NCBI Taxonomy: 167839

Sphenopidae (ncbi_taxid: 167839)

found 37 associated metabolites at family taxonomy rank level.

Ancestor: Zoantharia

Child Taxonomies: Palythoa, Sphenopus

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.3705)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Crustecdysone

2-[(4-hydroxyphenyl)methyl]propanedinitrile

C27H44O7 (480.3087)


20-hydroxyecdysone is an ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. It has a role as a plant metabolite and an animal metabolite. It is a 20-hydroxy steroid, an ecdysteroid, a 14alpha-hydroxy steroid, a 3beta-sterol, a 2beta-hydroxy steroid, a 22-hydroxy steroid, a 25-hydroxy steroid and a phytoecdysteroid. It is functionally related to an ecdysone. 20-Hydroxyecdysone is a natural product found in Asparagus filicinus, Trichobilharzia ocellata, and other organisms with data available. A steroid hormone that regulates the processes of MOLTING or ecdysis in insects. Ecdysterone is the 20-hydroxylated ECDYSONE. Crustecdysone is found in crustaceans. Crustecdysone is isolated from the marine crayfish Jasus lalandei in low yield (2 mg/ton D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones An ecdysteroid that is ecdysone substituted by a hydroxy group at position 20. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].

   

Batyl alcohol

3-(octadecyloxy)propane-1,2-diol

C21H44O3 (344.329)


C26170 - Protective Agent > C797 - Radioprotective Agent 3-(Octadecyloxy)propane-1,2-diol is an endogenous metabolite.

   

Brassicasterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H46O (398.3548)


Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

palytoxin

(E,2S,3R,5R,8R,9S)-10-[(2R,3R,4R,5S,6R)-6-[(1S,2R,3S,4S,5R,11S)-12-[(1R,3S,5S,7R)-5-[(8S)-9-[(2R,3R,4R,5R,6S)-6-[(E,2S,3S,6S,9R,10R)-10-[(2S,4R,5S,6R)-6-[(2R,3R)-4-[(2R,3S,4R,5R,6S)-6-[(2S,3Z,5E,8R,9S,10R,12Z,17S,18R,19R,20R)-21-[(2R,3R,4R,5S,6R)-6-[(Z,3R,4R)-5-[(1S,3R,5R,7R)-7-[2-[(2R,3R,5S)-5-(aminomethyl)-3-hydroxyoxolan-2-yl]ethyl]-2,6-dioxabicyclo[3.2.1]octan-3-yl]-3,4-dihydroxypent-1-enyl]-3,4,5-trihydroxyoxan-2-yl]-2,8,9,10,17,18,19-heptahydroxy-20-methyl-14-methylidenehenicosa-3,5,12-trienyl]-3,4,5-trihydroxyoxan-2-yl]-2,3-dihydroxybutyl]-4,5-dihydroxyoxan-2-yl]-2,6,9,10-tetrahydroxy-3-methyldec-4-enyl]-3,4,5,6-tetrahydroxyoxan-2-yl]-8-hydroxynonyl]-1,3-dimethyl-6,8-dioxabicyclo[3.2.1]octan-7-yl]-1,2,3,4,5-pentahydroxy-11-methyldodecyl]-3,4,5-trihydroxyoxan-2-yl]-2,5,8,9-tetrahydroxy-N-[(E)-3-(3-hydroxypropylamino)-3-oxoprop-1-enyl]-3,7-dimethyldec-6-enamide

C129H223N3O54 (2678.4795)


A polyol marine coelenterate toxin composed of substituted N-3-hydroxypropyl-trans-3-amidoacrylamides and produced by species of Palythoa and Zoanthus soft corals (collectively called zoantharians), either as a defence mechanism or to assist them in capturing prey. An ionophore that forms cation channels through Na+/K+-ATPase, it is a potent vasoconstrictor useful in evaluation of anti-angina agents. It is considered to be one of the most poisonous non-protein substances known, second only to maitotoxin in terms of toxicity in mice. D009676 - Noxae > D011042 - Poisons > D003064 - Cnidarian Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms

   

Dihydrobrassicasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S)-5,6-Dimethylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H48O (400.3705)


24-epicampesterol is a 3beta-sterol, a member of phytosterols, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. 22,23-Dihydrobrassicasterol is a natural product found in Euphorbia fischeriana, Sambucus chinensis, and other organisms with data available. Occurs in Physalis peruviana (Cape gooseberry). Dihydrobrassicasterol is found in many foods, some of which are watermelon, muskmelon, fruits, and cucumber. Dihydrobrassicasterol is found in cucumber. Dihydrobrassicasterol occurs in Physalis peruviana (Cape gooseberry

   

TG(16:0/16:0/16:0)

1,3-bis(hexadecanoyloxy)propan-2-yl hexadecanoate

C51H98O6 (806.7363)


TG(16:0/16:0/16:0) or Tripalmitin is a monoacid triglyceride. Triglycerides (TGs) are also known as triacylglycerols or triacylglycerides. TGs are fatty acid triesters of glycerol and may be divided into three general types with respect to their acyl substituents. They are simple or monoacid if they contain only one type of fatty acid, diacid if they contain two types of fatty acids and triacid if three different acyl groups. Chain lengths of the fatty acids in naturally occurring triglycerides can be of varying lengths and saturations but 16, 18 and 20 carbons are the most common. TGs are the main constituent of vegetable oil and animal fats. TGs are major components of very low density lipoprotein (VLDL) and chylomicrons, play an important role in metabolism as energy sources and transporters of dietary fat. They contain more than twice the energy (9 kcal/g) of carbohydrates and proteins. In the intestine, triglycerides are split into glycerol and fatty acids (this process is called lipolysis) (with the help of lipases and bile secretions), which can then move into blood vessels. The triglycerides are rebuilt in the blood from their fragments and become constituents of lipoproteins, which deliver the fatty acids to and from fat cells among other functions. Various tissues can release the free fatty acids and take them up as a source of energy. Fat cells can synthesize and store triglycerides. When the body requires fatty acids as an energy source, the hormone glucagon signals the breakdown of the triglycerides by hormone-sensitive lipase to release free fatty acids. As the brain cannot utilize fatty acids as an energy source, the glycerol component of triglycerides can be converted into glucose for brain fuel when it is broken down. TAGs can serve as fatty acid stores in all cells, but primarily in adipocytes of adipose tissue. The major building block for the synthesis of triacylglycerides, in non-adipose tissue, is glycerol. Adipocytes lack glycerol kinase and so must use another route to TAG synthesis. Specifically, dihydroxyacetone phosphate (DHAP), which is produced during glycolysis, is the precursor for TAG synthesis in adipose tissue. DHAP can also serve as a TAG precursor in non-adipose tissues, but does so to a much lesser extent than glycerol. The use of DHAP for the TAG backbone depends on whether the synthesis of the TAGs occurs in the mitochondria and ER or the ER and the peroxisomes. The ER/mitochondria pathway requires the action of glycerol-3-phosphate dehydrogenase to convert DHAP to glycerol-3-phosphate. Glycerol-3-phosphate acyltransferase then esterifies a fatty acid to glycerol-3-phosphate thereby generating lysophosphatidic acid. The ER/peroxisome reaction pathway uses the peroxisomal enzyme DHAP acyltransferase to acylate DHAP to acyl-DHAP which is then reduced by acyl-DHAP reductase. The fatty acids that are incorporated into TAGs are activated to acyl-CoAs through the action of acyl-CoA synthetases. Two molecules of acyl-CoA are esterified to glycerol-3-phosphate to yield 1,2-diacylglycerol phosphate (also known as phosphatidic acid). The phosphate is then removed by phosphatidic acid phosphatase (PAP1), to generate 1,2-diacylglycerol. This diacylglycerol serves as the substrate for addition of the third fatty acid to make TAG. Intestinal monoacylglycerols, derived from dietary fats, can also serve as substrates for the synthesis of 1,2-diacylglycerols. Present in palm oil

   

20-Hydroxyecdysone

20-Hydroxyecdysone

C27H44O7 (480.3087)


   

Batyl alcohol

Batyl alcohol

C21H44O3 (344.329)


   

Brassicasterol

ergosta-5,22E-dien-3beta-ol

C28H46O (398.3548)


An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Campesterol

Campesterol

C28H48O (400.3705)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Crustecdysone

20-Hydroxyecdysone

C27H44O7 (480.3087)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials SubCategory_DNP: : The sterols, Cholestanes Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3]. Crustecdysone (20-Hydroxyecdysone) is a naturally occurring ecdysteroid hormone isolated from Serratula coronata which controls the ecdysis (moulting) and metamorphosis of arthropods, it inhibits caspase activity and induces autophagy via the 20E nuclear receptor complex, EcR-USP[1]. Crustecdysone exhibits regulatory or protective roles in the cardiovascular system[2]. Crustecdysone is an active metabolite of Ecdysone (HY-N0179)[3].

   

TRIPALMITIN

2,3-di(hexadecanoyloxy)propyl hexadecanoate

C51H98O6 (806.7363)


A triglyceride obtained by formal acylation of the three hydroxy groups of glycerol by palmitic (hexadecanoic) acid.

   

CHEBI:19809

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5S)-5,6-dimethylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H48O (400.3705)


   

9a,11a-dimethyl-1-(5-methylhex-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

9a,11a-dimethyl-1-(5-methylhex-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C26H42O (370.3235)


   

cetyl glyceryl ether

cetyl glyceryl ether

C19H40O3 (316.2977)


   

[13-(hydroxymethyl)-5,12-dioxa-2,9-diazatricyclo[8.4.0.0³,⁸]tetradeca-1(10),2,8-trien-6-yl]methanol

[13-(hydroxymethyl)-5,12-dioxa-2,9-diazatricyclo[8.4.0.0³,⁸]tetradeca-1(10),2,8-trien-6-yl]methanol

C12H16N2O4 (252.111)


   

(1s,3as,5as,7r,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-[(2r,3r,5s,6r)-2,3,7-trihydroxy-5,6-dimethylheptan-2-yl]-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

(1s,3as,5as,7r,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-[(2r,3r,5s,6r)-2,3,7-trihydroxy-5,6-dimethylheptan-2-yl]-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C28H46O8 (510.3193)


   

3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-(2,3,7-trihydroxy-5,6-dimethylheptan-2-yl)-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-(2,3,7-trihydroxy-5,6-dimethylheptan-2-yl)-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C28H46O8 (510.3193)


   

(1s,3as,5as,7r,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-[(2r,3r,5r,6r)-2,3,7-trihydroxy-5,6-dimethylheptan-2-yl]-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

(1s,3as,5as,7r,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-[(2r,3r,5r,6r)-2,3,7-trihydroxy-5,6-dimethylheptan-2-yl]-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C28H46O8 (510.3193)


   

[12-(hydroxymethyl)-5,13-dioxa-2,9-diazatricyclo[8.4.0.0³,⁸]tetradeca-1(10),2,8-trien-6-yl]methanol

[12-(hydroxymethyl)-5,13-dioxa-2,9-diazatricyclo[8.4.0.0³,⁸]tetradeca-1(10),2,8-trien-6-yl]methanol

C12H16N2O4 (252.111)


   

glyceryl stearate; bis(palmitic acid)

glyceryl stearate; bis(palmitic acid)

C53H106O8 (870.7887)


   

(1s,3as,5as,7r,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-[(2r,3r,6r)-2,3,7-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

(1s,3as,5as,7r,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-[(2r,3r,6r)-2,3,7-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C27H44O8 (496.3036)


   

(2s,3r,5r,8r,9s)-10-[(2r,3r,4s,5r,6r)-6-[(1s,2r,3s,4s,5r,11s)-12-[(1r,3r,5s,7r)-5-[(8s)-9-[(2r,3r,4s,5s,6s)-6-[(2s,3s,6s,9r,10r)-10-[(2s,4s,5r,6r)-6-[(2r,3r)-4-[(2r,3s,4s,5s,6s)-6-[(2s,8r,9s,10r,17s,18r,19r,20r)-21-[(2r,3r,4s,5r,6r)-6-[(3r,4r)-5-[(1s,3r,5s,7s)-7-{2-[(2r,3r,5r)-5-(aminomethyl)-3-hydroxyoxolan-2-yl]ethyl}-2,6-dioxabicyclo[3.2.1]octan-3-yl]-3,4-dihydroxypent-1-en-1-yl]-3,4,5-trihydroxyoxan-2-yl]-2,8,9,10,17,18,19-heptahydroxy-20-methyl-14-methylidenehenicosa-3,5,12-trien-1-yl]-3,4,5-trihydroxyoxan-2-yl]-2,3-dihydroxybutyl]-4,5-dihydroxyoxan-2-yl]-2,6,9,10-tetrahydroxy-3-methyldec-4-en-1-yl]-3,4,5,6-tetrahydroxyoxan-2-yl]-8-hydroxynonyl]-1,3-dimethyl-6,8-dioxabicyclo[3.2.1]octan-7-yl]-1,2,3,4,5-pentahydroxy-11-methyldodecyl]-3,4,5-trihydroxyoxan-2-yl]-2,5,8,9-tetrahydroxy-n-{2-[(3-hydroxypropyl)-c-hydroxycarbonimidoyl]eth-1-en-1-yl}-3,7-dimethyldec-6-enimidic acid

(2s,3r,5r,8r,9s)-10-[(2r,3r,4s,5r,6r)-6-[(1s,2r,3s,4s,5r,11s)-12-[(1r,3r,5s,7r)-5-[(8s)-9-[(2r,3r,4s,5s,6s)-6-[(2s,3s,6s,9r,10r)-10-[(2s,4s,5r,6r)-6-[(2r,3r)-4-[(2r,3s,4s,5s,6s)-6-[(2s,8r,9s,10r,17s,18r,19r,20r)-21-[(2r,3r,4s,5r,6r)-6-[(3r,4r)-5-[(1s,3r,5s,7s)-7-{2-[(2r,3r,5r)-5-(aminomethyl)-3-hydroxyoxolan-2-yl]ethyl}-2,6-dioxabicyclo[3.2.1]octan-3-yl]-3,4-dihydroxypent-1-en-1-yl]-3,4,5-trihydroxyoxan-2-yl]-2,8,9,10,17,18,19-heptahydroxy-20-methyl-14-methylidenehenicosa-3,5,12-trien-1-yl]-3,4,5-trihydroxyoxan-2-yl]-2,3-dihydroxybutyl]-4,5-dihydroxyoxan-2-yl]-2,6,9,10-tetrahydroxy-3-methyldec-4-en-1-yl]-3,4,5,6-tetrahydroxyoxan-2-yl]-8-hydroxynonyl]-1,3-dimethyl-6,8-dioxabicyclo[3.2.1]octan-7-yl]-1,2,3,4,5-pentahydroxy-11-methyldodecyl]-3,4,5-trihydroxyoxan-2-yl]-2,5,8,9-tetrahydroxy-n-{2-[(3-hydroxypropyl)-c-hydroxycarbonimidoyl]eth-1-en-1-yl}-3,7-dimethyldec-6-enimidic acid

C129H223N3O54 (2678.4795)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-5-methylhex-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-5-methylhex-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C26H42O (370.3235)


   

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H46O (398.3548)


   

[(6s,12s)-12-(hydroxymethyl)-5,13-dioxa-2,9-diazatricyclo[8.4.0.0³,⁸]tetradeca-1(10),2,8-trien-6-yl]methanol

[(6s,12s)-12-(hydroxymethyl)-5,13-dioxa-2,9-diazatricyclo[8.4.0.0³,⁸]tetradeca-1(10),2,8-trien-6-yl]methanol

C12H16N2O4 (252.111)


   

(2s,3r,5r,6e,8r,9s)-10-[(2r,3r,4s,5s)-6-[(1s,3s,4r,5r,11s)-12-[(1r,3s,5s,7r)-5-[(8s)-9-[(2r,3r,4s,5r,6s)-6-[(2s,3s,4e,6s,9r,10r)-10-[(4r,5s,6r)-6-[(2r,3r)-4-[(2r,3s,4s,5r,6s)-6-[(2s,3z,5e,8r,10r,12z,17s,18r,19r,20r)-21-[(2r,3r,4s,5s,6r)-6-[(1z,3r,4r)-5-[(1s,3r,5s,7r)-7-{2-[(2r,3r,5s)-5-(aminomethyl)-3-hydroxyoxolan-2-yl]ethyl}-2,6-dioxabicyclo[3.2.1]octan-3-yl]-3,4-dihydroxypent-1-en-1-yl]-3,4,5-trihydroxyoxan-2-yl]-2,8,9,10,17,18,19-heptahydroxy-20-methyl-14-methylidenehenicosa-3,5,12-trien-1-yl]-3,4,5-trihydroxyoxan-2-yl]-2,3-dihydroxybutyl]-4,5-dihydroxyoxan-2-yl]-2,6,9,10-tetrahydroxy-3-methyldec-4-en-1-yl]-3,4,5,6-tetrahydroxyoxan-2-yl]-8-hydroxynonyl]-1,3-dimethyl-6,8-dioxabicyclo[3.2.1]octan-7-yl]-1,2,3,4,5-pentahydroxy-11-methyldodecyl]-3,4,5-trihydroxyoxan-2-yl]-2,5,8,9-tetrahydroxy-n-[(1z)-2-[(3-hydroxypropyl)-c-hydroxycarbonimidoyl]eth-1-en-1-yl]-3,7-dimethyldec-6-enimidic acid

(2s,3r,5r,6e,8r,9s)-10-[(2r,3r,4s,5s)-6-[(1s,3s,4r,5r,11s)-12-[(1r,3s,5s,7r)-5-[(8s)-9-[(2r,3r,4s,5r,6s)-6-[(2s,3s,4e,6s,9r,10r)-10-[(4r,5s,6r)-6-[(2r,3r)-4-[(2r,3s,4s,5r,6s)-6-[(2s,3z,5e,8r,10r,12z,17s,18r,19r,20r)-21-[(2r,3r,4s,5s,6r)-6-[(1z,3r,4r)-5-[(1s,3r,5s,7r)-7-{2-[(2r,3r,5s)-5-(aminomethyl)-3-hydroxyoxolan-2-yl]ethyl}-2,6-dioxabicyclo[3.2.1]octan-3-yl]-3,4-dihydroxypent-1-en-1-yl]-3,4,5-trihydroxyoxan-2-yl]-2,8,9,10,17,18,19-heptahydroxy-20-methyl-14-methylidenehenicosa-3,5,12-trien-1-yl]-3,4,5-trihydroxyoxan-2-yl]-2,3-dihydroxybutyl]-4,5-dihydroxyoxan-2-yl]-2,6,9,10-tetrahydroxy-3-methyldec-4-en-1-yl]-3,4,5,6-tetrahydroxyoxan-2-yl]-8-hydroxynonyl]-1,3-dimethyl-6,8-dioxabicyclo[3.2.1]octan-7-yl]-1,2,3,4,5-pentahydroxy-11-methyldodecyl]-3,4,5-trihydroxyoxan-2-yl]-2,5,8,9-tetrahydroxy-n-[(1z)-2-[(3-hydroxypropyl)-c-hydroxycarbonimidoyl]eth-1-en-1-yl]-3,7-dimethyldec-6-enimidic acid

C129H223N3O54 (2678.4795)


   

glyceryl palmitate; bis(stearic acid)

glyceryl palmitate; bis(stearic acid)

C55H110O8 (898.82)


   

9a,11a-dimethyl-1-{1-[2-methyl-2-(3-methylbutan-2-yl)cyclopropyl]ethyl}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

9a,11a-dimethyl-1-{1-[2-methyl-2-(3-methylbutan-2-yl)cyclopropyl]ethyl}-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.3861)


   

[(6s,13s)-13-(hydroxymethyl)-5,12-dioxa-2,9-diazatricyclo[8.4.0.0³,⁸]tetradeca-1(10),2,8-trien-6-yl]methanol

[(6s,13s)-13-(hydroxymethyl)-5,12-dioxa-2,9-diazatricyclo[8.4.0.0³,⁸]tetradeca-1(10),2,8-trien-6-yl]methanol

C12H16N2O4 (252.111)


   

(2e)-3-[({5-[(1e)-5-(6-{12-[5-(9-{6-[(4e)-10-[6-(4-{6-[(3z,5e,12z)-21-{6-[(1z)-5-(7-{2-[5-(aminomethyl)-3-hydroxyoxolan-2-yl]ethyl}-2,6-dioxabicyclo[3.2.1]octan-3-yl)-3,4-dihydroxypent-1-en-1-yl]-3,4,5-trihydroxyoxan-2-yl}-2,8,9,10,17,18,19-heptahydroxy-20-methyl-14-methylidenehenicosa-3,5,12-trien-1-yl]-3,4,5-trihydroxyoxan-2-yl}-2,3-dihydroxybutyl)-4,5-dihydroxyoxan-2-yl]-2,6,9,10-tetrahydroxy-3-methyldec-4-en-1-yl]-3,4,5,6-tetrahydroxyoxan-2-yl}-8-hydroxynonyl)-1,3-dimethyl-6,8-dioxabicyclo[3.2.1]octan-7-yl]-1,2,3,4,5-pentahydroxy-11-methyldodecyl}-3,4,5-trihydroxyoxan-2-yl)-3,4-dihydroxy-2-methylpent-1-en-1-yl]-3-methyloxolan-2-yl}(hydroxy)methylidene)amino]-n-(3-hydroxypropyl)prop-2-enimidic acid

(2e)-3-[({5-[(1e)-5-(6-{12-[5-(9-{6-[(4e)-10-[6-(4-{6-[(3z,5e,12z)-21-{6-[(1z)-5-(7-{2-[5-(aminomethyl)-3-hydroxyoxolan-2-yl]ethyl}-2,6-dioxabicyclo[3.2.1]octan-3-yl)-3,4-dihydroxypent-1-en-1-yl]-3,4,5-trihydroxyoxan-2-yl}-2,8,9,10,17,18,19-heptahydroxy-20-methyl-14-methylidenehenicosa-3,5,12-trien-1-yl]-3,4,5-trihydroxyoxan-2-yl}-2,3-dihydroxybutyl)-4,5-dihydroxyoxan-2-yl]-2,6,9,10-tetrahydroxy-3-methyldec-4-en-1-yl]-3,4,5,6-tetrahydroxyoxan-2-yl}-8-hydroxynonyl)-1,3-dimethyl-6,8-dioxabicyclo[3.2.1]octan-7-yl]-1,2,3,4,5-pentahydroxy-11-methyldodecyl}-3,4,5-trihydroxyoxan-2-yl)-3,4-dihydroxy-2-methylpent-1-en-1-yl]-3-methyloxolan-2-yl}(hydroxy)methylidene)amino]-n-(3-hydroxypropyl)prop-2-enimidic acid

C129H221N3O53 (2660.469)


   

9a,11a-dimethyl-1-(6-methylhept-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

9a,11a-dimethyl-1-(6-methylhept-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H44O (384.3392)


   

glyceryl palmitate; bis(palmitic acid)

glyceryl palmitate; bis(palmitic acid)

C51H102O8 (842.7574)


   

3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-(2,3,7-trihydroxy-6-methylheptan-2-yl)-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-(2,3,7-trihydroxy-6-methylheptan-2-yl)-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C27H44O8 (496.3036)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-6-methylhept-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-6-methylhept-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H44O (384.3392)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(1s)-1-[(1r,2r)-2-methyl-2-[(2r)-3-methylbutan-2-yl]cyclopropyl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(1s)-1-[(1r,2r)-2-methyl-2-[(2r)-3-methylbutan-2-yl]cyclopropyl]ethyl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.3861)