasiwimon Tabyam. Amendment to Quality Parameters for Rice Bran Oil in the Codex Standard for Named Vegetable Oils. Journal of oleo science. 2020 Jul; 69(7):789-793. doi: 10.5650/jos.ess20085. [PMID: 32522949]
  • Tafadzwa Kaseke, Umezuruike Linus Opara, Olaniyi Amos Fawole. Effect of Blanching Pomegranate Seeds on Physicochemical Attributes, Bioactive Compounds and Antioxidant Activity of Extracted Oil. Molecules (Basel, Switzerland). 2020 May; 25(11):. doi: 10.3390/molecules25112554. [PMID: 32486338]
  • Asmita Poudel, George Gachumi, Ildiko Badea, Zafer Dallal Bashi, Anas El-Aneed. The simultaneous quantification of phytosterols and tocopherols in liposomal formulations using validated atmospheric pressure chemical ionization- liquid chromatography -tandem mass spectrometry. Journal of pharmaceutical and biomedical analysis. 2020 May; 183(?):113104. doi: 10.1016/j.jpba.2020.113104. [PMID: 32058287]
  • M A Nurseitova, F B Amutova, A A Zhakupbekova, A S Omarova, A B Kondybayev, G A Bayandy, N N Akhmetsadykov, B Faye, G S Konuspayeva. Comparative study of fatty acid and sterol profiles for the investigation of potential milk fat adulteration. Journal of dairy science. 2019 Sep; 102(9):7723-7733. doi: 10.3168/jds.2018-15620. [PMID: 31255261]
  • Yunping Yao, Wentao Liu, Hang Zhou, Di Zhang, Ruiting Li, Changmo Li, Shuo Wang. The Relations between Minor Components and Antioxidant Capacity of Five Fruits and Vegetables Seed Oils in China. Journal of oleo science. 2019 Jul; 68(7):625-635. doi: 10.5650/jos.ess19005. [PMID: 31178462]
  • Moacir Guimarães de Melo, Brina Aguiar da Silva, Gilcllys de Souza Costa, João Cândido André da Silva Neto, Patrícia Kaori Soares, Adalberto Luis Val, Jamal da Silva Chaar, Hector Henrique Ferreira Koolen, Giovana Anceski Bataglion. Sewage contamination of Amazon streams crossing Manaus (Brazil) by sterol biomarkers. Environmental pollution (Barking, Essex : 1987). 2019 Jan; 244(?):818-826. doi: 10.1016/j.envpol.2018.10.055. [PMID: 30390455]
  • Nina S Liland, Karin Pittman, Paul Whatmore, Bente E Torstensen, Nini H Sissener. Fucosterol Causes Small Changes in Lipid Storage and Brassicasterol Affects some Markers of Lipid Metabolism in Atlantic Salmon Hepatocytes. Lipids. 2018 07; 53(7):737-747. doi: 10.1002/lipd.12083. [PMID: 30259993]
  • Nini H Sissener, Grethe Rosenlund, Ingunn Stubhaug, Nina S Liland. Tissue sterol composition in Atlantic salmon (Salmo salar L.) depends on the dietary cholesterol content and on the dietary phytosterol:cholesterol ratio, but not on the dietary phytosterol content. The British journal of nutrition. 2018 03; 119(6):599-609. doi: 10.1017/s0007114517003853. [PMID: 29397797]
  • Islam J A Hamdan, Lorena Claumarchirant, Guadalupe Garcia-Llatas, Amparo Alegría, María Jesús Lagarda. Sterols in infant formulas: validation of a gas chromatographic method. International journal of food sciences and nutrition. 2017 Sep; 68(6):695-703. doi: 10.1080/09637486.2017.1287883. [PMID: 28276904]
  • Teresa Cegielska-Taras, Małgorzata Nogala-Kałucka, Laurencja Szala, Aleksander Siger. Study of variation of tocochromanol and phytosterol contents in black and yellow seeds of Brassica napus L. doubled haploid populations. Acta scientiarum polonorum. Technologia alimentaria. 2016 Jul; 15(3):321-332. doi: 10.17306/j.afs.2016.3.31. [PMID: 28071031]
  • R T Ras, W P Koppenol, U Garczarek, A Otten-Hofman, D Fuchs, F Wagner, E A Trautwein. Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2016 Apr; 26(4):302-9. doi: 10.1016/j.numecd.2015.11.007. [PMID: 26806045]
  • David A Mannock, Matthew G K Benesch, Ruthven N A H Lewis, Ronald N McElhaney. A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols β-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et biophysica acta. 2015 Aug; 1848(8):1629-38. doi: 10.1016/j.bbamem.2015.04.009. [PMID: 25911208]
  • Eli Heggen, Bente Kirkhus, Jan I Pedersen, Serena Tonstad. Effects of margarine enriched with plant sterol esters from rapeseed and tall oils on markers of endothelial function, inflammation and hemostasis. Scandinavian journal of clinical and laboratory investigation. 2015 Apr; 75(2):189-92. doi: 10.3109/00365513.2014.992040. [PMID: 25553599]
  • Julian P Sachs, Orest E Kawka. The Influence of Growth Rate on 2H/1H Fractionation in Continuous Cultures of the Coccolithophorid Emiliania huxleyi and the Diatom Thalassiosira pseudonana. PloS one. 2015; 10(11):e0141643. doi: 10.1371/journal.pone.0141643. [PMID: 26576007]
  • Keisuke Matsuoka, Asumi Kase, Takashi Matsuo, Yusuke Ashida. Competitive Solubilization of Cholesterol/Cholesteryl Oleate and Seven Species of Sterol/Stanol in Model Intestinal Solution System. Journal of oleo science. 2015; 64(7):783-91. doi: 10.5650/jos.ess15044. [PMID: 26136176]
  • Blanka Vrbková, Vendula Roblová, Edward S Yeung, Jan Preisler. Determination of sterols using liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry. Journal of chromatography. A. 2014 Sep; 1358(?):102-9. doi: 10.1016/j.chroma.2014.06.077. [PMID: 25022478]
  • Matthew G K Benesch, Ronald N McElhaney. A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes. Biochimica et biophysica acta. 2014 Jul; 1838(7):1941-9. doi: 10.1016/j.bbamem.2014.03.019. [PMID: 24704414]
  • Maged P Mansour, Pushkar Shrestha, Srinivas Belide, James R Petrie, Peter D Nichols, Surinder P Singh. Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils. Nutrients. 2014 Feb; 6(2):776-89. doi: 10.3390/nu6020776. [PMID: 24566436]
  • Shunyan Mo, Linlin Dong, W Jeffrey Hurst, Richard B van Breemen. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry. Lipids. 2013 Sep; 48(9):949-56. doi: 10.1007/s11745-013-3813-3. [PMID: 23884629]
  • Antonio Evidente, Alessio Cimmino, Mónica Fernández-Aparicio, Diego Rubiales, Anna Andolfi, Dominique Melck. Soyasapogenol B and trans-22-dehydrocam- pesterol from common vetch (Vicia sativa L.) root exudates stimulate broomrape seed germination. Pest management science. 2011 Aug; 67(8):1015-22. doi: 10.1002/ps.2153. [PMID: 21480462]
  • Maristela Pereira, Zhihong Song, Ludier Kesser Santos-Silva, Mathew H Richards, Thi Thuy Minh Nguyen, JiaLin Liu, Celia Maria de Almeida Soares, Aline Helena da Silva Cruz, Kulothungan Ganapathy, W David Nes. Cloning, mechanistic and functional analysis of a fungal sterol C24-methyltransferase implicated in brassicasterol biosynthesis. Biochimica et biophysica acta. 2010 Oct; 1801(10):1163-74. doi: 10.1016/j.bbalip.2010.06.007. [PMID: 20624480]
  • Malene Schrøder, Christiane Fricke, Kirsten Pilegaard, Morten Poulsen, Ingmar Wester, Dieter Lütjohann, Alicja Mortensen. Effect of rapeseed oil-derived plant sterol and stanol esters on atherosclerosis parameters in cholesterol-challenged heterozygous Watanabe heritable hyperlipidaemic rabbits. The British journal of nutrition. 2009 Dec; 102(12):1740-51. doi: 10.1017/s0007114509991206. [PMID: 19772679]
  • Wahid Herchi, Saoussem Harrabi, Khaled Sebei, Sophie Rochut, Sadok Boukhchina, Claude Pepe, Habib Kallel. Phytosterols accumulation in the seeds of Linum usitatissimum L. Plant physiology and biochemistry : PPB. 2009 Oct; 47(10):880-5. doi: 10.1016/j.plaphy.2009.07.001. [PMID: 19616960]
  • Qixuan Chen, Heidi Gruber, Catherine Pakenham, Walisundera M N Ratnayake, Kylie A Scoggan. Dietary phytosterols and phytostanols alter the expression of sterol-regulatory genes in SHRSP and WKY inbred rats. Annals of nutrition & metabolism. 2009; 55(4):341-50. doi: 10.1159/000252350. [PMID: 19851062]
  • S Rozner, L Verkhovski, Y Nissimov, A Aserin, R Vilensky, D Danino, C C Zouboulis, Y Milner, N Garti. Inhibition of cholesterol transport into skin cells in cultures by phytosterol-loaded microemulsion. Chemistry and physics of lipids. 2008 Jun; 153(2):109-18. doi: 10.1016/j.chemphyslip.2008.02.017. [PMID: 18395012]
  • Tadateru Hamada, Hitomi Goto, Takashi Yamahira, Takashi Sugawara, Katsumi Imaizumi, Ikuo Ikeda. Solubility in and affinity for the bile salt micelle of plant sterols are important determinants of their intestinal absorption in rats. Lipids. 2006 Jun; 41(6):551-6. doi: 10.1007/s11745-006-5004-y. [PMID: 16981433]
  • Liana Silva, Ana Coutinho, Alexander Fedorov, Manuel Prieto. Nystatin-induced lipid vesicles permeabilization is strongly dependent on sterol structure. Biochimica et biophysica acta. 2006 Apr; 1758(4):452-9. doi: 10.1016/j.bbamem.2006.03.008. [PMID: 16626629]
  • Jan Lembcke, Uta Ceglarek, Georg Martin Fiedler, Sven Baumann, Alexander Leichtle, Joachim Thiery. Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS. Journal of lipid research. 2005 Jan; 46(1):21-6. doi: 10.1194/jlr.c400004-jlr200. [PMID: 15489546]
  • E O Fedina, F G Karimova, I R Chechetkin, I A Tarchevsky, V A Khripach. Contribution of lipoxygenase metabolism to the brassinosteroid signaling pathway. Doklady. Biochemistry and biophysics. 2004 Mar; 395(?):80-3. doi: 10.1023/b:dobi.0000025551.80557.42. [PMID: 15253557]
  • G J Bishop, T Yokota. Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant & cell physiology. 2001 Feb; 42(2):114-20. doi: 10.1093/pcp/pce018. [PMID: 11230564]
  • M Honda, G S Tint, A Honda, A K Batta, T S Chen, S Shefer, G Salen. Measurement of 3 beta-hydroxysteroid delta 7-reductase activity in cultured skin fibroblasts utilizing ergosterol as a substrate: a new method for the diagnosis of the Smith-Lemli-Opitz syndrome. Journal of lipid research. 1996 Nov; 37(11):2433-8. doi: . [PMID: 8978494]
  • M Posada de la Paz, R M Philen, I A Borda, J M Sicilia Socias, A Gómez de la Cámara, E M Kilbourne. Toxic oil syndrome: traceback of the toxic oil and evidence for a point source epidemic. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 1996 Mar; 34(3):251-7. doi: 10.1016/0278-6915(95)00111-5. [PMID: 8621106]
  • S P Kochhar. Influence of processing on sterols of edible vegetable oils. Progress in lipid research. 1983; 22(3):161-88. doi: 10.1016/0163-7827(83)90008-5. [PMID: 6356149]
  • . . . . doi: . [PMID: 11319028]