NCBI Taxonomy: 10212

Bugula neritina (ncbi_taxid: 10212)

found 232 associated metabolites at species taxonomy rank level.

Ancestor: Bugula

Child Taxonomies: none taxonomy data.

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.37049579999996)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Cholestenone

(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C27H44O (384.3391974)


Cholestenone belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, cholestenone is considered to be a sterol lipid molecule. Cholestenone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Cholestenone is a dehydrocholestanone. It is a product of cholesterol oxidase {EC 1.1.3.6] in the Bile acid biosynthesis pathway (KEGG). [HMDB] Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Brassicasterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H46O (398.3548466)


Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   
   

(3beta,22E)-26,27-Dinorergosta-5,22-dien-3-ol

2,15-dimethyl-14-[(3Z)-5-methylhex-3-en-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-ol

C26H42O (370.3235482)


(3beta,22E)-26,27-Dinorergosta-5,22-dien-3-ol is found in crustaceans. (3beta,22E)-26,27-Dinorergosta-5,22-dien-3-ol is a constituent of Mytilus edulis (blue mussel) and other crustaceans, molluscs and sponges Constituent of Mytilus edulis (blue mussel) and other crustaceans, molluscs and sponges. (3beta,22E)-26,27-Dinorergosta-5,22-dien-3-ol is found in crustaceans.

   

CE(14:0)

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-yl tetradecanoate

C41H72O2 (596.5532012)


CE(14:0) is a cholesterol fatty acid ester or simply a cholesterol ester (CE). Cholesterol esters are cholesterol molecules with long-chain fatty acids linked to the hydroxyl group. They are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesterol esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of C18 fatty acids. Cholesterol esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesterol esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesterol esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesterol esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesterol esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesterol esters from CoA esters of fatty acids and cholesterol. Cholesterol ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. [HMDB] CE(14:0) is a cholesterol fatty acid ester or simply a cholesterol ester (CE). Cholesterol esters are cholesterol molecules with long-chain fatty acids linked to the hydroxyl group. They are much less polar than free cholesterol and appear to be the preferred form for transport in plasma and for storage. Cholesterol esters do not contribute to membranes but are packed into intracellular lipid particles or lipoprotein particles. Because of the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of C18 fatty acids. Cholesterol esters are major constituents of the adrenal glands and they also accumulate in the fatty lesions of atherosclerotic plaques. Cholesterol esters are also major constituents of the lipoprotein particles carried in blood (HDL, LDL, VLDL). The cholesterol esters in high-density lipoproteins (HDL) are synthesized largely by transfer of fatty acids to cholesterol from position sn-2 (or C-2) of phosphatidylcholine catalyzed by the enzyme lecithin cholesterol acyl transferase (LCAT). The enzyme also promotes the transfer of cholesterol from cells to HDL. As cholesterol esters accumulate in the lipoprotein core, cholesterol is removed from its surface thus promoting the flow of cholesterol from cell membranes into HDL. This in turn leads to morphological changes in HDL, which grow and become spherical. Subsequently, cholesterol esters are transferred to the other lipoprotein fractions LDL and VLDL, a reaction catalyzed by cholesteryl ester transfer protein. Another enzyme, acyl-CoA:cholesterol acyltransferase (ACAT) synthesizes cholesterol esters from CoA esters of fatty acids and cholesterol. Cholesterol ester hydrolases liberate cholesterol and free fatty acids when required for membrane and lipoprotein formation, and they also provide cholesterol for hormone synthesis in adrenal cells. Cholesterol myristate is a natural steroid present in traditional Chinese medicine. Cholesterol myristate binds to several ion channels such as the nicotinic acetylcholine receptor, GABAA receptor, and the inward-rectifier potassium ion channel.

   

Bryo 1

25-(Acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl octa-2,4-dienoic acid

C47H68O17 (904.4456278)


   

Epicholesterol

2,15-dimethyl-14-(6-methylheptan-2-yl)tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


   

Cerevisterol

(22E)-Ergosta-7,22-diene-3beta,5alpha,6beta-triol

C28H46O3 (430.34467659999996)


An ergostanoid that is (22E)-ergosta-7,22-diene substituted by hydroxy groups at positions 3, 5 and 6 (the 3beta,5alpha,6beta stereoisomer). It has been isolated from the fungus, Xylaria species. Cerevisterol is a steroid isolated from the fruiting bodies of Agaricus blazei[1]. Cerevisterol is a steroid isolated from the fruiting bodies of Agaricus blazei[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Brassicasterol

ergosta-5,22E-dien-3beta-ol

C28H46O (398.3548466)


An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Campesterol

Campesterol

C28H48O (400.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Lanol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548466)


Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

474-67-9

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548466)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Bryostatin 1

Bryostatin 1

C47H68O17 (904.4456278)


A member of the class of bryostatins that is (17E)-2-oxooxacyclohexacos-17-ene which is substituted by hydroxy groups at positions 4, 10, and 20; an acetoxy group at position 8; methyl groups at positions 9, 9, 18, and 19; 2-methoxy-2-oxoethylidene groups at positions 14 and 24; an (E,E)-octa-2,4-dienoyloxy group at position 21; and with oxygen bridges linking positions 6 to 10, 12 to 16, and 20 to 24. It is one of the most abundant member of the class of bryostatins. C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C61074 - Serine/Threonine Kinase Inhibitor D000970 - Antineoplastic Agents D007155 - Immunologic Factors

   
   
   
   

10,13-Dimethyl-17-(6-methylheptan-2-yl)-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one

10,13-Dimethyl-17-(6-methylheptan-2-yl)-1,2,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-3-one

C27H44O (384.3391974)


   

(1s,3s,5e,8e,11s,12s,13e,17r,21r,23r,25s)-1,11,21,25-tetrahydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl (2e,4e)-octa-2,4-dienoate

(1s,3s,5e,8e,11s,12s,13e,17r,21r,23r,25s)-1,11,21,25-tetrahydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl (2e,4e)-octa-2,4-dienoate

C45H66O16 (862.4350636)


   

9a,11a-dimethyl-1-(5-methylhex-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

9a,11a-dimethyl-1-(5-methylhex-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C26H42O (370.3235482)


   

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-1,11,12,21-tetrahydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 2,2-dimethylpropanoate

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-1,11,12,21-tetrahydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 2,2-dimethylpropanoate

C42H64O16 (824.4194143999999)


   

9a,11a-dimethyl-1-(5-methylhept-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

9a,11a-dimethyl-1-(5-methylhept-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H44O (384.3391974)


   

(1s,3s,5z,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12-(butanoyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

(1s,3s,5z,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12-(butanoyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

C46H70O17 (894.4612770000001)


   
   

12-(butanoyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

12-(butanoyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

C46H70O17 (894.4612770000001)


   

(1s,4e,6r,8e,10s,12s,14s,16r,18r,22s,23r,25s,27r)-12,18,23-trihydroxy-8-(2-methoxy-2-oxoethylidene)-3,3,13,13,22-pentamethyl-2,20,29-trioxo-21,30,31,32,33-pentaoxapentacyclo[23.5.1.1⁶,¹⁰.1¹²,¹⁶.0¹,²⁷]tritriacont-4-en-14-yl 2,2-dimethylpropanoate

(1s,4e,6r,8e,10s,12s,14s,16r,18r,22s,23r,25s,27r)-12,18,23-trihydroxy-8-(2-methoxy-2-oxoethylidene)-3,3,13,13,22-pentamethyl-2,20,29-trioxo-21,30,31,32,33-pentaoxapentacyclo[23.5.1.1⁶,¹⁰.1¹²,¹⁶.0¹,²⁷]tritriacont-4-en-14-yl 2,2-dimethylpropanoate

C41H60O15 (792.393201)


   

(5z,8z,13e)-12-(acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl butanoate

(5z,8z,13e)-12-(acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl butanoate

C43H64O17 (852.4143294)


   

(3e,7e)-13-(acetyloxy)-11,17,27-trihydroxy-21-(1-hydroxyethyl)-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,28-dioxo-20,29,31,32,33-pentaoxahexacyclo[23.4.1.1¹,²⁶.1⁵,⁹.1¹¹,¹⁵.0²³,²⁶]tritriaconta-3,23-dien-30-yl (2e,4z)-octa-2,4-dienoate

(3e,7e)-13-(acetyloxy)-11,17,27-trihydroxy-21-(1-hydroxyethyl)-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,28-dioxo-20,29,31,32,33-pentaoxahexacyclo[23.4.1.1¹,²⁶.1⁵,⁹.1¹¹,¹⁵.0²³,²⁶]tritriaconta-3,23-dien-30-yl (2e,4z)-octa-2,4-dienoate

C47H64O17 (900.4143294)


   

(1s,3e,5r,7z,9s,11s,13s,15r,17r,21r,23r,24s,29s)-13-(acetyloxy)-1,11,17-trihydroxy-21-[(1s)-1-hydroxyethyl]-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,26-dioxo-20,25,30,31,32-pentaoxapentacyclo[21.6.1.1⁵,⁹.1¹¹,¹⁵.0²⁴,²⁸]dotriaconta-3,27-dien-29-yl (2e,4e)-octa-2,4-dienoate

(1s,3e,5r,7z,9s,11s,13s,15r,17r,21r,23r,24s,29s)-13-(acetyloxy)-1,11,17-trihydroxy-21-[(1s)-1-hydroxyethyl]-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,26-dioxo-20,25,30,31,32-pentaoxapentacyclo[21.6.1.1⁵,⁹.1¹¹,¹⁵.0²⁴,²⁸]dotriaconta-3,27-dien-29-yl (2e,4e)-octa-2,4-dienoate

C46H64O17 (888.4143294)


   

methyl 2-[(1s,3s,5z,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12,25-bis(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-13-(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-5-ylidene]acetate

methyl 2-[(1s,3s,5z,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12,25-bis(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-13-(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-5-ylidene]acetate

C41H60O17 (824.3830310000001)


   

(1s,3s,5z,7r,8e,11r,13e,15s,17r,21r,23r,25s)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 2,2-dimethylpropanoate

(1s,3s,5z,7r,8e,11r,13e,15s,17r,21r,23r,25s)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 2,2-dimethylpropanoate

C42H64O15 (808.4244994)


   

1,11,17-trihydroxy-21-(1-hydroxyethyl)-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,26-dioxo-20,25,30,31,32-pentaoxapentacyclo[21.6.1.1⁵,⁹.1¹¹,¹⁵.0²⁴,²⁸]dotriaconta-3,27-dien-13-yl 2,2-dimethylpropanoate

1,11,17-trihydroxy-21-(1-hydroxyethyl)-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,26-dioxo-20,25,30,31,32-pentaoxapentacyclo[21.6.1.1⁵,⁹.1¹¹,¹⁵.0²⁴,²⁸]dotriaconta-3,27-dien-13-yl 2,2-dimethylpropanoate

C41H60O15 (792.393201)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e,5s)-5-methylhept-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e,5s)-5-methylhept-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H44O (384.3391974)


   

(1s,3s,5z,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

(1s,3s,5z,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

C44H66O17 (866.4299786000001)


   

24-α-ethylcholesterol

24-α-ethylcholesterol

C29H50O (414.386145)


   

(1s,3s,5z,7r,8e,11r,13z,15s,17r,21r,23r,25s)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 2,2-dimethylpropanoate

(1s,3s,5z,7r,8e,11r,13z,15s,17r,21r,23r,25s)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 2,2-dimethylpropanoate

C42H64O15 (808.4244994)


   

(1s,3s,5z,7r,8e,11s,12s,13e,15r,17r,21r,23r,25s)-12-(butanoyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

(1s,3s,5z,7r,8e,11s,12s,13e,15r,17r,21r,23r,25s)-12-(butanoyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

C46H70O17 (894.4612770000001)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H46O (398.3548466)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-5-methylhex-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-5-methylhex-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C26H42O (370.3235482)


   

(1s,3s,5z,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12-(butanoyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl butanoate

(1s,3s,5z,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12-(butanoyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl butanoate

C45H68O17 (880.4456278)


   

(3ar,3br,9ar,9bs,11ar)-1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(3ar,3br,9ar,9bs,11ar)-1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.386145)


   

(1s,3s,5z,7r,8e,13e,15s,17r,21r,23r,25s)-1,21-dihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacosa-8,11-dien-25-yl 2,2-dimethylpropanoate

(1s,3s,5z,7r,8e,13e,15s,17r,21r,23r,25s)-1,21-dihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacosa-8,11-dien-25-yl 2,2-dimethylpropanoate

C42H62O14 (790.4139352)


   

(1r,3e,5r,7z,9s,11s,13s,15r,17r,21r,23r,24s)-1,11,17-trihydroxy-21-[(1s)-1-hydroxyethyl]-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,26-dioxo-20,25,30,31,32-pentaoxapentacyclo[21.6.1.1⁵,⁹.1¹¹,¹⁵.0²⁴,²⁸]dotriaconta-3,27-dien-13-yl 2,2-dimethylpropanoate

(1r,3e,5r,7z,9s,11s,13s,15r,17r,21r,23r,24s)-1,11,17-trihydroxy-21-[(1s)-1-hydroxyethyl]-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,26-dioxo-20,25,30,31,32-pentaoxapentacyclo[21.6.1.1⁵,⁹.1¹¹,¹⁵.0²⁴,²⁸]dotriaconta-3,27-dien-13-yl 2,2-dimethylpropanoate

C41H60O15 (792.393201)


   

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

1-(5,6-dimethylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H46O (398.3548466)


   

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-1,11,21,25-tetrahydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl (2e,4e)-octa-2,4-dienoate

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-1,11,21,25-tetrahydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl (2e,4e)-octa-2,4-dienoate

C45H66O16 (862.4350636)


   

(1s,3s,5e,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

(1s,3s,5e,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

C44H66O17 (866.4299786000001)


   

(1r,3z,5r,7z,9s,11s,13s,15r,17r,21r,23r,24s)-1,11,17-trihydroxy-21-[(1r)-1-hydroxyethyl]-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,26-dioxo-20,25,30,31,32-pentaoxapentacyclo[21.6.1.1⁵,⁹.1¹¹,¹⁵.0²⁴,²⁸]dotriaconta-3,27-dien-13-yl 2,2-dimethylpropanoate

(1r,3z,5r,7z,9s,11s,13s,15r,17r,21r,23r,24s)-1,11,17-trihydroxy-21-[(1r)-1-hydroxyethyl]-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,26-dioxo-20,25,30,31,32-pentaoxapentacyclo[21.6.1.1⁵,⁹.1¹¹,¹⁵.0²⁴,²⁸]dotriaconta-3,27-dien-13-yl 2,2-dimethylpropanoate

C41H60O15 (792.393201)


   

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-12-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl butanoate

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-12-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl butanoate

C43H64O17 (852.4143294)


   

(1r,3e,5r,7z,9s,11s,13s,15r,17r,21r,23r,24s)-1,11,17-trihydroxy-21-[(1r)-1-hydroxyethyl]-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,26-dioxo-20,25,30,31,32-pentaoxapentacyclo[21.6.1.1⁵,⁹.1¹¹,¹⁵.0²⁴,²⁸]dotriaconta-3,27-dien-13-yl 2,2-dimethylpropanoate

(1r,3e,5r,7z,9s,11s,13s,15r,17r,21r,23r,24s)-1,11,17-trihydroxy-21-[(1r)-1-hydroxyethyl]-7-(2-methoxy-2-oxoethylidene)-2,2,12,12-tetramethyl-19,26-dioxo-20,25,30,31,32-pentaoxapentacyclo[21.6.1.1⁵,⁹.1¹¹,¹⁵.0²⁴,²⁸]dotriaconta-3,27-dien-13-yl 2,2-dimethylpropanoate

C41H60O15 (792.393201)


   

1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 2,2-dimethylpropanoate

1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 2,2-dimethylpropanoate

C42H64O15 (808.4244994)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-12-(butanoyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl butanoate

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-12-(butanoyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl butanoate

C45H68O17 (880.4456278)


   

methyl 2-[(1s,3s,5z,7r,8z,11r,13e,15s,17r,21r,23r,25s)-25-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-13-(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-5-ylidene]acetate

methyl 2-[(1s,3s,5z,7r,8z,11r,13e,15s,17r,21r,23r,25s)-25-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-13-(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-5-ylidene]acetate

C39H58O15 (766.3775518)


   

(1s,3s,5e,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12-(butanoyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

(1s,3s,5e,7r,8e,11s,12s,13e,15s,17r,21r,23r,25s)-12-(butanoyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

C46H70O17 (894.4612770000001)


   
   
   

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-25-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl (2e,4e)-6-hydroxyocta-2,4-dienoate

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-25-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl (2e,4e)-6-hydroxyocta-2,4-dienoate

C47H68O18 (920.4405428)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3s,4s,5s)-3,4,5,6-tetramethylheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3s,4s,5s)-3,4,5,6-tetramethylheptan-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H52O (428.4017942)


   

(1s,3s,5z,7r,8e,11s,12s,13e,15r,17r,21r,23r,25s)-12-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

(1s,3s,5z,7r,8e,11s,12s,13e,15r,17r,21r,23r,25s)-12-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

C44H66O17 (866.4299786000001)


   

(5z,8e,11r,13e,15s,25s)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl butanoate

(5z,8e,11r,13e,15s,25s)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl butanoate

C41H62O15 (794.4088502)


   

(1s,3s,5z,8e,11s,12s,13e,15s,17r,21r,23r,25s)-25-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl (2e,4e)-octa-2,4-dienoate

(1s,3s,5z,8e,11s,12s,13e,15s,17r,21r,23r,25s)-25-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl (2e,4e)-octa-2,4-dienoate

C47H68O17 (904.4456278)


   

methyl 2-[12,25-bis(acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-13-(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-5-ylidene]acetate

methyl 2-[12,25-bis(acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-13-(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-5-ylidene]acetate

C41H60O17 (824.3830310000001)


   

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-25-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl butanoate

(1s,3s,5z,7r,8z,11s,12s,13e,15s,17r,21r,23r,25s)-25-(acetyloxy)-1,11,21-trihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl butanoate

C43H64O17 (852.4143294)


   

9a,11a-dimethyl-1-(3,4,5,6-tetramethylheptan-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

9a,11a-dimethyl-1-(3,4,5,6-tetramethylheptan-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H52O (428.4017942)


   

9a,11a-dimethyl-1-(6-methylhept-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

9a,11a-dimethyl-1-(6-methylhept-3-en-2-yl)-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H44O (384.3391974)


   

(1s,3s,5z,7s,8e,11r,13z,15r,17r,21r,23s,25r)-1,11,21-trihydroxy-17-[(1s)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

(1s,3s,5z,7s,8e,11r,13z,15r,17r,21r,23s,25r)-1,11,21-trihydroxy-17-[(1s)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

C42H64O15 (808.4244994)


   

12-(acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

12-(acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-25-yl 3-methylbutanoate

C44H66O17 (866.4299786000001)


   

(1s,3r,7s,11s,15r,17s,23r)-25-(acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl octa-2,4-dienoate

(1s,3r,7s,11s,15r,17s,23r)-25-(acetyloxy)-1,11,21-trihydroxy-17-(1-hydroxyethyl)-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacos-8-en-12-yl octa-2,4-dienoate

C47H68O17 (904.4456278)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-6-methylhept-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-9a,11a-dimethyl-1-[(2r,3e)-6-methylhept-3-en-2-yl]-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C27H44O (384.3391974)


   

(1s,3s,5z,7r,8e,13z,15s,17r,21r,23r,25s)-1,21-dihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacosa-8,11-dien-25-yl 2,2-dimethylpropanoate

(1s,3s,5z,7r,8e,13z,15s,17r,21r,23r,25s)-1,21-dihydroxy-17-[(1r)-1-hydroxyethyl]-5,13-bis(2-methoxy-2-oxoethylidene)-10,10,26,26-tetramethyl-19-oxo-18,27,28,29-tetraoxatetracyclo[21.3.1.1³,⁷.1¹¹,¹⁵]nonacosa-8,11-dien-25-yl 2,2-dimethylpropanoate

C42H62O14 (790.4139352)