Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.37049579999996)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Isofucosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((R,E)-5-Isopropylhept-5-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3704958)


Isofucosterol, also known as delta5-avenasterol, is a phytosterol. Phytosterols, or plant sterols, are compounds that occur naturally and bear a close structural resemblance to cholesterol but have different side-chain configurations. Phytosterols are relevant in pharmaceuticals (production of therapeutic steroids), nutrition (anti-cholesterol additives in functional foods, anti-cancer properties), and cosmetics (creams, lipstick). Phytosterols can be obtained from vegetable oils or from industrial wastes, which gives an added value to the latter. Considerable efforts have been recently dedicated to the development of efficient processes for phytosterol isolation from natural sources. The present work aims to summarize information on the applications of phytosterols and to review recent approaches, mainly from the industry, for the large-scale recovery of phytosterols (PMID: 17123816, 16481154). Isofucosterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Isofucosterol, also known as (24z)-stigmasta-5,24(28)-dien-3-ol or delta5-avenasterol, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, isofucosterol is considered to be a sterol lipid molecule. Isofucosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Isofucosterol can be found in a number of food items such as globe artichoke, gooseberry, deerberry, and ucuhuba, which makes isofucosterol a potential biomarker for the consumption of these food products. Isofucosterol can be found primarily in blood. Moreover, isofucosterol is found to be associated with sitosterolemia. Isofucosterol is a 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. It has a role as an animal metabolite, a plant metabolite, an algal metabolite and a marine metabolite. It is a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Fucosterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol consisting of stigmastan-3beta-ol with double bonds at positions 5 and 24(28). The double bond at postion 24(28) adopts a Z-configuration. Fucosterol is a sterol isolated from algae, seaweed or diatoms.?Fucosterol exhibits various biological activities, including antioxidant, anti-adipogenic, blood cholesterol reducing, anti-diabetic and anti-cancer activities[1][2]. Fucosterol regulates adipogenesis via inhibition of?PPARα?and?C/EBPα?expression and can be used for anti-obesity agents development research. Isofucosterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=481-14-1 (retrieved 2024-10-08) (CAS RN: 481-14-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Stachydrine

(2S)-1,1-dimethylpyrrolidin-1-ium-2-carboxylate

C7H13NO2 (143.0946238)


Proline betaine is an osmoprotective compound found in urine. It is thought to serve an osmoprotective role for the kidney. Proline betaine is a glycine betaine analogue found in many citrus foods. Elevated levels of proline betaine in human urine are found after the consumption of citrus fruits and juices (PMID: 18060588). Proline betaine is a biomarker for the consumption of citrus fruits. Alkaloid from Citrus spp Medicago sativa and Stachys subspecies(alfalfa). L-Stachydrine or also called proline betaine is a biomarker for the consumption of citrus fruits. L-Stachydrine is found in many foods, some of which are capers, pulses, lemon, and alfalfa. Proline betaine, also known as stachydrine, belongs to the class of organic compounds known as proline and derivatives. Proline and derivatives are compounds containing proline or a derivative thereof resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Proline betaine exists in all living organisms, ranging from bacteria to humans. Proline betaine is found, on average, in the highest concentration within capers (Capparis spinosa). Proline betaine has also been detected, but not quantified in, several different foods, such as soy beans (Glycine max), crosnes (Stachys affinis), domestic pigs (Sus scrofa domestica), limes (Citrus aurantiifolia), and triticales (X Triticosecale rimpaui). This could make proline betaine a potential biomarker for the consumption of these foods. Proline betaine is a secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Based on a literature review a significant number of articles have been published on Proline betaine. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway.

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Brassicasterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H46O (398.3548466)


Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Desmosterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H44O (384.3391974)


Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is found in many foods, some of which are fig, sago palm, mexican groundcherry, and pepper (c. frutescens). Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].

   

24-Methylenecholesterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylideneheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548466)


24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72). 24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol. 24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol having the structure of cholesterol with a methylene group at C-24. Constituent of clams and oysters 24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].

   

Sceptrin

N-[[(1R,2S,3S,4R)-2,3-bis(2-amino-1H-imidazol-5-yl)-4-[[(4-bromo-1H-pyrrole-2-carbonyl)amino]methyl]cyclobutyl]methyl]-4-bromo-1H-pyrrole-2-carboxamide

C22H24Br2N10O2 (618.0450324)


   

Clionasterol

24beta-Ethyl-5-cholesten-3beta-ol

C29H50O (414.386145)


Clionasterol is a triterpenoid isolated from the Indian marine red alga Gracilaria edulis, the sponge Veronica aerophoba and the Kenyan Marine Green. Macroalga Halimeda macroloba. It is a potent inhibitor of complement component C1. (PMID 12624828). D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

Dihydrobrassicasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S)-5,6-Dimethylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H48O (400.37049579999996)


24-epicampesterol is a 3beta-sterol, a member of phytosterols, an ergostanoid, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. 22,23-Dihydrobrassicasterol is a natural product found in Euphorbia fischeriana, Sambucus chinensis, and other organisms with data available. Occurs in Physalis peruviana (Cape gooseberry). Dihydrobrassicasterol is found in many foods, some of which are watermelon, muskmelon, fruits, and cucumber. Dihydrobrassicasterol is found in cucumber. Dihydrobrassicasterol occurs in Physalis peruviana (Cape gooseberry

   

Stachydrine

Pyrrolidinium, 2-carboxy-1,1-dimethyl-, inner salt, (2S)-

C7H13NO2 (143.0946238)


L-proline betaine is an amino acid betaine that is L-proline zwitterion in which both of the hydrogens attached to the nitrogen are replaced by methyl groups. It has a role as a food component, a plant metabolite and a human blood serum metabolite. It is a N-methyl-L-alpha-amino acid, an alkaloid and an amino-acid betaine. It is functionally related to a L-prolinium. It is a conjugate base of a N,N-dimethyl-L-prolinium. It is an enantiomer of a D-proline betaine. Stachydrine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Stachydrine is a natural product found in Teucrium polium, Halopithys incurva, and other organisms with data available. Proline betaine is an osmoprotective compound found in urine. It is thought to serve an osmoprotective role for the kidney. Proline betaine is a glycine betaine analogue found in many citrus foods. Elevated levels of proline betaine in human urine are found after the consumption of citrus fruits and juices (PMID: 18060588). Proline betaine is a biomarker for the consumption of citrus fruits. Alkaloid from Citrus spp Medicago sativa and Stachys subspecies(alfalfa). L-Stachydrine or also called proline betaine is a biomarker for the consumption of citrus fruits. L-Stachydrine is found in many foods, some of which are capers, pulses, lemon, and alfalfa. An amino acid betaine that is L-proline zwitterion in which both of the hydrogens attached to the nitrogen are replaced by methyl groups. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway. Stachydrine is a major constituent of Chinese herb leonurus heterophyllus sweet used to promote blood circulation and dispel blood stasis. Stachydrine can inhibit the NF-κB signal pathway.

   
   

Discorhabdin C

Discorhabdin C

C18H13Br2N3O2 (460.9374438)


D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Brassicasterol

ergosta-5,22E-dien-3beta-ol

C28H46O (398.3548466)


An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   
   

Desmesterol

cholest-5,24-dien-3beta-ol

C27H44O (384.3391974)


A cholestanoid that is cholesta-5,24-diene substituted by a beta-hydroxy group at position 3. It is an intermediate metabolite obtained during the synthesis of cholesterol. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].

   

clionasterol

(3beta,24S)-stigmast-5-en-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is poriferast-5-ene carrying a beta-hydroxy substituent at position 3. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

Lanol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548466)


Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

CHEBI:19809

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5S)-5,6-dimethylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H48O (400.37049579999996)


   

474-67-9

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548466)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Ostreasterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylidene-heptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548466)


24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].

   

plakortide F free acid

plakortide F free acid

C20H36O4 (340.2613456)


A marine-derived polyketide endoperoxide that exhibits strong inhibitory activity against the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus.

   

N-[[(1R,2S,3S,4R)-2,3-bis(2-amino-1H-imidazol-5-yl)-4-[[(4-bromo-1H-pyrrole-2-carbonyl)amino]methyl]cyclobutyl]methyl]-4-bromo-1H-pyrrole-2-carboxamide

N-[[(1R,2S,3S,4R)-2,3-bis(2-amino-1H-imidazol-5-yl)-4-[[(4-bromo-1H-pyrrole-2-carbonyl)amino]methyl]cyclobutyl]methyl]-4-bromo-1H-pyrrole-2-carboxamide

C22H24Br2N10O2 (618.0450324)


   

Avenasterol

24Z-ethylidene-cholest-7-en-3beta-ol

C29H48O (412.37049579999996)


A stigmastane sterol that is 5alpha-stigmastane carrying a hydroxy group at position 3beta and double bonds at positions 7 and 24.

   

3,5-dibromo-4-hydroxy-6',10',15'-triazaspiro[cyclohexane-1,3'-tetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadecane]-1'(15'),2,2'(7'),5,9'(16'),11'-hexaen-8'-one

3,5-dibromo-4-hydroxy-6',10',15'-triazaspiro[cyclohexane-1,3'-tetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadecane]-1'(15'),2,2'(7'),5,9'(16'),11'-hexaen-8'-one

C18H15Br2N3O2 (462.95309299999997)


   

n-[12-benzyl-5,8,11,14,17-pentahydroxy-6-(1-hydroxyethyl)-3-(hydroxymethyl)-19-methyl-9,15-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-2-[(1-hydroxy-2-methylpropylidene)amino]-3-phenylpropanimidic acid

n-[12-benzyl-5,8,11,14,17-pentahydroxy-6-(1-hydroxyethyl)-3-(hydroxymethyl)-19-methyl-9,15-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-2-[(1-hydroxy-2-methylpropylidene)amino]-3-phenylpropanimidic acid

C45H65N7O11 (879.474182)


   
   

n-[(1r)-1-{[(3s,6r,9s,12r,15r,18r,19s)-12-benzyl-5,8,11,14,17-pentahydroxy-6-[(1r)-1-hydroxyethyl]-3-(hydroxymethyl)-19-methyl-9,15-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-phenylethyl]-2-methylbutanimidic acid

n-[(1r)-1-{[(3s,6r,9s,12r,15r,18r,19s)-12-benzyl-5,8,11,14,17-pentahydroxy-6-[(1r)-1-hydroxyethyl]-3-(hydroxymethyl)-19-methyl-9,15-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-phenylethyl]-2-methylbutanimidic acid

C46H67N7O11 (893.4898312)


   

n-[(1r)-1-{[(1s,2r)-1-{[(1s)-1-{[(2r)-1-[(2r)-2-{[(1s)-4-amino-1-{[(1r,2s)-1-{[(3s,6z,9s,12r,15s,18r,19r)-9-benzyl-15-[(2s)-butan-2-yl]-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-5-hydroxy-5-methylhexanimidic acid

n-[(1r)-1-{[(1s,2r)-1-{[(1s)-1-{[(2r)-1-[(2r)-2-{[(1s)-4-amino-1-{[(1r,2s)-1-{[(3s,6z,9s,12r,15s,18r,19r)-9-benzyl-15-[(2s)-butan-2-yl]-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-5-hydroxy-5-methylhexanimidic acid

C75H124N14O17 (1492.9268414)


   

2-[1,2-bis(acetyloxy)propyl]-14-(5-methyl-2-oxo-5h-furan-3-yl)tetradecanoic acid

2-[1,2-bis(acetyloxy)propyl]-14-(5-methyl-2-oxo-5h-furan-3-yl)tetradecanoic acid

C26H42O8 (482.2879532)


   

4-bromo-n-{[(2r,4s)-2-{[(4-bromo-1h-pyrrol-2-yl)formamido]methyl}-3,4-bis(2-imino-1,3-dihydroimidazol-4-yl)cyclobutyl]methyl}-1h-pyrrole-2-carboxamide

4-bromo-n-{[(2r,4s)-2-{[(4-bromo-1h-pyrrol-2-yl)formamido]methyl}-3,4-bis(2-imino-1,3-dihydroimidazol-4-yl)cyclobutyl]methyl}-1h-pyrrole-2-carboxamide

C22H24Br2N10O2 (618.0450324)


   

n-{1-[(1-{[1-({1-[2-({4-amino-1-[(1-{[9-benzyl-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-15-(sec-butyl)-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl)-c-hydroxycarbonimidoyl]butyl}-c-hydroxycarbonimidoyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl}-c-hydroxycarbonimidoyl)-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl)-c-hydroxycarbonimidoyl]-2-methylpropyl}-5-hydroxy-5-methylhexanimidic acid

n-{1-[(1-{[1-({1-[2-({4-amino-1-[(1-{[9-benzyl-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-15-(sec-butyl)-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl)-c-hydroxycarbonimidoyl]butyl}-c-hydroxycarbonimidoyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl}-c-hydroxycarbonimidoyl)-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl)-c-hydroxycarbonimidoyl]-2-methylpropyl}-5-hydroxy-5-methylhexanimidic acid

C75H124N14O17 (1492.9268414)


   

n-[(1r)-1-{[(1s,2r)-1-{[(1s)-1-{[(2r)-1-[(2r)-2-{[(1s)-4-amino-1-{[(1r,2s)-1-{[(3s,6z,9s,12r,15r,18r,19s)-9-benzyl-15-[(2s)-butan-2-yl]-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-5-hydroxy-5-methylhexanimidic acid

n-[(1r)-1-{[(1s,2r)-1-{[(1s)-1-{[(2r)-1-[(2r)-2-{[(1s)-4-amino-1-{[(1r,2s)-1-{[(3s,6z,9s,12r,15r,18r,19s)-9-benzyl-15-[(2s)-butan-2-yl]-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-5-hydroxy-5-methylhexanimidic acid

C75H124N14O17 (1492.9268414)


   

2-[(3r,6s,9r,12s,19r,23s,24as)-19-benzyl-1,4,7,10,17,23-hexahydroxy-12-[(4-hydroxyphenyl)methyl]-6-isopropyl-3-methyl-15-(6-methylheptyl)-13,20-dioxo-3h,6h,9h,12h,15h,16h,19h,22h,23h,24h,24ah-pyrrolo[2,1-o]1-oxa-4,7,10,13,16,19-hexaazacyclodocosan-9-yl]ethanimidic acid

2-[(3r,6s,9r,12s,19r,23s,24as)-19-benzyl-1,4,7,10,17,23-hexahydroxy-12-[(4-hydroxyphenyl)methyl]-6-isopropyl-3-methyl-15-(6-methylheptyl)-13,20-dioxo-3h,6h,9h,12h,15h,16h,19h,22h,23h,24h,24ah-pyrrolo[2,1-o]1-oxa-4,7,10,13,16,19-hexaazacyclodocosan-9-yl]ethanimidic acid

C46H65N7O11 (891.474182)


   

2-[(3r,6s,9r,12s,15s,19r,23r,24as)-19-benzyl-1,4,7,10,17,23-hexahydroxy-12-[(4-hydroxyphenyl)methyl]-6-isopropyl-3-methyl-15-(6-methylheptyl)-13,20-dioxo-3h,6h,9h,12h,15h,16h,19h,22h,23h,24h,24ah-pyrrolo[2,1-o]1-oxa-4,7,10,13,16,19-hexaazacyclodocosan-9-yl]ethanimidic acid

2-[(3r,6s,9r,12s,15s,19r,23r,24as)-19-benzyl-1,4,7,10,17,23-hexahydroxy-12-[(4-hydroxyphenyl)methyl]-6-isopropyl-3-methyl-15-(6-methylheptyl)-13,20-dioxo-3h,6h,9h,12h,15h,16h,19h,22h,23h,24h,24ah-pyrrolo[2,1-o]1-oxa-4,7,10,13,16,19-hexaazacyclodocosan-9-yl]ethanimidic acid

C46H65N7O11 (891.474182)


   

n-{3-[(3s,6s,10r,15as)-1,8-dihydroxy-10-(1h-indol-3-ylmethyl)-6-(4-methylpentyl)-4,11-dioxo-3h,6h,7h,10h,13h,14h,15h,15ah-pyrrolo[2,1-f]1-oxa-4,7,10-triazacyclotridecan-3-yl]propyl}guanidine

n-{3-[(3s,6s,10r,15as)-1,8-dihydroxy-10-(1h-indol-3-ylmethyl)-6-(4-methylpentyl)-4,11-dioxo-3h,6h,7h,10h,13h,14h,15h,15ah-pyrrolo[2,1-f]1-oxa-4,7,10-triazacyclotridecan-3-yl]propyl}guanidine

C31H45N7O5 (595.3481999999999)


   

n-[(1r)-1-{[(1s,2r)-1-{[(1s)-1-{[(2r)-1-[(2r)-2-{[(1s)-4-amino-1-{[(1r,2s)-1-{[(3s,6z,9s,12r,15r,18r,19r)-9-benzyl-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-15-(sec-butyl)-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-5-methylhexanimidic acid

n-[(1r)-1-{[(1s,2r)-1-{[(1s)-1-{[(2r)-1-[(2r)-2-{[(1s)-4-amino-1-{[(1r,2s)-1-{[(3s,6z,9s,12r,15r,18r,19r)-9-benzyl-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-15-(sec-butyl)-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-5-methylhexanimidic acid

C75H124N14O16 (1476.9319264)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5s)-5-ethyl-6-methylhept-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5s)-5-ethyl-6-methylhept-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.37049579999996)


   

methyl 2-[(3s,4s,6s)-4,6-diethyl-6-[(5e)-4-ethyloct-5-en-1-yl]-1,2-dioxan-3-yl]acetate

methyl 2-[(3s,4s,6s)-4,6-diethyl-6-[(5e)-4-ethyloct-5-en-1-yl]-1,2-dioxan-3-yl]acetate

C21H38O4 (354.2769948)


   

(2r)-n-[(3s,6s,9r,12r,15r,18s,19r)-12-benzyl-5,8,11,14,17-pentahydroxy-6-[(1r)-1-hydroxyethyl]-3-(hydroxymethyl)-19-methyl-9,15-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-2-[(1-hydroxy-2-methylpropylidene)amino]-3-phenylpropanimidic acid

(2r)-n-[(3s,6s,9r,12r,15r,18s,19r)-12-benzyl-5,8,11,14,17-pentahydroxy-6-[(1r)-1-hydroxyethyl]-3-(hydroxymethyl)-19-methyl-9,15-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-2-[(1-hydroxy-2-methylpropylidene)amino]-3-phenylpropanimidic acid

C45H65N7O11 (879.474182)


   

(2r)-n-[(3s,6r,9r,12r,15r,18r,19s)-12-benzyl-5,8,11,14,17-pentahydroxy-6-[(1s)-1-hydroxyethyl]-3-(hydroxymethyl)-19-methyl-9,15-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-2-[(1-hydroxy-2-methylpropylidene)amino]-3-phenylpropanimidic acid

(2r)-n-[(3s,6r,9r,12r,15r,18r,19s)-12-benzyl-5,8,11,14,17-pentahydroxy-6-[(1s)-1-hydroxyethyl]-3-(hydroxymethyl)-19-methyl-9,15-bis(2-methylpropyl)-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-2-[(1-hydroxy-2-methylpropylidene)amino]-3-phenylpropanimidic acid

C45H65N7O11 (879.474182)


   

1,1-dimethylpyrrolidin-1-ium-2-carboxylate

1,1-dimethylpyrrolidin-1-ium-2-carboxylate

C7H13NO2 (143.0946238)


   

5,6-dibromodimethyltryptamine

5,6-dibromodimethyltryptamine

C12H14Br2N2 (343.9523644)


   

1-(5-ethyl-6-methylhept-6-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

1-(5-ethyl-6-methylhept-6-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.37049579999996)


   

n-[(1r)-1-{[(1s,2r)-1-{[(1s)-1-{[(2r)-1-[(2r)-2-{[(1s)-4-amino-1-{[(1r,2s)-1-{[(3s,6z,9s,12r,15s,18s,19r)-9-benzyl-15-[(2s)-butan-2-yl]-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-5-methylhexanimidic acid

n-[(1r)-1-{[(1s,2r)-1-{[(1s)-1-{[(2r)-1-[(2r)-2-{[(1s)-4-amino-1-{[(1r,2s)-1-{[(3s,6z,9s,12r,15s,18s,19r)-9-benzyl-15-[(2s)-butan-2-yl]-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-5-methylhexanimidic acid

C75H124N14O16 (1476.9319264)


   

n-[(1s)-1-{[(1s,2r)-1-{[(1s)-1-{[(2s)-1-[(2r)-2-{[(1s)-4-amino-1-{[(1r,2s)-1-{[(3s,6z,9s,12s,15r,18s,19r)-9-benzyl-15-[(2s)-butan-2-yl]-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-5-methylhexanimidic acid

n-[(1s)-1-{[(1s,2r)-1-{[(1s)-1-{[(2s)-1-[(2r)-2-{[(1s)-4-amino-1-{[(1r,2s)-1-{[(3s,6z,9s,12s,15r,18s,19r)-9-benzyl-15-[(2s)-butan-2-yl]-6-ethylidene-5,8,11,14,17-pentahydroxy-3,12-diisopropyl-19-methyl-2-oxo-1-oxa-4,7,10,13,16-pentaazacyclononadeca-4,7,10,13,16-pentaen-18-yl]-c-hydroxycarbonimidoyl}-2-methylbutyl]-c-hydroxycarbonimidoyl}butyl]-c-hydroxycarbonimidoyl}pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}-2-methylpropyl]-5-methylhexanimidic acid

C75H124N14O16 (1476.9319264)


   

n-(4-chlorophenyl)-1-{n-[6-(n-{[n'-(4-chlorophenyl)carbamimidamido]methanimidoyl}amino)hexyl]carbamimidamido}methanimidamide

n-(4-chlorophenyl)-1-{n-[6-(n-{[n'-(4-chlorophenyl)carbamimidamido]methanimidoyl}amino)hexyl]carbamimidamido}methanimidamide

C22H30Cl2N10 (504.20318399999996)


   

(3s,8r,10s)-5-bromo-9-thia-11,15,20-triazahexacyclo[12.6.1.1³,¹⁰.0²,¹².0³,⁸.0¹⁷,²¹]docosa-1(20),2(12),4,14(21),16-pentaene-6,13-dione

(3s,8r,10s)-5-bromo-9-thia-11,15,20-triazahexacyclo[12.6.1.1³,¹⁰.0²,¹².0³,⁸.0¹⁷,²¹]docosa-1(20),2(12),4,14(21),16-pentaene-6,13-dione

C18H14BrN3O2S (414.99900440000005)


   

n-[(1s)-1-{[(3s,10r,13s,16r,21as)-13-benzyl-1,4,11,14-tetrahydroxy-3-[(1r)-1-hydroxyethyl]-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-5-methylhexanimidic acid

n-[(1s)-1-{[(3s,10r,13s,16r,21as)-13-benzyl-1,4,11,14-tetrahydroxy-3-[(1r)-1-hydroxyethyl]-16-(2-methylpropyl)-7,17-dioxo-3h,6h,9h,10h,13h,16h,19h,20h,21h,21ah-pyrrolo[2,1-i]1-oxa-4,7,10,13,16-pentaazacyclononadecan-10-yl]-c-hydroxycarbonimidoyl}-2-(4-hydroxyphenyl)ethyl]-5-methylhexanimidic acid

C45H63N7O11 (877.4585328000001)