Bufalin

5-[(3S,5R,8R,9S,10S,13R,14S,17R)-3,14-dihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H34O4 (386.2457)


Bufalin is a cardiotonic steroid toxin[1] originally isolated from Chinese toad venom, which is a component of some traditional Chinese medicines.[2][3] Bufalin has in vitro antitumor effects against various malignant cell lines, including hepatocellular[4] and lung carcinoma.[5] However, as with other bufadienolides, its potential use is hampered by its cardiotoxicity.[6] Bufalin is a 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. It has a role as an antineoplastic agent, a cardiotonic drug, an anti-inflammatory agent and an animal metabolite. It is a 3beta-hydroxy steroid and a 14beta-hydroxy steroid. It is functionally related to a bufanolide. Bufalin is a natural product found in Cunninghamella blakesleeana, Bufo gargarizans, and other organisms with data available. Bufalin is an active ingredient and one of the glycosides in the traditional Chinese medicine ChanSu; it is also a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans, with potential cardiotonic and antineoplastic activity. Although the mechanism of action of bufalin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and can induce apoptosis in cancer cell lines through the activation of the transcription factor AP-1 via a mitogen activated protein kinase (MAPK) pathway. A 14beta-hydroxy steroid that is bufan-20,22-dienolide having hydroxy substituents at the 5beta- and 14beta-positions. It has been isolated from the skin of the toad Bufo bufo. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2]. Bufalin is an active component isolated from Chan Su, acts as a potent Na+/K+-ATPase inhibitor, binds to the subunit α1, α2 and α3, with Kd of 42.5, 45 and 40 nM, respectively[1][2]. Anti-cancer activity[2].

   

Arenobufagin

5-[(3S,5R,8R,9S,10S,11S,13R,14S,17R)-3,11,14-trihydroxy-10,13-dimethyl-12-oxo-2,3,4,5,6,7,8,9,11,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H32O6 (416.2199)


Arenobufagin is a natural product found in Bufo gargarizans, Bufotes viridis, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Arenobufagin is a natural bufadienolide from toad venom; has potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. IC50 value: Target: in vitro: arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death [1]. arenobufagin inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro [2]. Arenobufagin blocked the Na+/K+ pump current in a dose-dependent manner with a half-maximal concentration of 0.29 microM and a Hill coefficient of 1.1 [3]. in vivo: arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition [1]. Arenobufagin also suppressed sprouting formation from VEGF-treated aortic rings in an ex vivo model [2]. Arenobufagin is a natural bufadienolide from toad venom; has potent antineoplastic activity against HCC HepG2 cells as well as corresponding multidrug-resistant HepG2/ADM cells. IC50 value: Target: in vitro: arenobufagin induced mitochondria-mediated apoptosis in HCC cells, with decreasing mitochondrial potential, as well as increasing Bax/Bcl-2 expression ratio, Bax translocation from cytosol to mitochondria. Arenobufagin also induced autophagy in HepG2/ADM cells. Autophagy-specific inhibitors (3-methyladenine, chloroquine and bafilomycin A1) or Beclin1 and Atg 5 small interfering RNAs (siRNAs) enhanced arenobufagin-induced apoptosis, indicating that arenobufagin-mediated autophagy may protect HepG2/ADM cells from undergoing apoptotic cell death [1]. arenobufagin inhibited vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro [2]. Arenobufagin blocked the Na+/K+ pump current in a dose-dependent manner with a half-maximal concentration of 0.29 microM and a Hill coefficient of 1.1 [3]. in vivo: arenobufagin inhibited the growth of HepG2/ADM xenograft tumors, which were associated with poly (ADP-ribose) polymerase cleavage, light chain 3-II activation and mTOR inhibition [1]. Arenobufagin also suppressed sprouting formation from VEGF-treated aortic rings in an ex vivo model [2].

   

Bufotalin

[(3S,5R,8R,9S,10S,13R,14S,16S,17R)-3,14-dihydroxy-10,13-dimethyl-17-(6-oxopyran-3-yl)-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-16-yl] acetate

C26H36O6 (444.2512)


Bufotalin is a steroid lactone. It is functionally related to a bufanolide. Bufotalin is a natural product found in Bufo gargarizans, Duttaphrynus melanostictus Bufotalin is a cardiotoxic bufanolide steroid, cardiac glycoside analogue, secreted by a number of toad species.[2][3] Bufotalin can be extracted from the skin parotoid glands of several types of toad. Rhinella marina (Cane toad), Rhaebo guttatus (Smooth-sided toad), Bufo melanostictus (Asian toad), and Bufo bufo (common European toad) are sources of bufotalin. Traditional medicine Bufotalin is part of Ch'an Su, a traditional Chinese medicine used for cancer. It is also known as Venenum Bufonis or senso (Japanese).[5] Toxicity Specifically, in cats the lethal median dose is 0.13 mg/kg.[1] and in dogs is 0.36 mg/kg (intravenous).[6] Knowing this it is advisable to monitor those functions continuously using an EKG. As there is no antidote against bufotalin all occurring symptoms need to be treated separately or if possible in combination with others. To increase the clearance theoretically, due to the similarities with digitoxin, cholestyramine, a bile salt, might help.[6] Recent animal studies have shown that taurine restores cardiac functions.[7] Symptomatic measures include lignocaine, atropine and phenytoin for cardiac toxicity and intravenous potassium compounds to correct hyperkalaemia from its effect on the Na+/K+ ATPase pump.[6] Pharmacology and mechanism of action After a single intravenous injection, bufotalin gets quickly distributed and eliminated from the blood plasma with a half-time of 28.6 minutes and a MRT of 14.7 min. After 30 minutes after an administration of bufotalin, the concentrations within the brain and lungs are significantly higher than those in blood and other tissues.[8] It also increases cancer cell's susceptibility to apoptosis via TNF-α signalling by the BH3 interacting domain death agonist and STAT proteins.[9] Bufotalin induces apoptosis in vitro in human hepatocellular carcinoma Hep 3B cells and might involve caspases and apoptosis inducing factor (AIF).[10] The use of bufotalin as a cancer treating compound is still in the experimental phase. It also arrests cell cycle at G(2)/M, by up- and down- regulation of several enzymes. Bufotalin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=471-95-4 (retrieved 2024-06-29) (CAS RN: 471-95-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Bufotalin is a steroid lactone isolated from Venenum Bufonis with potently antitumor activities. Bufotalin induces cancer cell apoptosis and also induces endoplasmic reticulum (ER) stress activation[1][2]. Bufotalin is a steroid lactone isolated from Venenum Bufonis with potently antitumor activities. Bufotalin induces cancer cell apoptosis and also induces endoplasmic reticulum (ER) stress activation[1][2].

   

Gamabufotalin

5-[(3S,5R,8R,9S,10S,11R,13R,14S,17R)-3,11,14-trihydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]pyran-2-one

C24H34O5 (402.2406)


Gamabufogenin is a steroid lactone. It is functionally related to a bufanolide. Gamabufotalin is a natural product found in Bufotes viridis, Bufo, and other organisms with data available. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Gamabufotalin (Gamabufagin), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. Gamabufotalin could inhibite angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways. Gamabufotalin (Gamabufagin), a main active compound isolated from Chinese medicine Chansu, has been shown to strongly inhibit cancer cell growth and inflammatory response. Gamabufotalin could inhibite angiogenesis by inhibiting the activation of VEGFR-2 signaling pathways.

   

Neochlorogenic acid

(1R,3R,4S,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylic acid

C16H18O9 (354.0951)


Constituent of coffee and many other plants. First isolated from peaches (Prunus persica). trans-Neochlorogenic acid is found in coffee and coffee products, fruits, and pear. [Raw Data] CBA73_Neochlorogenic-_neg_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_20eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_40eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_20eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_40eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_30eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_30eV.txt Neochlorogenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=906-33-2 (retrieved 2024-07-17) (CAS RN: 906-33-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0951)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Cinobufagin

[(1R,2S,4R,5R,6R,7R,10S,11S,14S,16R)-14-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.02,4.02,7.011,16]octadecan-5-yl] acetate

C26H34O6 (442.2355)


Cinobufagin is a steroid lactone. It is functionally related to a bufanolide. Cinobufagin is a natural product found in Bufo gargarizans, Phrynoidis asper, and other organisms with data available. Cinobufagin is a bufadienolide compound extracted from the dried venom secreted by the parotid glands of toads and one of the glycosides in the traditional Chinese medicine ChanSu, with potential antineoplastic activity. Although the mechanism of action of cinobufagin is still under investigation, it has been found to suppress cancer cell proliferation and cause apoptosis in cancer cells via a sequence of apoptotic modulators that include mitochondrial Bax and cytosolic chromosome c, and caspases 3, 8, and 9. Possible upstream mediators of cinobufagin-induced apoptosis include Fas and p53. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Annotation level-1 Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3]. Cinobufagin is an anticancer agent that can be secreted by the Asiatic toad Bufo gargarizans. Cinobufagin induces the cell cycle arrests in the G1 phase or G2/M phase, leading to apoptosis in cancer cells. Cinobufagin inhibits tumor growth in melanoma and glioblastoma multiforme xenograft mouse models[1][2][3].

   

Senecionine

(1,6)Dioxacyclododecino(2,3,4-gh)pyrrolizine-2,7-dione, 3-ethylidene-3,4,5,6,9,11,13,14,14a,14b-decahydro-6-hydroxy-5,6-dimethyl-, (3Z,5R,6R,14aR,14bR)-

C18H25NO5 (335.1733)


Senecionine is a pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. It has a role as a plant metabolite. It is a lactone, a pyrrolizidine alkaloid and a tertiary alcohol. It is functionally related to a senecionan. It is a conjugate base of a senecionine(1+). Senecionine is a natural product found in Dorobaea pimpinellifolia, Crotalaria micans, and other organisms with data available. Senecionine is an organic compound with the chemical formula C18H25NO5. It is classified as a pyrrolizidine alkaloid. See also: Petasites hybridus root (part of); Tussilago farfara flower (part of); Tussilago farfara leaf (part of). A pyrrolizidine alkaloid isolated from the plant species of the genus Senecio. D000970 - Antineoplastic Agents Annotation level-1 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2251 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 122 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 102 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 142 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 152 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 162 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 172 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 132 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 112 [Raw Data] CB082a_Senecionine_pos_40eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_10eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_30eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_20eV_CB000034.txt [Raw Data] CB082a_Senecionine_pos_50eV_CB000034.txt Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3]. Senecionine (Senecionan-11,16-dione, 12-hydroxy-) is a pyrrolizidine alkaloid could be isolated from Senecio vulgaris. Senecionine decreases the activities of glutathione S-transferase, aminopyrine demethylase and arylhydrocarbon hydroxylase (AHH)[1][2][3].

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.3705)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Serotonin

3-(b-Aminoethyl)-5-hydroxyindole

C10H12N2O (176.095)


Serotonin or 5-hydroxytryptamine (5-HT) is a molecule that belongs to the class of compounds known as indoleamines. An indoleamine consists of an indole ring that bears an amino group or an alkyl amino group attached to the indole ring. Serotonin has an aminoethyl at position 2 and a hydroxyl group at position 5 of the indole ring. Serotonin exists in all living organisms, ranging from bacteria to plants to humans. In mammals, serotonin functions as a monoamine neurotransmitter, a biochemical messenger and regulator. It is synthesized from the essential amino acid L-Tryptophan. Approximately 90\\\\% of the human bodys total serotonin is located in the enterochromaffin cells in the GI tract, where it regulates intestinal movements. About 8\\\\% is found in platelets and 1–2\\\\% in the CNS. Serotonin in the nervous system acts as a local transmitter at synapses, and as a paracrine or hormonal modulator of circuits upon diffusion, allowing a wide variety of "state-dependent" behavioral responses to different stimuli. Serotonin is widely distributed in the nervous system of vertebrates and invertebrates and some of its behavioral effects have been preserved along evolution. Such is the case of aggressive behavior and rhythmic motor patterns, including those responsible for feeding. In vertebrates, which display a wider and much more sophisticated behavioral repertoire, serotonin also modulates sleep, the arousal state, sexual behavior, and others. Deficiencies of the serotonergic system causes disorders such as depression, obsessive-compulsive disorder, phobias, posttraumatic stress disorder, epilepsy, and generalized anxiety disorder. Serotonin has three different modes of action in the nervous system: as transmitter, acting locally at synaptic boutons; upon diffusion at a distance from its release sites, producing paracrine (also called volume) effects, and by circulating in the blood stream, producing hormonal effects. The three modes can affect a single neuronal circuit. (PMID: 16047543). Serotonin is also a microbial metabolite that can be found in the feces and urine of mammals. Urinary serotonin is produced by Candida, Streptococcus, Escherichia, and Enterococcus (PMID: 24621061). In plants, serotonin was first found and reported in a legume called Mucuna pruriens. The greatest concentration of serotonin in plants has been found in walnuts and hickory. In pineapples, banana, kiwi fruit, plums and tomatoes the concentration of serotonin is around 3 to 30 mg/kg. Isolated from bananas and other fruitsand is also from cotton (Gossypium hirsutum) [DFC]. Serotonin is found in many foods, some of which are common pea, eggplant, swiss chard, and dill. Serotonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-67-9 (retrieved 2024-07-01) (CAS RN: 50-67-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Epinephrine

(R)-(-)-3,4-Dihydroxy-α-(methylaminomethyl)benzyl alcohol, L-Adrenaline, L-Epinephrine

C9H13NO3 (183.0895)


Epinephrine, also known as adrenaline, is both a neurotransmitter and a hormone. It plays an important role in your body’s “fight-or-flight” response. It’s also used as a medication to treat many life-threatening conditions. Epinephrine is a catecholamine, a sympathomimetic monoamine derived from the amino acids phenylalanine and tyrosine. It is the active sympathomimetic hormone secreted from the adrenal medulla in most species. It stimulates both the alpha- and beta- adrenergic systems, causes systemic vasoconstriction and gastrointestinal relaxation, stimulates the heart, and dilates bronchi and cerebral vessels. It is used in asthma and cardiac failure and to delay absorption of local anesthetics. Epinephrine also constricts arterioles in the skin and gut while dilating arterioles in leg muscles. It elevates the blood sugar level by increasing hydrolysis of glycogen to glucose in the liver, and at the same time begins the breakdown of lipids in adipocytes. Epinephrine has a suppressive effect on the immune system. [HMDB] Epinephrine, also called adrenaline, is both a hormone and a neurotransmitter. As a hormone, it’s made and released by your adrenal glands, which are hat-shaped glands that sit on top of each kidney. As a central nervous system neurotransmitter, it’s a chemical messenger that helps transmit nerve signals across nerve endings to another nerve cell, muscle cell or gland cell. Epinephrine is part of your sympathetic nervous system, which is part of your body’s emergency response system to danger — the “fight-or-flight” response. Medically, the flight-or-flight response is known as the acute stress response. Epinephrine is also called a catecholamine, as are norepinephrine and dopamine. They’re given this name because of a certain molecule in its structure. As a hormone, epinephrine is made from norepinephrine inside of your adrenal gland. As a neurotransmitter, epinephrine plays a small role. Only a small amount is produced in your nerves. It plays a role in metabolism, attention, focus, panic and excitement. Abnormal levels are linked to sleep disorders, anxiety, hypertension and lowered immunity. Epinephrine’s major action is in its role as a hormone. Epinephrine is released by your adrenal glands in response to stress. This reaction causes a number of changes in your body and is known as the fight-or-flight response.

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Picein

1-(4-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)ethanone

C14H18O7 (298.1052)


Picein is a glycoside. Picein is a natural product found in Salix candida, Halocarpus biformis, and other organisms with data available. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1]. Picein, isolated from Picrorhiza kurroa, is a naturally occurring antioxidant[1].

   

Bufogein

5-[(1R,2S,4R,6R,7R,10S,11S,14S,16R)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0(2),?.0(2),?.0(1)(1),(1)?]octadecan-6-yl]-2H-pyran-2-one

C24H32O4 (384.23)


Bufogenin is a steroid lactone of Chan su (toad venom), a Chinese medicine obtained from the skin venom gland of toads. A specific Na/K-ATPase protein inhibitor, it is used as a cardiotonic and central nervous system (CNS) respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a steroid lactone and an epoxy steroid. It is functionally related to a bufanolide. Resibufogenin is a natural product found in Sclerophrys mauritanica, Bufo gargarizans, and other organisms with data available. Bufogenin is a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans; it is also one of the glycosides in the traditional Chinese medicine ChanSu, with potential cardiotonic activity. Although the mechanism of action of bufogenin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and has been shown to reduce blood pressure in a rat model of preeclampsia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents C471 - Enzyme Inhibitor Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.

   

Brassicasterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H46O (398.3548)


Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

N-Methylserotonin

3-[2-(Methylamino)ethyl]-1H-indol-5-ol

C11H14N2O (190.1106)


N-methylserotonin is a product of the serotonin-degradative pathway, found in urine specimens of patients with psychiatric disorders (PubMed ID 8747157 ).

   

Tetrodotoxin

(1R,5R,6R,7R,9S,11R,12R,13S,14S)-14-(hydroxymethyl)-3-imino-8,10-dioxa-2,4-diazatetracyclo[7.3.1.1(7,11).0(1,6)]tetradecane-5,9,12,13,14-pentol

C11H17N3O8 (319.1016)


A quinazoline alkaloid that is a marine toxin isolated from fish such as puffer fish. It has been shown to exhibit potential neutotoxicity due to its ability to block voltage-gated sodium channels. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Tetrodotoxin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=4368-28-9 (retrieved 2024-09-06) (CAS RN: 4368-28-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cinobufotalin

(1R,2R,2aR,3aS,3bR,5aS,7S,9aR,9bS,11aR)-5a,7-dihydroxy-9a,11a-dimethyl-1-(2-oxo-2H-pyran-5-yl)hexadecahydronaphtho[1,2:6,7]indeno[1,7a-b]oxiren-2-yl acetate

C26H34O7 (458.2304)


Cinobufotalin is a natural product found in Bufo and Bufo bufo with data available. Cinobufotalin is a bufadienolide isolated from toad venom and utilized in traditional Chinese medicine (TCM) for its cardiotonic, diuretic and hemostatic effects, with potential cytotoxic and antineoplastic activities. Upon administration and although the exact mechanism of action(s) (MoAs) through which this agent exerts its effects have yet to be fully discovered, cinobufotalin causes DNA fragmentation, decreases mitochondrial membrane potential (MMP), increases intracellular calcium (Ca2+) ion concentrations and reactive oxygen species (ROS) production, upregulates Fas protein and activates cytochrome C, various caspases, Bid and Bax. This causes cell cycle arrest, induces apoptosis and inhibits tumor cell growth and survival. In addition, cinobufotalin inhibits the activity of sphingosine kinase 1 (SphK1) and induces pro-apoptotic ceramide production, which further promotes tumor cell apoptosis. Cinobufotalin also induces mitochondrial protein cyclophilin D (Cyp-D)-dependent opening of the mitochondrial permeability transition pore (mPTP), which may contribute to cinobufotalin-induced non-apoptotic death of certain tumor cells. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].

   

Hellebrigenin

3beta,5beta,14beta-Trihydroxy-19-oxo-bufa-20,22-dienolide 3-O-beta-D-glucopyranoside

C24H32O6 (416.2199)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides

   

Marinobufagin

3-.beta.,5-Dihydroxy-14,15-.beta.-epoxy-5-.beta.-bufa-20,22-dienolide

C24H32O5 (400.225)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors

   

Dicaffeoylquinic acid

(1S,3R,4S,5R)-3,5-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


Isolated from coffee and maté, globe artichoke (Cynara scolymus) and caucasian whortleberry (Vaccinium arctostaphylos). 3,5-Di-O-caffeoylquinic acid is found in many foods, some of which are potato, green vegetables, coffee and coffee products, and carrot. Dicaffeoylquinic acid is a polyphenol compound found in foods of plant origin (PMID: 20428313) Isochlorogenic acid A (3,5-Dicaffeoylquinic acid) is a natural phenolic acid with antioxidant and anti-inflammatory activities . Isochlorogenic acid A (3,5-Dicaffeoylquinic acid) is a natural phenolic acid with antioxidant and anti-inflammatory activities .

   

Arenobufagin

5-{5,11,17-trihydroxy-2,15-dimethyl-16-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-2H-pyran-2-one

C24H32O6 (416.2199)


   

bufalin

5-{5,11-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-2H-pyran-2-one

C24H34O4 (386.2457)


   

Bufogenin

5-{14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}-2H-pyran-2-one

C24H32O4 (384.23)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents

   

Bufotalin

5,11-Dihydroxy-2,15-dimethyl-14-(2-oxo-2H-pyran-5-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-13-yl acetic acid

C26H36O6 (444.2512)


   

Cinobufagin

14-Hydroxy-7,11-dimethyl-6-(2-oxo-2H-pyran-5-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-5-yl acetic acid

C26H34O6 (442.2355)


   

Cinobufotalin

14,16-dihydroxy-7,11-dimethyl-6-(2-oxo-2H-pyran-5-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-5-yl acetate

C26H34O7 (458.2304)


Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].

   

Gamabufotalin

5-{5,11,17-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-2H-pyran-2-one

C24H34O5 (402.2406)


   

Marinobufagenin

5-{14,16-dihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}-2H-pyran-2-one

C24H32O5 (400.225)


   

Telocinobufagin

5-{5,7,11-trihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-2H-pyran-2-one

C24H34O5 (402.2406)


   

Serotonin

5-Hydroxytryptamine

C10H12N2O (176.095)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

N-Methylserotonin

N-Methylserotonin

C11H14N2O (190.1106)


A member of the class of tryptamines that is serotonin in which one of the hydrogens attached to the primary amino group is replaced by a methyl group. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053

   

Stigmasterol

Stigmasterol

C29H48O (412.3705)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0951)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   
   

Brassicasterol

ergosta-5,22E-dien-3beta-ol

C28H46O (398.3548)


An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Campesterol

Campesterol

C28H48O (400.3705)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Resibufogenin

5-[(1R,2S,4R,6R,7R,10S,11S,14S,16R)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.02,4.02,7.011,16]octadecan-6-yl]pyran-2-one

C24H32O4 (384.23)


Annotation level-1 Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.

   

Epinephrine

Alipogene tiparvovec

C9H13NO3 (183.0895)


R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use > R01AA - Sympathomimetics, plain R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03A - Adrenergics, inhalants > R03AA - Alpha- and beta-adrenoreceptor agonists C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EA - Sympathomimetics in glaucoma therapy B - Blood and blood forming organs > B02 - Antihemorrhagics > B02B - Vitamin k and other hemostatics > B02BC - Local hemostatics A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent > C87053 - Adrenergic Agonist D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents > D000322 - Adrenergic Agonists C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics C78274 - Agent Affecting Cardiovascular System > C126567 - Vasopressor D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.050

   

Serotonin

5-Hydroxytryptamine

C10H12N2O (176.095)


D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists A primary amino compound that is the 5-hydroxy derivative of tryptamine. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QZAYGJVTTNCVMB_STSL_0135_Serotonin_8000fmol_180506_S2_LC02_MS02_147; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053

   

Neochlorogenic acid

trans-5-O-Caffeoylquinic acid

C16H18O9 (354.0951)


Neochlorogenic acid, also known as neochlorogenate or 3-O-caffeoylquinic acid, belongs to quinic acids and derivatives class of compounds. Those are compounds containing a quinic acid moiety (or a derivative thereof), which is a cyclitol made up of a cyclohexane ring that bears four hydroxyl groups at positions 1,3.4, and 5, as well as a carboxylic acid at position 1. Neochlorogenic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Neochlorogenic acid can be found in a number of food items such as quince, chicory, white cabbage, and grape wine, which makes neochlorogenic acid a potential biomarker for the consumption of these food products. Neochlorogenic acid is a natural polyphenolic compound found in some types of dried fruits and a variety of other plant sources such as peaches. It is an isomer of chlorogenic acid . Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.

   

3,5-dicaffeoylquinic acid

3,5-dicaffeoylquinic acid

C25H24O12 (516.1268)


   
   

(1S,3R,4S,5R)-3,5-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

(1S,3R,4S,5R)-3,5-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


   

retrorsine

retrorsine

C18H25NO6 (351.1682)


Annotation level-1

   

Tunaxanthin I/ Chiriquixanthin A

Tunaxanthin I/ Chiriquixanthin A

C40H56O2 (568.428)


   

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.1878)


   

Marinobufogenin

Marinobufogenin

C24H32O5 (400.225)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents D004791 - Enzyme Inhibitors

   

(2s)-2-[(8-{[(1r,2s,4r,5r,6r,7r,10s,11r,14s,16s)-5-(acetyloxy)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(8-{[(1r,2s,4r,5r,6r,7r,10s,11r,14s,16s)-5-(acetyloxy)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H58N4O11 (770.4102)


   

methyl (2e)-3-[2,2-dimethyl-8-(3-methylbut-2-en-1-yl)chromen-6-yl]prop-2-enoate

methyl (2e)-3-[2,2-dimethyl-8-(3-methylbut-2-en-1-yl)chromen-6-yl]prop-2-enoate

C20H24O3 (312.1725)


   

(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.1878)


   

2-[(8-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

2-[(8-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H58N4O10 (754.4153)


   

(2s)-2-[(8-{[(1r,3as,3br,5ar,7s,9as,9bs,10r,11ar)-3a,10-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(8-{[(1r,3as,3br,5ar,7s,9as,9bs,10r,11ar)-3a,10-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C38H58N4O9 (714.4204)


   

5-{3a,5a,7,10-tetrahydroxy-9a,11a-dimethyl-11-oxo-dodecahydrocyclopenta[a]phenanthren-1-yl}pyran-2-one

5-{3a,5a,7,10-tetrahydroxy-9a,11a-dimethyl-11-oxo-dodecahydrocyclopenta[a]phenanthren-1-yl}pyran-2-one

C24H32O7 (432.2148)


   

5-[(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a,7-dihydroxy-9a-(hydroxymethyl)-11a-methyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]pyran-2-one

5-[(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a,7-dihydroxy-9a-(hydroxymethyl)-11a-methyl-tetradecahydrocyclopenta[a]phenanthren-1-yl]pyran-2-one

C24H34O5 (402.2406)


   

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

C40H55N3O10 (737.3887)


   

4-hydroxy-5-[(1-hydroxyethylidene)amino]-2-({2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexyl}oxy)-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid

4-hydroxy-5-[(1-hydroxyethylidene)amino]-2-({2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexyl}oxy)-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid

C25H44N2O19 (676.2538)


   

7'-hydroxy-2,9'a-dimethyl-1'-oxo-3-(6-oxopyran-3-yl)-octahydro-3'ah-spiro[cyclopentane-1,3'-naphtho[1,2-c]furan]-2-carboxylic acid

7'-hydroxy-2,9'a-dimethyl-1'-oxo-3-(6-oxopyran-3-yl)-octahydro-3'ah-spiro[cyclopentane-1,3'-naphtho[1,2-c]furan]-2-carboxylic acid

C24H30O7 (430.1991)


   

(2r,4s,5r,6r)-4-hydroxy-5-[(1-hydroxyethylidene)amino]-2-{[(2r,3s,4s,5s)-2,3,6-trihydroxy-4-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-[(1-hydroxyethylidene)amino]hexyl]oxy}-6-[(1r,2r)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

(2r,4s,5r,6r)-4-hydroxy-5-[(1-hydroxyethylidene)amino]-2-{[(2r,3s,4s,5s)-2,3,6-trihydroxy-4-{[(2r,3r,4s,5s,6r)-5-hydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-[(1-hydroxyethylidene)amino]hexyl]oxy}-6-[(1r,2r)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C37H64N2O28 (984.3645)


   

(2r,4s,5r,6r)-4-hydroxy-5-[(1-hydroxyethylidene)amino]-2-{[(2r,3s,4s,5s)-2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]-4-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexyl]oxy}-6-[(1r,2r)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

(2r,4s,5r,6r)-4-hydroxy-5-[(1-hydroxyethylidene)amino]-2-{[(2r,3s,4s,5s)-2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]-4-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}hexyl]oxy}-6-[(1r,2r)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C25H44N2O19 (676.2538)


   

5-[(1r,3as,3br,5as,7s,9ar,9bs,10r,11ar)-3a,5a,7,10-tetrahydroxy-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

5-[(1r,3as,3br,5as,7s,9ar,9bs,10r,11ar)-3a,5a,7,10-tetrahydroxy-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

C24H34O6 (418.2355)


   

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

C41H57N3O10 (751.4044)


   

5-[(1s,4r,6r,7r,10s,14s,16s,19s)-10,14,16-trihydroxy-2-methoxy-6-methyl-3-oxapentacyclo[9.7.1.0¹,¹⁴.0⁴,¹⁹.0⁶,¹⁰]nonadecan-7-yl]pyran-2-one

5-[(1s,4r,6r,7r,10s,14s,16s,19s)-10,14,16-trihydroxy-2-methoxy-6-methyl-3-oxapentacyclo[9.7.1.0¹,¹⁴.0⁴,¹⁹.0⁶,¹⁰]nonadecan-7-yl]pyran-2-one

C25H34O7 (446.2304)


   

(2s)-2-[(4-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(4-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

C36H50N4O10 (698.3527)


   

2-[(4-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

2-[(4-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

C36H52N4O10 (700.3683)


   

2-[(9-{[5-(acetyloxy)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-9-oxononylidene)amino]-5-carbamimidamidopentanoic acid

2-[(9-{[5-(acetyloxy)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-9-oxononylidene)amino]-5-carbamimidamidopentanoic acid

C41H60N4O11 (784.4258)


   

4-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

4-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

C28H36O8 (500.241)


   

n-[3-({6-[({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl}oxy)methyl]-4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-1,4,5,6-tetrahydroxyhexan-2-yl]ethanimidic acid

n-[3-({6-[({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl}oxy)methyl]-4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-5-hydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-1,4,5,6-tetrahydroxyhexan-2-yl]ethanimidic acid

C40H70N2O29 (1042.4064)


   

4-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

4-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

C30H38O9 (542.2516)


   

(4e)-4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

(4e)-4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H25NO5 (335.1733)


   

epicholestrol

epicholestrol

C27H46O (386.3548)


   

5-[(1s,2s,4r,6r,7r,10s,11r,14s,16s,19s)-10,14,16-trihydroxy-2-methoxy-6-methyl-3-oxapentacyclo[9.7.1.0¹,¹⁴.0⁴,¹⁹.0⁶,¹⁰]nonadecan-7-yl]pyran-2-one

5-[(1s,2s,4r,6r,7r,10s,11r,14s,16s,19s)-10,14,16-trihydroxy-2-methoxy-6-methyl-3-oxapentacyclo[9.7.1.0¹,¹⁴.0⁴,¹⁹.0⁶,¹⁰]nonadecan-7-yl]pyran-2-one

C25H34O7 (446.2304)


   

2-[(1-hydroxy-8-{[16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-8-oxooctylidene)amino]-4-(c-hydroxycarbonimidoyl)butanoic acid

2-[(1-hydroxy-8-{[16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-8-oxooctylidene)amino]-4-(c-hydroxycarbonimidoyl)butanoic acid

C37H52N2O10 (684.3622)


   

3,5-dicaffeoylquinic acid

NA

C25H24O12 (516.1268)


{"Ingredient_id": "HBIN007602","Ingredient_name": "3,5-dicaffeoylquinic acid","Alias": "NA","Ingredient_formula": "C25H24O12","Ingredient_Smile": "C1C(C(C(CC1(C(=O)O)O)OC(=O)C=CC2=CC(=C(C=C2)O)O)O)OC(=O)C=CC3=CC(=C(C=C3)O)O","Ingredient_weight": "516.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "41070","TCMSP_id": "NA","TCM_ID_id": "21406","PubChem_id": "13604688","DrugBank_id": "NA"}

   

(1r,2r,3as,3br,5ar,7s,9as,9bs,11ar)-3a,7-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl acetate

(1r,2r,3as,3br,5ar,7s,9as,9bs,11ar)-3a,7-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-2-yl acetate

C26H36O6 (444.2512)


   

2-[(8-{[3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

2-[(8-{[3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

C38H53N3O9 (695.3782)


   

(1r,2s,4r,6r,7r,10s,11s,14s,16s)-14,16-dihydroxy-7-methyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-11-carbaldehyde

(1r,2s,4r,6r,7r,10s,11s,14s,16s)-14,16-dihydroxy-7-methyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-11-carbaldehyde

C24H30O6 (414.2042)


   

5-[(1r,2s,4r,5r,6r,7r,10s,11s,14s)-5,14-dihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

5-[(1r,2s,4r,5r,6r,7r,10s,11s,14s)-5,14-dihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

C24H32O5 (400.225)


   

5-[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

5-[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

C24H32O4 (384.23)


   

4-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

4-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

C30H38O9 (542.2516)


   

{3-[2-(dimethylamino)ethyl]-1h-indol-5-yl}oxidanesulfonic acid

{3-[2-(dimethylamino)ethyl]-1h-indol-5-yl}oxidanesulfonic acid

C12H16N2O4S (284.0831)


   

(+)-β-cedrene

(+)-β-cedrene

C15H24 (204.1878)


   

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H48O (400.3705)


   

5-{9,14,16-trihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}pyran-2-one

5-{9,14,16-trihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}pyran-2-one

C24H32O6 (416.2199)


   

6-acetyl-8-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-2,2-dimethyl-3h-1-benzopyran-4-one

6-acetyl-8-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-2,2-dimethyl-3h-1-benzopyran-4-one

C18H22O4 (302.1518)


   

(2s)-2-[(4-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(4-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

C36H52N4O10 (700.3683)


   

(1s,4z,7s,17s)-4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

(1s,4z,7s,17s)-4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H25NO5 (335.1733)


   

2-[(8-{[(1r,2s,3as,5ar,7s,9as,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(2-oxopyran-4-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

2-[(8-{[(1r,2s,3as,5ar,7s,9as,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(2-oxopyran-4-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H60N4O10 (756.4309)


   

7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

C29H38O7 (498.2617)


   

3a,5a,7-trihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

3a,5a,7-trihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C24H32O6 (416.2199)


   

5-[(1r,2s,4r,6r,7r,9r,10s,11r,14s,16s)-9,14,16-trihydroxy-11-(hydroxymethyl)-7-methyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

5-[(1r,2s,4r,6r,7r,9r,10s,11r,14s,16s)-9,14,16-trihydroxy-11-(hydroxymethyl)-7-methyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

C24H32O7 (432.2148)


   

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

C41H57N3O10 (751.4044)


   

methyl 3-(2,2-dimethylchromen-6-yl)prop-2-enoate

methyl 3-(2,2-dimethylchromen-6-yl)prop-2-enoate

C15H16O3 (244.1099)


   

(2s)-2-[(6-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-6-oxohexylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(6-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-6-oxohexylidene)amino]-5-carbamimidamidopentanoic acid

C38H54N4O10 (726.384)


   

6-acetyl-8-(3-hydroxy-3-methylbut-1-en-1-yl)-2,2-dimethyl-3h-1-benzopyran-4-one

6-acetyl-8-(3-hydroxy-3-methylbut-1-en-1-yl)-2,2-dimethyl-3h-1-benzopyran-4-one

C18H22O4 (302.1518)


   

(2s)-2-[(6-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16s)-5-(acetyloxy)-11-formyl-16-hydroxy-7-methyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-6-oxohexylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(6-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16s)-5-(acetyloxy)-11-formyl-16-hydroxy-7-methyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-6-oxohexylidene)amino]-5-carbamimidamidopentanoic acid

C38H52N4O12 (756.3582)


   

(1r,2s,4r,5r,6s,7r,10s,11s,14s,16r)-14-hydroxy-7,11-dimethyl-6-[(2z)-1-oxobut-2-en-2-yl]-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-5-yl acetate

(1r,2s,4r,5r,6s,7r,10s,11s,14s,16r)-14-hydroxy-7,11-dimethyl-6-[(2z)-1-oxobut-2-en-2-yl]-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-5-yl acetate

C25H36O5 (416.2563)


   

5-[9,14,16-trihydroxy-11-(hydroxymethyl)-7-methyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

5-[9,14,16-trihydroxy-11-(hydroxymethyl)-7-methyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

C24H32O7 (432.2148)


   

4-{[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

4-{[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

C28H36O7 (484.2461)


   

(1s,2r,5r,7s,10s,11s,14r,15r,20s)-16-ethenyl-7-hydroxy-10,14-dimethyl-18-oxapentacyclo[13.3.2.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]icos-16-en-20-yl acetate

(1s,2r,5r,7s,10s,11s,14r,15r,20s)-16-ethenyl-7-hydroxy-10,14-dimethyl-18-oxapentacyclo[13.3.2.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]icos-16-en-20-yl acetate

C25H36O4 (400.2613)


   

5-{5,14,16-trihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}pyran-2-one

5-{5,14,16-trihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}pyran-2-one

C24H32O6 (416.2199)


   

(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

C31H40O9 (556.2672)


   

n-(6-{[4-({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl}oxy)-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-1,4,5-trihydroxyhexan-2-yl)ethanimidic acid

n-(6-{[4-({4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl}oxy)-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-3-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-1,4,5-trihydroxyhexan-2-yl)ethanimidic acid

C42H73N3O29 (1083.433)


   

methyl 4-[(3br,5ar,7s,9as,9bs,11as)-7-hydroxy-9a,11a-dimethyl-3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-4-oxobutanoate

methyl 4-[(3br,5ar,7s,9as,9bs,11as)-7-hydroxy-9a,11a-dimethyl-3bh,4h,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-4-oxobutanoate

C24H34O4 (386.2457)


   

5-{10,14,16-trihydroxy-2-methoxy-6-methyl-3-oxapentacyclo[9.7.1.0¹,¹⁴.0⁴,¹⁹.0⁶,¹⁰]nonadecan-7-yl}pyran-2-one

5-{10,14,16-trihydroxy-2-methoxy-6-methyl-3-oxapentacyclo[9.7.1.0¹,¹⁴.0⁴,¹⁹.0⁶,¹⁰]nonadecan-7-yl}pyran-2-one

C25H34O7 (446.2304)


   

5-carbamimidamido-2-[(4-{[7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]pentanoic acid

5-carbamimidamido-2-[(4-{[7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]pentanoic acid

C34H48N4O8 (640.3472)


   

(1r,2s,4r,5s,6r,7r,10s,11s,14s,16r)-14-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-5-yl acetate

(1r,2s,4r,5s,6r,7r,10s,11s,14s,16r)-14-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-5-yl acetate

C26H34O6 (442.2355)


   

(1r,5s,6r,7r,9s,11s,12r,13s,14s)-14-(hydroxymethyl)-3-imino-8,10-dioxa-2,4-diazatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradecane-5,9,12,13,14-pentol

(1r,5s,6r,7r,9s,11s,12r,13s,14s)-14-(hydroxymethyl)-3-imino-8,10-dioxa-2,4-diazatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradecane-5,9,12,13,14-pentol

C11H17N3O8 (319.1016)


   

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

C40H55N3O10 (737.3887)


   

(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

C29H38O7 (498.2617)


   

2-[(8-{[3a,5a-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-4-(c-hydroxycarbonimidoyl)butanoic acid

2-[(8-{[3a,5a-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-4-(c-hydroxycarbonimidoyl)butanoic acid

C37H54N2O10 (686.3778)


   

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3-methylimidazol-4-yl)propanoic acid

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3-methylimidazol-4-yl)propanoic acid

C41H57N3O10 (751.4044)


   

2-[(8-{[3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

2-[(8-{[3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(1-methylimidazol-4-yl)propanoic acid

C39H55N3O9 (709.3938)


   

(2r,4s,5r,6r)-2-{[(2r,3s,4s,5s)-4-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]hexyl]oxy}-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-[(1r,2r)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

(2r,4s,5r,6r)-2-{[(2r,3s,4s,5s)-4-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]hexyl]oxy}-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-[(1r,2r)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C31H54N2O23 (822.3117)


   

5-[(1r,2s,4r,6r,7r,10s,11s,14r,16r)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

5-[(1r,2s,4r,6r,7r,10s,11s,14r,16r)-14-hydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

C24H32O4 (384.23)


   

(2s)-2-[(8-{[(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

(2s)-2-[(8-{[(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a-hydroxy-9a-(hydroxymethyl)-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-3-(3h-imidazol-4-yl)propanoic acid

C38H53N3O9 (695.3782)


   

(2s)-5-carbamimidamido-2-[(4-{[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]pentanoic acid

(2s)-5-carbamimidamido-2-[(4-{[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]pentanoic acid

C34H48N4O8 (640.3472)


   

2-[(4-{[3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

2-[(4-{[3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

C34H50N4O8 (642.3628)


   

methyl 3-[3-(3-hydroxy-3-methylbut-1-en-1-yl)-4-methoxyphenyl]prop-2-enoate

methyl 3-[3-(3-hydroxy-3-methylbut-1-en-1-yl)-4-methoxyphenyl]prop-2-enoate

C16H20O4 (276.1362)


   

4-[(1r)-1-hydroxy-2-[c-hydroxycarbonimidoyl(methyl)amino]ethyl]phenol

4-[(1r)-1-hydroxy-2-[c-hydroxycarbonimidoyl(methyl)amino]ethyl]phenol

C10H14N2O3 (210.1004)


   

3-{[2-(5-hydroxy-1h-indol-3-yl)ethyl]-c-hydroxycarbonimidoyl}propanoic acid

3-{[2-(5-hydroxy-1h-indol-3-yl)ethyl]-c-hydroxycarbonimidoyl}propanoic acid

C14H16N2O4 (276.111)


   

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

2-[(8-{[2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H60N4O10 (756.4309)


   

4-{[5-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

4-{[5-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

C28H36O8 (500.241)


   

4-ethylidene-7,12-dihydroxy-6,7-dimethyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadecan-14-ium-14-olate

4-ethylidene-7,12-dihydroxy-6,7-dimethyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadecan-14-ium-14-olate

C18H27NO7 (369.1787)


   

2-[(8-{[9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

2-[(8-{[9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C38H56N4O10 (728.3996)


   

2-[(4-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

2-[(4-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

C36H50N4O10 (698.3527)


   

(1r,4e,6r,7s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-en-14-ium-14-olate

(1r,4e,6r,7s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-en-14-ium-14-olate

C18H25NO7 (367.1631)


   

methyl (2e)-3-{8-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-2,2-dimethylchromen-6-yl}prop-2-enoate

methyl (2e)-3-{8-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-2,2-dimethylchromen-6-yl}prop-2-enoate

C20H24O4 (328.1675)


   

(2s)-5-carbamimidamido-2-[(8-{[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]pentanoic acid

(2s)-5-carbamimidamido-2-[(8-{[(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]pentanoic acid

C38H56N4O8 (696.4098)


   

(1s,2r,3r,3'ar,5'ar,7's,9'as,9'bs)-7'-hydroxy-2,9'a-dimethyl-1'-oxo-3-(6-oxopyran-3-yl)-octahydro-3'ah-spiro[cyclopentane-1,3'-naphtho[1,2-c]furan]-2-carboxylic acid

(1s,2r,3r,3'ar,5'ar,7's,9'as,9'bs)-7'-hydroxy-2,9'a-dimethyl-1'-oxo-3-(6-oxopyran-3-yl)-octahydro-3'ah-spiro[cyclopentane-1,3'-naphtho[1,2-c]furan]-2-carboxylic acid

C24H30O7 (430.1991)


   

2-[(6-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-6-oxohexylidene)amino]-5-carbamimidamidopentanoic acid

2-[(6-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-6-oxohexylidene)amino]-5-carbamimidamidopentanoic acid

C38H54N4O10 (726.384)


   

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a,7-trihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,3br,5as,7s,9as,9bs,11ar)-3a,5a,7-trihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C24H32O6 (416.2199)


   

(1s,2r,5s,7s,10r,11s,14r,15r)-16-ethenyl-10,14-dimethyl-18-oxapentacyclo[13.3.2.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]icos-16-ene-5,7-diol

(1s,2r,5s,7s,10r,11s,14r,15r)-16-ethenyl-10,14-dimethyl-18-oxapentacyclo[13.3.2.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]icos-16-ene-5,7-diol

C23H34O3 (358.2508)


   

(1r,2s,4r,5r,6r,7r,10s,11r,14s,16s)-14,16-dihydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-5-yl acetate

(1r,2s,4r,5r,6r,7r,10s,11r,14s,16s)-14,16-dihydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-5-yl acetate

C26H34O7 (458.2304)


   

(2s)-2-[(7-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-7-oxoheptylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(7-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-7-oxoheptylidene)amino]-5-carbamimidamidopentanoic acid

C39H56N4O10 (740.3996)


   

(1s,2r,3's,5s,6s,9s,11r,14r,15s,17r,19r,21r)-2,3',6-trimethyl-16,18-dioxaspiro[hexacyclo[15.3.1.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹.0¹⁵,¹⁹]henicosane-21,2'-oxiran]-9-ol

(1s,2r,3's,5s,6s,9s,11r,14r,15s,17r,19r,21r)-2,3',6-trimethyl-16,18-dioxaspiro[hexacyclo[15.3.1.0²,¹⁵.0⁵,¹⁴.0⁶,¹¹.0¹⁵,¹⁹]henicosane-21,2'-oxiran]-9-ol

C23H34O4 (374.2457)


   

2-[(5-{[3a,5a-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-5-oxopentylidene)amino]-5-carbamimidamidopentanoic acid

2-[(5-{[3a,5a-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-5-oxopentylidene)amino]-5-carbamimidamidopentanoic acid

C35H52N4O9 (672.3734)


   

methyl 3-[8-(3-hydroxy-3-methylbut-1-en-1-yl)-2,2-dimethylchromen-6-yl]prop-2-enoate

methyl 3-[8-(3-hydroxy-3-methylbut-1-en-1-yl)-2,2-dimethylchromen-6-yl]prop-2-enoate

C20H24O4 (328.1675)


   

5-{3a,5a,7,10-tetrahydroxy-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}pyran-2-one

5-{3a,5a,7,10-tetrahydroxy-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}pyran-2-one

C24H34O6 (418.2355)


   

(2s)-2-[(8-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(8-{[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H58N4O10 (754.4153)


   

(2s)-2-[(9-{[(1r,2s,4r,5r,6r,7r,10s,11r,14s,16s)-5-(acetyloxy)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-9-oxononylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(9-{[(1r,2s,4r,5r,6r,7r,10s,11r,14s,16s)-5-(acetyloxy)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-9-oxononylidene)amino]-5-carbamimidamidopentanoic acid

C41H60N4O11 (784.4258)


   

n-acetyl-n-[2-(5-hydroxy-1h-indol-3-yl)ethyl]-2-methyl-1h-pyrrole-3-carboxamide

n-acetyl-n-[2-(5-hydroxy-1h-indol-3-yl)ethyl]-2-methyl-1h-pyrrole-3-carboxamide

C18H19N3O3 (325.1426)


   

2-[(8-{[5-(acetyloxy)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

2-[(8-{[5-(acetyloxy)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H58N4O11 (770.4102)


   

4-{1-hydroxy-2-[c-hydroxycarbonimidoyl(methyl)amino]ethyl}phenol

4-{1-hydroxy-2-[c-hydroxycarbonimidoyl(methyl)amino]ethyl}phenol

C10H14N2O3 (210.1004)


   

(2r,4s,5r,6r)-2-{[(2r,3s,4s,5s)-4-{[(2r,3r,4s,5s,6r)-4-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]hexyl]oxy}-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-[(1r,2r)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

(2r,4s,5r,6r)-2-{[(2r,3s,4s,5s)-4-{[(2r,3r,4s,5s,6r)-4-{[(2s,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]hexyl]oxy}-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-[(1r,2r)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C43H74N2O32 (1130.4224)


   

methyl (2e)-3-{3-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-4-methoxyphenyl}prop-2-enoate

methyl (2e)-3-{3-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-4-methoxyphenyl}prop-2-enoate

C16H20O4 (276.1362)


   

(2s,4s,5r,6r)-2-{[(2r,3s,4r,5r,6r)-3-{[(2s,3r,4r,5r,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-2-(hydroxymethyl)-6-{[(2s,3s,4s,5r)-1,4,5,6-tetrahydroxy-2-[(1-hydroxyethylidene)amino]hexan-3-yl]oxy}oxan-4-yl]oxy}-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-[(1r,2r)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

(2s,4s,5r,6r)-2-{[(2r,3s,4r,5r,6r)-3-{[(2s,3r,4r,5r,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-5-hydroxy-2-(hydroxymethyl)-6-{[(2s,3s,4s,5r)-1,4,5,6-tetrahydroxy-2-[(1-hydroxyethylidene)amino]hexan-3-yl]oxy}oxan-4-yl]oxy}-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-[(1r,2r)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid

C33H57N3O24 (879.3332)


   

5-[(1r,2s,4r,5s,6r,7r,10s,11s,14s,16r)-5,14-dihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

5-[(1r,2s,4r,5s,6r,7r,10s,11s,14s,16r)-5,14-dihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

C24H32O5 (400.225)


   

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(8-{[(1r,2s,3as,3br,5ar,7s,9as,9bs,11ar)-2-(acetyloxy)-3a-hydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H60N4O10 (756.4309)


   

methyl 3-[4-hydroxy-3-(3-methylbut-2-enoyl)phenyl]prop-2-enoate

methyl 3-[4-hydroxy-3-(3-methylbut-2-enoyl)phenyl]prop-2-enoate

C15H16O4 (260.1049)


   

1-{8-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-2,2-dimethylchromen-6-yl}ethanone

1-{8-[(1e)-3-hydroxy-3-methylbut-1-en-1-yl]-2,2-dimethylchromen-6-yl}ethanone

C18H22O3 (286.1569)


   

2-[(4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]hexyl)oxy]-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid

2-[(4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]hexyl)oxy]-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid

C31H54N2O23 (822.3117)


   

(1r,6r,7s,17s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

(1r,6r,7s,17s)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H25NO6 (351.1682)


   

methyl 3-[2,2-dimethyl-8-(3-methylbut-2-en-1-yl)chromen-6-yl]prop-2-enoate

methyl 3-[2,2-dimethyl-8-(3-methylbut-2-en-1-yl)chromen-6-yl]prop-2-enoate

C20H24O3 (312.1725)


   

(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

C29H38O8 (514.2567)


   

2-[(4-{[3a,10-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

2-[(4-{[3a,10-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-4-oxobutylidene)amino]-5-carbamimidamidopentanoic acid

C34H50N4O9 (658.3578)


   

methyl (2e)-3-(2,2-dimethylchromen-6-yl)prop-2-enoate

methyl (2e)-3-(2,2-dimethylchromen-6-yl)prop-2-enoate

C15H16O3 (244.1099)


   

5-[(1r,3as,3br,5as,7s,9ar,9bs,10s,11ar)-3a,5a,7,10-tetrahydroxy-9a,11a-dimethyl-11-oxo-dodecahydrocyclopenta[a]phenanthren-1-yl]pyran-2-one

5-[(1r,3as,3br,5as,7s,9ar,9bs,10s,11ar)-3a,5a,7,10-tetrahydroxy-9a,11a-dimethyl-11-oxo-dodecahydrocyclopenta[a]phenanthren-1-yl]pyran-2-one

C24H32O7 (432.2148)


   

5-{3a,5a,7,9-tetrahydroxy-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}pyran-2-one

5-{3a,5a,7,9-tetrahydroxy-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}pyran-2-one

C24H34O6 (418.2355)


   

(1r,5r,6r,7r,9s,11s,13s,14r)-14-(hydroxymethyl)-3-imino-8,10-dioxa-2,4-diazatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradecane-5,9,12,13,14-pentol

(1r,5r,6r,7r,9s,11s,13s,14r)-14-(hydroxymethyl)-3-imino-8,10-dioxa-2,4-diazatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradecane-5,9,12,13,14-pentol

C11H17N3O8 (319.1016)


   

(1r,4z,6r,7s,14s,17r)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-en-14-ium-14-olate

(1r,4z,6r,7s,14s,17r)-4-ethylidene-7-hydroxy-7-(hydroxymethyl)-6-methyl-3,8-dioxo-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-en-14-ium-14-olate

C18H25NO7 (367.1631)


   

(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a,7-dihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,3br,5ar,7s,9ar,9bs,11ar)-3a,7-dihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-tetradecahydrocyclopenta[a]phenanthrene-9a-carbaldehyde

C24H32O5 (400.225)


   

(1r,3as,3br,5as,7r,9as,9bs,11ar)-3a,5a,7-trihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

(1r,3as,3br,5as,7r,9as,9bs,11ar)-3a,5a,7-trihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthrene-9a-carbaldehyde

C24H32O6 (416.2199)


   

2-[(8-{[(11s)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

2-[(8-{[(11s)-5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C40H58N4O10 (754.4153)


   

(2s)-5-carbamimidamido-2-[(1-hydroxy-8-{[(1r,2s,4r,6r,7r,10s,11r,14s,16s)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-8-oxooctylidene)amino]pentanoic acid

(2s)-5-carbamimidamido-2-[(1-hydroxy-8-{[(1r,2s,4r,6r,7r,10s,11r,14s,16s)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-8-oxooctylidene)amino]pentanoic acid

C38H56N4O9 (712.4047)


   

(2s)-2-[(5-{[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-5-oxopentylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(5-{[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-5-oxopentylidene)amino]-5-carbamimidamidopentanoic acid

C35H52N4O9 (672.3734)


   

2-[(5-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-5-oxopentylidene)amino]-5-carbamimidamidopentanoic acid

2-[(5-{[5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-1-hydroxy-5-oxopentylidene)amino]-5-carbamimidamidopentanoic acid

C37H52N4O10 (712.3683)


   

4-hydroxy-5-[(1-hydroxyethylidene)amino]-2-[(2,3,6-trihydroxy-4-{[5-hydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-5-[(1-hydroxyethylidene)amino]hexyl)oxy]-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid

4-hydroxy-5-[(1-hydroxyethylidene)amino]-2-[(2,3,6-trihydroxy-4-{[5-hydroxy-6-(hydroxymethyl)-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-5-[(1-hydroxyethylidene)amino]hexyl)oxy]-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid

C37H64N2O28 (984.3645)


   

(2s)-2-[(1-hydroxy-8-{[(1r,2s,4r,6r,7r,10r,11s,14r,16s)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-8-oxooctylidene)amino]-4-(c-hydroxycarbonimidoyl)butanoic acid

(2s)-2-[(1-hydroxy-8-{[(1r,2s,4r,6r,7r,10r,11s,14r,16s)-16-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-8-oxooctylidene)amino]-4-(c-hydroxycarbonimidoyl)butanoic acid

C37H52N2O10 (684.3622)


   

4-{[7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

4-{[7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutanoic acid

C28H36O7 (484.2461)


   

(2s)-2-[(8-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

(2s)-2-[(8-{[(1r,3as,3br,5as,7s,9as,9bs,11ar)-9a-formyl-3a,5a-dihydroxy-11a-methyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-5-carbamimidamidopentanoic acid

C38H56N4O10 (728.3996)


   

(2s)-2-[(8-{[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-4-(c-hydroxycarbonimidoyl)butanoic acid

(2s)-2-[(8-{[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a-dihydroxy-9a,11a-dimethyl-1-(6-oxopyran-3-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl]oxy}-1-hydroxy-8-oxooctylidene)amino]-4-(c-hydroxycarbonimidoyl)butanoic acid

C37H54N2O10 (686.3778)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

(1r,5r,6s,7s,9s,11s,12s,13s,14s)-14-(hydroxymethyl)-3-imino-8,10-dioxa-2,4-diazatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradecane-5,9,12,13,14-pentol

(1r,5r,6s,7s,9s,11s,12s,13s,14s)-14-(hydroxymethyl)-3-imino-8,10-dioxa-2,4-diazatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradecane-5,9,12,13,14-pentol

C11H17N3O8 (319.1016)


   

n-[(2s,3s,4s,5r)-6-{[(2r,3r,4r,5s,6r)-4-{[(2r,3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-1,4,5-trihydroxyhexan-2-yl]ethanimidic acid

n-[(2s,3s,4s,5r)-6-{[(2r,3r,4r,5s,6r)-4-{[(2r,3r,4r,5s,6r)-4,5-dihydroxy-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)oxan-2-yl]oxy}-3-[(1-hydroxyethylidene)amino]-6-(hydroxymethyl)-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-1,4,5-trihydroxyhexan-2-yl]ethanimidic acid

C42H73N3O29 (1083.433)


   

(1r,5r,6r,7r,9s,11s,12r,13s,14s)-14-(hydroxymethyl)-3-imino-8,10-dioxa-2,4-diazatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradecane-5,9,12,13,14-pentol

(1r,5r,6r,7r,9s,11s,12r,13s,14s)-14-(hydroxymethyl)-3-imino-8,10-dioxa-2,4-diazatetracyclo[7.3.1.1⁷,¹¹.0¹,⁶]tetradecane-5,9,12,13,14-pentol

C11H17N3O8 (319.1016)


   

5-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

5-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

C29H38O8 (514.2567)


   

5-[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5,14-dihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

5-[(1r,2s,4r,5r,6r,7r,10s,11s,14s,16r)-5,14-dihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl]pyran-2-one

C24H32O5 (400.225)


   

(1r,2s,4r,5r,6r,7r,10s,11s,14s,16s)-5,14,16-trihydroxy-7-methyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-11-carbaldehyde

(1r,2s,4r,5r,6r,7r,10s,11s,14s,16s)-5,14,16-trihydroxy-7-methyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecane-11-carbaldehyde

C24H30O7 (430.1991)


   

5-carbamimidamido-2-[(1-hydroxy-4-{[5-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutylidene)amino]pentanoic acid

5-carbamimidamido-2-[(1-hydroxy-4-{[5-hydroxy-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl]oxy}-4-oxobutylidene)amino]pentanoic acid

C34H48N4O9 (656.3421)


   

3,5-bis({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

3,5-bis({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


   

5-{5,14-dihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}pyran-2-one

5-{5,14-dihydroxy-7,11-dimethyl-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-6-yl}pyran-2-one

C24H32O5 (400.225)


   

(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl formate

(1r,2s,4r,6r,7r,10s,11s,14s,16r)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl formate

C25H32O5 (412.225)


   

5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

5-(acetyloxy)-7,11-dimethyl-6-(6-oxopyran-3-yl)-3-oxapentacyclo[8.8.0.0²,⁴.0²,⁷.0¹¹,¹⁶]octadecan-14-yl 1-methyl butanedioate

C31H40O9 (556.2672)


   

5-[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a,7-trihydroxy-9a-(hydroxymethyl)-11a-methyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

5-[(1r,3as,3br,5as,7s,9ar,9bs,11ar)-3a,5a,7-trihydroxy-9a-(hydroxymethyl)-11a-methyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

C24H34O6 (418.2355)


   

5-[(1r,3as,3br,5as,7s,9r,9as,9bs,11ar)-3a,5a,7,9-tetrahydroxy-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

5-[(1r,3as,3br,5as,7s,9r,9as,9bs,11ar)-3a,5a,7,9-tetrahydroxy-9a,11a-dimethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

C24H34O6 (418.2355)


   

2-({4-[(4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]hexyl}oxy)-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid

2-({4-[(4-{[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-5-hydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]-2,3,6-trihydroxy-5-[(1-hydroxyethylidene)amino]hexyl}oxy)-4-hydroxy-5-[(1-hydroxyethylidene)amino]-6-(1,2,3-trihydroxypropyl)oxane-2-carboxylic acid

C43H74N2O32 (1130.4224)


   

5-[(1r,3as,3br,5as,7s,9ar,9bs,10r,11ar)-3a,5a,7,10-tetrahydroxy-9a-(hydroxymethyl)-11a-methyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

5-[(1r,3as,3br,5as,7s,9ar,9bs,10r,11ar)-3a,5a,7,10-tetrahydroxy-9a-(hydroxymethyl)-11a-methyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]pyran-2-one

C24H34O7 (434.2304)