NCBI Taxonomy: 30335

Duttaphrynus melanostictus (ncbi_taxid: 30335)

found 38 associated metabolites at species taxonomy rank level.

Ancestor: Duttaphrynus

Child Taxonomies: none taxonomy data.

Bufalin

5-[(3S,5R,8R,9S,10S,13R,14S,17R)-3,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H34O4 (386.2457)


Bufalin is a cardiotonic steroid toxin[1] originally isolated from Chinese toad venom, which is a component of some traditional Chinese medicines.[2][3] Bufalin has in vitro antitumor effects against various malignant cell lines, including hepatocellular[4] and lung carcinoma.[5] However, as with other bufadienolides, its potential use is hampered by its cardiotoxicity.[6] Bufalin is a 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. It has a role as an antineoplastic agent, a cardiotonic drug, an anti-inflammatory agent and an animal metabolite. It is a 3beta-hydroxy steroid and a 14beta-hydroxy steroid. It is functionally related to a bufanolide. Bufalin is a natural product found in Cunninghamella blakesleeana, Bufo gargarizans, and other organisms with data available. Bufalin is an active ingredient and one of the glycosides in the traditional Chinese medicine ChanSu; it is also a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans, with potential cardiotonic and antineoplastic activity. Although the mechanism of action of bufalin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and can induce apoptosis in cancer cell lines through the activation of the transcription factor AP-1 via a mitogen activated protein kinase (MAPK) pathway. A 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2]. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2].

   

Bufotalin

[(3S,5R,8R,9S,10S,13R,14S,16S,17R)-3,14-dihydroxy-10,13-dimethyl-17-(6-oxopyran-3-yl)-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-16-yl] acetate

C26H36O6 (444.2512)


Bufotalin is a steroid lactone. It is functionally related to a bufanolide. Bufotalin is a natural product found in Bufo gargarizans, Duttaphrynus melanostictus Bufotalin is a cardiotoxic bufanolide steroid, cardiac glycoside analogue, secreted by a number of toad species.[2][3] Bufotalin can be extracted from the skin parotoid glands of several types of toad. Rhinella marina (Cane toad), Rhaebo guttatus (Smooth-sided toad), Bufo melanostictus (Asian toad), and Bufo bufo (common European toad) are sources of bufotalin. Traditional medicine Bufotalin is part of Ch'an Su, a traditional Chinese medicine used for cancer. It is also known as Venenum Bufonis or senso (Japanese).[5] Toxicity Specifically, in cats the lethal median dose is 0.13 mg/kg.[1] and in dogs is 0.36 mg/kg (intravenous).[6] Knowing this it is advisable to monitor those functions continuously using an EKG. As there is no antidote against bufotalin all occurring symptoms need to be treated separately or if possible in combination with others. To increase the clearance theoretically, due to the similarities with digitoxin, cholestyramine, a bile salt, might help.[6] Recent animal studies have shown that taurine restores cardiac functions.[7] Symptomatic measures include lignocaine, atropine and phenytoin for cardiac toxicity and intravenous potassium compounds to correct hyperkalaemia from its effect on the Na+/K+ ATPase pump.[6] Pharmacology and mechanism of action After a single intravenous injection, bufotalin gets quickly distributed and eliminated from the blood plasma with a half-time of 28.6 minutes and a MRT of 14.7 min. After 30 minutes after an administration of bufotalin, the concentrations within the brain and lungs are significantly higher than those in blood and other tissues.[8] It also increases cancer cell's susceptibility to apoptosis via TNF-α signalling by the BH3 interacting domain death agonist and STAT proteins.[9] Bufotalin induces apoptosis in vitro in human hepatocellular carcinoma Hep 3B cells and might involve caspases and apoptosis inducing factor (AIF).[10] The use of bufotalin as a cancer treating compound is still in the experimental phase. It also arrests cell cycle at G(2)/M, by up- and down- regulation of several enzymes. Bufotalin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=471-95-4 (retrieved 2024-06-29) (CAS RN: 471-95-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Bufotalin is a steroid lactone isolated from Venenum Bufonis with potently antitumor activities. Bufotalin induces cancer cell apoptosis and also induces endoplasmic reticulum (ER) stress activation[1][2]. Bufotalin is a steroid lactone isolated from Venenum Bufonis with potently antitumor activities. Bufotalin induces cancer cell apoptosis and also induces endoplasmic reticulum (ER) stress activation[1][2].

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Bufogein

5-[(1R,2S,4R,6R,7R,10S,11S,14S,16R)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0(2),?.0(2),?.0(1)(1),(1)?]octadecan-6-yl]-2H-pyran-2-one

C24H32O4 (384.23)


Bufogenin is a steroid lactone of Chan su (toad venom), a Chinese medicine obtained from the skin venom gland of toads. A specific Na/K-ATPase protein inhibitor, it is used as a cardiotonic and central nervous system (CNS) respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a steroid lactone and an epoxy steroid. It is functionally related to a bufanolide. Resibufogenin is a natural product found in Sclerophrys mauritanica, Bufo gargarizans, and other organisms with data available. Bufogenin is a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans; it is also one of the glycosides in the traditional Chinese medicine ChanSu, with potential cardiotonic activity. Although the mechanism of action of bufogenin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and has been shown to reduce blood pressure in a rat model of preeclampsia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents C471 - Enzyme Inhibitor Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.

   

Brassicasterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H46O (398.3548)


Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Hellebrigenin

3beta,5beta,14beta-Trihydroxy-19-oxo-bufa-20,22-dienolide 3-O-beta-D-glucopyranoside

C24H32O6 (416.2199)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides

   

Marinobufagin

3-.beta.,5-Dihydroxy-14,15-.beta.-epoxy-5-.beta.-bufa-20,22-dienolide

C24H32O5 (400.225)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors

   

bufalin

5-{5,11-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-2H-pyran-2-one

C24H34O4 (386.2457)


   

Bufogenin

5-{14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}-2H-pyran-2-one

C24H32O4 (384.23)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents

   

Bufotalin

5,11-Dihydroxy-2,15-dimethyl-14-(2-oxo-2H-pyran-5-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-13-yl acetic acid

C26H36O6 (444.2512)


   

Marinobufagenin

5-{14,16-dihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}-2H-pyran-2-one

C24H32O5 (400.225)


   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Brassicasterol

ergosta-5,22E-dien-3beta-ol

C28H46O (398.3548)


An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Resibufogenin

5-[(1R,2S,4R,6R,7R,10S,11S,14S,16R)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.02,4.02,7.011,16]octadecan-6-yl]pyran-2-one

C24H32O4 (384.23)


Annotation level-1 Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.

   

ST 24:4;O6

3beta,5beta,11alpha,14beta-tetrahydroxy-bufa-20,22-dienolide

C24H34O6 (418.2355)


   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Lanol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548)


Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

474-67-9

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Marinobufogenin

Marinobufogenin

C24H32O5 (400.225)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors

   

5-[(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a,7-dihydroxy-9a-(hydroxymethyl)-11a-methyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]pyran-2-one

5-[(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a,7-dihydroxy-9a-(hydroxymethyl)-11a-methyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]pyran-2-one

C24H34O5 (402.2406)


   

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

C40H55N3O10 (737.3887)


   

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

C41H57N3O10 (751.4044)


   

2-[(8-{[3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

2-[(8-{[3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

C38H53N3O9 (695.3782)


   

5-[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

5-[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

C24H32O4 (384.23)


   

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H48O (400.3705)


   

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

C41H57N3O10 (751.4044)


   

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

C40H55N3O10 (737.3887)


   

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3-methylimidazol-4-yl)propanoic acid

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3-methylimidazol-4-yl)propanoic acid

C41H57N3O10 (751.4044)


   

2-[(8-{[3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

2-[(8-{[3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

C39H55N3O9 (709.3938)


   

(2s)-2-[(8-{[(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

(2s)-2-[(8-{[(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

C38H53N3O9 (695.3782)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

5-[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a,7-trihydroxy-9a-(hydroxymethyl)-11a-methyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

5-[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a,7-trihydroxy-9a-(hydroxymethyl)-11a-methyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

C24H34O6 (418.2355)


   

(1r,3as,5as,7s,9as,11ar)-3a,5a,7-trihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,5as,7s,9as,11ar)-3a,5a,7-trihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C24H32O6 (416.2199)


   

(2s)-2-[(8-{[(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

(2s)-2-[(8-{[(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

C39H55N3O9 (709.3938)


   

5-[(3as,3br,5ar,9as,9br,11ar)-3a,7-dihydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]pyran-2-one

5-[(3as,3br,5ar,9as,9br,11ar)-3a,7-dihydroxy-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]pyran-2-one

C24H34O4 (386.2457)


   

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3-methylimidazol-4-yl)propanoic acid

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3-methylimidazol-4-yl)propanoic acid

C41H57N3O10 (751.4044)


   

5-[3a,5a,7-trihydroxy-9a-(hydroxymethyl)-11a-methyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

5-[3a,5a,7-trihydroxy-9a-(hydroxymethyl)-11a-methyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

C24H34O6 (418.2355)