Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


(-)-beta-elemene is the (-)-enantiomer of beta-elemene that has (1S,2S,4R)-configuration. It has a role as an antineoplastic agent. beta-Elemene is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. Beta-elemene is one of the isomers of elemene, a lipid soluble sesquiterpene and the active component isolated from the Chinese medicinal herb Rhizoma zedoariae with potential antineoplastic and chemopreventive activities. Although the exact mechanism of action through which beta-elemene exerts its effect has yet to be fully elucidated, this agent appears to induce apoptosis through different mechanisms of action and induces cell cycle arrest at different stages based on the tumor cell type involved. Beta-elemene may sensitize cancer cells to other chemotherapeutic agents. See also: Cannabis sativa subsp. indica top (part of). Beta-elemene, also known as B-elemen or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. Beta-elemene is a fresh, herbal, and waxy tasting compound and can be found in a number of food items such as lovage, anise, spearmint, and orange mint, which makes beta-elemene a potential biomarker for the consumption of these food products. Beta-elemene can be found primarily in saliva. beta-Elemene belongs to the class of organic compounds known as elemane sesquiterpenoids. These are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. beta-Elemene can be found in herbs, spices, and root vegetables, which makes beta-elemene a potential biomarker for the consumption of these food products. It is a constituent of sweet flag, juniper oils, and Mentha species. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

Cedorol

Cedrol;[3R-(3alpha,3abeta,6alpha,7beta,8aalpha)]-octahydro-3,6,8,8-tetramethyl-1H-3a,7-methanoazulen-6-ol

C15H26O (222.1984)


Cedrol, also known as alpha-cedrol or (+)-cedrol, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Thus, cedrol is considered to be an isoprenoid lipid molecule. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol can be found in ginger, which makes cedrol a potential biomarker for the consumption of this food product. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

Brassicasterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H46O (398.3548)


Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

(+)-1(10),4-Cadinadiene

1,2,3,5,6,8a-hexahydro-4,7-Dimethyl-1-(1-methylethyl)-(1S,8ar)-naphthalene

C15H24 (204.1878)


Constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag. (+)-1(10),4-Cadinadiene is found in many foods, some of which are common pea, asparagus, sweet potato, and dill. (+)-1(10),4-Cadinadiene is found in allspice. (+)-1(10),4-Cadinadiene is a constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag

   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.1878)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Germacrene

(1E,5E)-1,5-Dimethyl-8-(1-methylethylidene)-1,5-cyclodecadiene

C15H24 (204.1878)


Germacrene, also known as (e,e)-germacra-1(10),4,7(11)-triene, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Thus, germacrene is considered to be an isoprenoid lipid molecule. Germacrene can be found in turmeric, which makes germacrene a potential biomarker for the consumption of this food product. Germacrenes are a class of volatile organic hydrocarbons, specifically, sesquiterpenes. Germacrenes are typically produced in a number of plant species for their antimicrobial and insecticidal properties, though they also play a role as insect pheromones. Two prominent molecules are germacrene A and germacrene D .

   

Thujopsene

(-)-thujopsene

C15H24 (204.1878)


A thujopsene that has (S,S,S)-configuration.

   

.delta.-Selinene

(8aR)-4,8a-dimethyl-6-(propan-2-yl)-1,2,3,7,8,8a-hexahydronaphthalene eudesma-4,6-diene

C15H24 (204.1878)


   

(+)-Ledene

(1aR,7R,7aS,7bR)-1,1,4,7-tetramethyl-1H,1aH,2H,3H,5H,6H,7H,7aH,7bH-cyclopropa[e]azulene

C15H24 (204.1878)


(+)-Ledene belongs to the class of organic compounds known as 5,10-cycloaromadendrane sesquiterpenoids. These are aromadendrane sesquiterpenoids that arise from the C5-C10 cyclization of the aromadendrane skeleton.

   

(+)-Sativene

(3S,6S)-6-methyl-7-methylidene-3-propan-2-yltricyclo[4.4.0.02,8]decane

C15H24 (204.1878)


   

alpha-Cadinene

alpha-Cadinene, (+)-

C15H24 (204.1878)


A cadinene sesquiterpene that consists of 1-(propan-2-yl)-1,2,4a,5,6,8a-hexahydronaphthalene having two methyl substituents at positions 1 and 4 (the 1S,4aS,8aS-configuration). A member of the cadinene family of sesquiterpenes having a 4,7-dimethyl-1-(propan-2-yl)-1,2,4a,5,6,8a-hexahydronaphthalene skeleton with 1S,4aR,8aS-stereochemistry. It is isolated from the essential oils of several plant species.

   

1-methyl-4-[(1R)-1,2,2-trimethylcyclopentyl]cyclohexa-1,3-diene

1-methyl-4-[(1R)-1,2,2-trimethylcyclopentyl]cyclohexa-1,3-diene

C15H24 (204.1878)


   

Spathulenol

1H-Cycloprop(e)azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, (1aR-(1aalpha,4aalpha,7beta,7abeta,7balpha))-

C15H24O (220.1827)


Spathulenol is a tricyclic sesquiterpenoid that is 4-methylidenedecahydro-1H-cyclopropa[e]azulene carrying three methyl substituents at positions 1, 1 and 7 as well as a hydroxy substituent at position 7. It has a role as a volatile oil component, a plant metabolite, an anaesthetic and a vasodilator agent. It is a sesquiterpenoid, a carbotricyclic compound, a tertiary alcohol and an olefinic compound. Spathulenol is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. See also: Chamomile (part of). A tricyclic sesquiterpenoid that is 4-methylidenedecahydro-1H-cyclopropa[e]azulene carrying three methyl substituents at positions 1, 1 and 7 as well as a hydroxy substituent at position 7. Spathulenol is found in alcoholic beverages. Spathulenol is a constituent of Salvia sclarea (clary sage).

   

Cedrol

(3R-(3.ALPHA.,3A.BETA.,6.ALPHA.,7.BETA.,8A.ALPHA.))-OCTAHYDRO-3,6,8,8-TETRAMETHYL-1H-3A,7-METHANOAZULEN-6-OL

C15H26O (222.1984)


Cedrol is a cedrane sesquiterpenoid and a tertiary alcohol. Cedrol is a natural product found in Xylopia aromatica, Widdringtonia whytei, and other organisms with data available. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

beta-Bourbonene

Cyclobuta[1,2:3,4]dicyclopentene,decahydro-3a-methyl-6-methylene-1-(1-methylethyl)-, (1S,3aS,3bR,6aS,6bR)-

C15H24 (204.1878)


beta-Bourbonene is found in cloves. beta-Bourbonene is a flavouring agent.

   

delta-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]

   

Germacrene B

(1Z,5Z)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.1878)


Constituent of the peel oil of yuzu Citrus junos. Germacrene B is found in many foods, some of which are pepper (spice), lime, citrus, and common oregano. Germacrene B is found in citrus. Germacrene B is a constituent of the peel oil of yuzu Citrus junos.

   

Maalialcohol

(1aR,1bS,2S,5aS,7aR)-1,1,2,5a-tetramethyl-decahydro-1H-cyclopropa[a]naphthalen-2-ol

C15H26O (222.1984)


Constituent of Valeriana officinalis (valerian). Maalialcohol is found in tea, fats and oils, and herbs and spices. Maalialcohol is found in fats and oils. Maalialcohol is a constituent of Valeriana officinalis (valerian).

   

Isospathulenol

1,1,2,5-tetramethyl-1H,1aH,1bH,2H,3H,4H,6H,7H,7aH-cyclopropa[e]azulen-2-ol

C15H24O (220.1827)


Constituent of Clary sage oil (Salvia sclarea). Isospathulenol is found in tea, alcoholic beverages, and herbs and spices. Isospathulenol is found in alcoholic beverages. Isospathulenol is a constituent of Clary sage oil (Salvia sclarea)

   

D-Selinene

4,8a-dimethyl-6-(propan-2-yl)-1,2,3,7,8,8a-hexahydronaphthalene

C15H24 (204.1878)


Delta-selinene, also known as delta-selinen, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Delta-selinene can be found in allspice, lovage, and wild celery, which makes delta-selinene a potential biomarker for the consumption of these food products. Delta-selinene, also known as δ-selinen, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Delta-selinene can be found in allspice, lovage, and wild celery, which makes delta-selinene a potential biomarker for the consumption of these food products.

   

Cuparene

1-methyl-4-[(1R)-1,2,2-trimethylcyclopentyl]benzene

C15H22 (202.1721)


Cuparene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Thus, cuparene is considered to be an isoprenoid lipid molecule. Cuparene can be found in lovage and pepper (spice), which makes cuparene a potential biomarker for the consumption of these food products.

   

Thujopsene

2,4a,8,8-tetramethyl-1H,4H,4aH,5H,6H,7H,8H,8bH-cyclopropa[e]naphthalene

C15H24 (204.1878)


Thujopsene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Thujopsene can be found in lovage, which makes thujopsene a potential biomarker for the consumption of this food product. Thujopsene is found in the essential oil of a variety of conifers, in particular Juniperus cedrus and Thujopsis dolabrata in which it comprises around 2.2\\% of the weight of the heartwood .

   

beta-Cedrene

(1S,2R,5S,7S)-2,6,6-trimethyl-8-methylidenetricyclo[5.3.1.0^{1,5}]undecane

C15H24 (204.1878)


≈í¬±-Cedrene also known as Cedrene, belongs to the class of organic compounds known as cedrane and isocedrane sesquiterpenoids. These are sesquiterpenoids with a structure based on the cedrane or the isocedrane skeleton. Isocedrane is a rearranged cedrane arising from the migration of a methyl group from the position 6 to the position 4. Sesquiterpenoides are terpenes that contain 15 carbon atoms and are comprised of three isoprene units. The biosynthesis of sesquiterpenes is known to occur mainly through the mevalonic acid pathway (MVA), in the cytosol. However, recent studies have found evidence of pathway crosstalk with the methyl-eritritol-phosphate (MEP) pathway in the plastid (PMID: 19932496, 17710406). Farnesyl diphosphate (FPP) is a key intermediate in the biosynthesis of cyclic sesquiterpenes. FPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. ≈í¬±-Cedrene is a tricyclic molecule based on a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. ≈í¬±-Cedrene is a naturally occurring tricyclic sesquiterpene found in the essential oil of cedar. There are two known cedrene isomers, namely ≈í¬±- and ≈í‚â§-cedrene, which differ in the position of a double bond. Beta-cedrene, also known as β-cedrene or cedrone, is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Beta-cedrene can be found in sweet basil, which makes beta-cedrene a potential biomarker for the consumption of this food product.

   

Bazzanene

(4R)-1,4-dimethyl-4-[(1S)-1-methyl-2-methylidenecyclopentyl]cyclohex-1-ene

C15H24 (204.1878)


Bazzanene is a member of the class of compounds known as branched unsaturated hydrocarbons. Branched unsaturated hydrocarbons are hydrocarbons that contains one or more unsaturated carbon atoms, and an aliphatic branch. Bazzanene can be found in corn, which makes bazzanene a potential biomarker for the consumption of this food product.

   

Cedrol

2,6,6,8-tetramethyltricyclo[5.3.1.0¹,⁵]undecan-8-ol

C15H26O (222.1984)


Cedrol is a member of the class of compounds known as cedrane and isocedrane sesquiterpenoids. Cedrane and isocedrane sesquiterpenoids are sesquiternoids with a structure based on the cedrane or the isocedrane skeleton. Cedrane is a tricyclic molecules a 3,6,8,8-tetramethyl-1H-3a,7-methano-azulene moiety. Isocedrane is a rearranged cedrane arising from the migration of methyl group moved from the 6-position to the 4-position. Cedrol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cedrol is a sweet, cedarwood, and dry tasting compound found in ginger, pepper (spice), and peppermint, which makes cedrol a potential biomarker for the consumption of these food products. Cedrol is a sesquiterpene alcohol found in the essential oil of conifers (cedar oil), especially in the genera Cupressus (cypress) and Juniperus (juniper). It has also been identified in Origanum onites, a plant related to oregano. Its main uses are in the chemistry of aroma compounds. It makes up about 19\\\\% of cedarwood oil Texas and 15.8\\\\% of cedarwood oil Virginia . Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2]. Cedrol is a bioactive sesquiterpene, a potent competitive inhibitor of cytochrome P-450 (CYP) enzymes. Cedrol inhibits CYP2B6-mediated bupropion hydroxylase and CYP3A4-mediated midazolam hydroxylation with Ki of 0.9 μM and 3.4 μM, respectively. Cedrol also has weak inhibitory effect on CYP2C8, CYP2C9, and CYP2C19 enzymes[1]. Cedrol is found in cedar essential oil and poetesses anti-septic, anti-inflammatory, anti-spasmodic, tonic, astringent, diuretic, insecticidal, and anti-fungal activities[2].

   

Vetivazulene

Vetivazulene

C15H18 (198.1408)


   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cuparene

(R)-1-Methyl-4-(1,2,2-trimethylcyclopentyl)-benzene

C15H22 (202.1721)


   

Globulol

1,1,4,7-tetramethyl-decahydro-1H-cyclopropa[e]azulen-4-ol

C15H26O (222.1984)


D006133 - Growth Substances > D006131 - Growth Inhibitors

   

Ledol

(1aR,4R,4aS,7R,7aS,7bS)-1,1,4,7-tetramethyl-2,3,4a,5,6,7,7a,7b-octahydro-1aH-cyclopropa[e]azulen-4-ol

C15H26O (222.1984)


Ledol is a sesquiterpenoid. Ledol is a natural product found in Waitzia acuminata, Aloysia gratissima, and other organisms with data available. Constituent of Valeriana officinalis (valerian), Piper subspecies and others. Ledol is found in many foods, some of which are fats and oils, common sage, tea, and allspice. Ledol ((+)-Ledol) is an antifungal agent that can be isolated from the essential oil fractions of Rhododendron tomentosum. Ledol is also the expectorant and antitussive agent, which is simultaneously responsible for adverse reactions such as dizziness, nausea and vomiting[1]. Ledol ((+)-Ledol) is an antifungal agent that can be isolated from the essential oil fractions of Rhododendron tomentosum. Ledol is also the expectorant and antitussive agent, which is simultaneously responsible for adverse reactions such as dizziness, nausea and vomiting[1].

   

1-Methyl-4-(1,2,2-trimethylcyclopentyl)benzene

1-Methyl-4-(1,2,2-trimethylcyclopentyl)benzene

C15H22 (202.1721)


   
   

Bazzanene

Bazzanene

C15H24 (204.1878)


   

Brassicasterol

ergosta-5,22E-dien-3beta-ol

C28H46O (398.3548)


An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402)


   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

beta-Bourbonene

Cyclobuta[1,2:3,4]dicyclopentene,decahydro-3a-methyl-6-methylene-1-(1-methylethyl)-, (1S,3aS,3bR,6aS,6bR)-

C15H24 (204.1878)


Flavouring agent. beta-Bourbonene is found in many foods, some of which are rosemary, common oregano, sweet basil, and winter savory.

   

D-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

Maaliol

(1S,4aS,6aR,7aR,7bS)-1,4a,7,7-tetramethyl-decahydro-1H-cyclopropa[a]naphthalen-1-ol

C15H26O (222.1984)


   

Germacrene B

(1E,5E)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.1878)


   

(+)-DELTA-CADINENE

(+)-DELTA-CADINENE

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,8aR-enantiomer).

   

(-)-thujopsene

(-)-thujopsene

C15H24 (204.1878)


   

Viridiflorol

Viridiflorol

C15H26O (222.1984)


A carbotricyclic compound that is (1aS,4aR,7aR,7bR)-decahydro-1H-cyclopropa[e]azulene carrying four methyl substituents at positions 1, 1, 4 and 7 as well as a hydroxy substituent at position 4. It is a sesquiterpenoid isolated from several plant species and is a strong feeding deterrent for the melaleuca weevil that retards larval development. D006133 - Growth Substances > D006131 - Growth Inhibitors

   

Elemene

(R,R)-1-isopropyl-4-methyl-3-(prop-1-en-2-yl)-4-vinylcyclohexene

C15H24 (204.1878)


(-)-beta-elemene, also known as elemene or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively (-)-beta-elemene can be found in herbs and spices and root vegetables, which makes (-)-beta-elemene a potential biomarker for the consumption of these food products.

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

(±)-β-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-di(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

474-67-9

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

beta-Bourbonene

Cyclobuta[1,2:3,4]dicyclopentene,decahydro-3a-methyl-6-methylene-1-(1-methylethyl)-, (1S,3aS,3bR,6aS,6bR)-

C15H24 (204.1878)


Bourbonene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Thus, bourbonene is considered to be an isoprenoid lipid molecule. Bourbonene can be found in orange mint, which makes bourbonene a potential biomarker for the consumption of this food product. beta-Bourbonene is found in cloves. beta-Bourbonene is a flavouring agent.

   

alpha-Amorphene

(1R,4aS,8aR)-4,7-dimethyl-1-(propan-2-yl)-1,2,4a,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


Alpha-amorphene, also known as alpha-amorphene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Alpha-amorphene can be found in a number of food items such as pepper (spice), peppermint, sweet basil, and sweet bay, which makes alpha-amorphene a potential biomarker for the consumption of these food products. Alpha-amorphene, also known as α-amorphene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Alpha-amorphene can be found in a number of food items such as pepper (spice), peppermint, sweet basil, and sweet bay, which makes alpha-amorphene a potential biomarker for the consumption of these food products.

   

Toluene, p-(1,2,2-trimethylcyclopentyl)-, (R)-(+)-

Toluene, p-(1,2,2-trimethylcyclopentyl)-, (R)-(+)-

C15H22 (202.1721)


   

1-methyl-4-[(1S)-1,2,2-trimethylcyclopentyl]cyclohexa-1,3-diene

1-methyl-4-[(1S)-1,2,2-trimethylcyclopentyl]cyclohexa-1,3-diene

C15H24 (204.1878)


   

α-Copaene

alpha-copaene

C15H24 (204.1878)


   

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.1878)


   

Viridiflorene

Viridiflorene

C15H24 (204.1878)


   

delta-selinene

delta-selinene

C15H24 (204.1878)


   

(-)-beta-Bourbonene

Cyclobuta[1,2:3,4]dicyclopentene,decahydro-3a-methyl-6-methylene-1-(1-methylethyl)-, (1S,3aS,3bR,6aS,6bR)-

C15H24 (204.1878)


   

(R,R)-1-isopropyl-4-methyl-3-(prop-1-en-2-yl)-4-vinylcyclohexene

(R,R)-1-isopropyl-4-methyl-3-(prop-1-en-2-yl)-4-vinylcyclohexene

C15H24 (204.1878)


   

delta-Cadinene

delta-Cadinene

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

(20e)-4,6,12,17,23-pentachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20e)-4,6,12,17,23-pentachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H17Cl5O4 (591.9569)


   

1-[(1s,3ar,7s,7as)-3a-hydroxy-7,7a-dimethyl-hexahydro-1h-inden-1-yl]-2-methylpropan-1-one

1-[(1s,3ar,7s,7as)-3a-hydroxy-7,7a-dimethyl-hexahydro-1h-inden-1-yl]-2-methylpropan-1-one

C15H26O2 (238.1933)


   

(1ar,4r,4ar,7r,7ar,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

(1ar,4r,4ar,7r,7ar,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O (222.1984)


   

(1ar,3as,7s,7as,7br)-1,1,3a,7-tetramethyl-octahydrocyclopropa[a]naphthalen-7-ol

(1ar,3as,7s,7as,7br)-1,1,3a,7-tetramethyl-octahydrocyclopropa[a]naphthalen-7-ol

C15H26O (222.1984)


   

(20z)-4,6,17,23,26-pentachloro-13-methoxypentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,16,24-triol

(20z)-4,6,17,23,26-pentachloro-13-methoxypentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,16,24-triol

C29H19Cl5O4 (605.9726)


   

2-[(3s,5r,8s,8as)-3,8-dimethyl-1,2,3,5,6,7,8,8a-octahydroazulen-5-yl]propan-2-ol

2-[(3s,5r,8s,8as)-3,8-dimethyl-1,2,3,5,6,7,8,8a-octahydroazulen-5-yl]propan-2-ol

C15H26O (222.1984)


   

2-isopropyl-4a,8-dimethyl-1,3,4,5,6,8a-hexahydronaphthalene-1,2-diol

2-isopropyl-4a,8-dimethyl-1,3,4,5,6,8a-hexahydronaphthalene-1,2-diol

C15H26O2 (238.1933)


   

(20e)-4,6,23-trichloro-13-methoxypentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,16,24-triol

(20e)-4,6,23-trichloro-13-methoxypentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,16,24-triol

C29H21Cl3O4 (538.0505)


   

(20e)-4,6,12,17,20,21,23,26-octachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20e)-4,6,12,17,20,21,23,26-octachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H14Cl8O4 (693.84)


   

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.1827)


   

(1r,2r,6s,7r)-1,2,6-trimethyl-8-methylidenetricyclo[5.3.1.0²,⁶]undecane

(1r,2r,6s,7r)-1,2,6-trimethyl-8-methylidenetricyclo[5.3.1.0²,⁶]undecane

C15H24 (204.1878)


   

(1s,2r,4ar,8ar)-2-isopropyl-4a,8-dimethyl-1,3,4,5,6,8a-hexahydronaphthalene-1,2-diol

(1s,2r,4ar,8ar)-2-isopropyl-4a,8-dimethyl-1,3,4,5,6,8a-hexahydronaphthalene-1,2-diol

C15H26O2 (238.1933)


   

(1r,8r)-2,6,6-trimethyl-9-methylidenetricyclo[5.4.0.0²,⁸]undecane

(1r,8r)-2,6,6-trimethyl-9-methylidenetricyclo[5.4.0.0²,⁸]undecane

C15H24 (204.1878)


   

(4r)-4-(5,5-dimethylcyclopent-1-en-1-yl)-1,4-dimethylcyclohex-1-ene

(4r)-4-(5,5-dimethylcyclopent-1-en-1-yl)-1,4-dimethylcyclohex-1-ene

C15H24 (204.1878)


   

(1s,2s,6r,7s)-1,2,6-trimethyl-8-methylidenetricyclo[5.3.1.0²,⁶]undecane

(1s,2s,6r,7s)-1,2,6-trimethyl-8-methylidenetricyclo[5.3.1.0²,⁶]undecane

C15H24 (204.1878)


   

4-(5,5-dimethylcyclopent-1-en-1-yl)-1,4-dimethylcyclohex-1-ene

4-(5,5-dimethylcyclopent-1-en-1-yl)-1,4-dimethylcyclohex-1-ene

C15H24 (204.1878)


   

(1ar,4as,7r,7as,7bs)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

(1ar,4as,7r,7as,7bs)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

(4r,4as,8as)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydronaphthalene

(4r,4as,8as)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydronaphthalene

C15H24 (204.1878)


   

(1ar,4r,7r,7bs)-1,1,4,7-tetramethyl-1ah,2h,3h,4h,5h,6h,7h,7bh-cyclopropa[e]azulene

(1ar,4r,7r,7bs)-1,1,4,7-tetramethyl-1ah,2h,3h,4h,5h,6h,7h,7bh-cyclopropa[e]azulene

C15H24 (204.1878)


   

(4ar)-2-isopropyl-4a,8-dimethyl-1,3,4,5,8,8a-hexahydronaphthalen-2-ol

(4ar)-2-isopropyl-4a,8-dimethyl-1,3,4,5,8,8a-hexahydronaphthalen-2-ol

C15H26O (222.1984)


   

(-)-chamigrene

(-)-chamigrene

C15H24 (204.1878)


   

2-isopropyl-8,8a-dimethyl-1,3,4,6,7,8-hexahydronaphthalen-2-ol

2-isopropyl-8,8a-dimethyl-1,3,4,6,7,8-hexahydronaphthalen-2-ol

C15H26O (222.1984)


   

(20e)-4,6,23-trichloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20e)-4,6,23-trichloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H19Cl3O4 (524.0349)


   

1-methyl-4-[(1s)-1,2,2-trimethylcyclopentyl]benzene

1-methyl-4-[(1s)-1,2,2-trimethylcyclopentyl]benzene

C15H22 (202.1721)


   

(2e,6z)-7,11,11-trimethylbicyclo[8.1.0]undeca-2,6-diene-3-carbaldehyde

(2e,6z)-7,11,11-trimethylbicyclo[8.1.0]undeca-2,6-diene-3-carbaldehyde

C15H22O (218.1671)


   

(+)-β-cedrene

(+)-β-cedrene

C15H24 (204.1878)


   

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H48O (400.3705)


   

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.1878)


   

(20z)-4,6,12,17,23,26-hexachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-4,6,12,17,23,26-hexachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H16Cl6O4 (625.918)


   

(20z)-4,6,12,17,20,21,23,26-octachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-4,6,12,17,20,21,23,26-octachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H14Cl8O4 (693.84)


   

1,1,4,7-tetramethyl-1ah,2h,3h,4h,5h,6h,7h,7bh-cyclopropa[e]azulene

1,1,4,7-tetramethyl-1ah,2h,3h,4h,5h,6h,7h,7bh-cyclopropa[e]azulene

C15H24 (204.1878)


   

(1ar,4s,4as,7r,7ar,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

(1ar,4s,4as,7r,7ar,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O (222.1984)


   

(20z)-pentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-pentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H22O4 (422.1518)


   

1,1,4,7-tetramethyl-1ah,2h,3h,5h,6h,7ah,7bh-cyclopropa[e]azulen-7-ol

1,1,4,7-tetramethyl-1ah,2h,3h,5h,6h,7ah,7bh-cyclopropa[e]azulen-7-ol

C15H24O (220.1827)


   

6-isopropyl-3-methyl-2-methylidenetricyclo[5.2.1.0³,⁸]decane

6-isopropyl-3-methyl-2-methylidenetricyclo[5.2.1.0³,⁸]decane

C15H24 (204.1878)


   

(20z)-17,21-dichloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-17,21-dichloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H20Cl2O4 (490.0739)


   

(3as,7s)-7-hydroxy-1,1,3a,7-tetramethyl-hexahydro-1ah-cyclopropa[a]naphthalen-4-one

(3as,7s)-7-hydroxy-1,1,3a,7-tetramethyl-hexahydro-1ah-cyclopropa[a]naphthalen-4-one

C15H24O2 (236.1776)


   

(2s,4ar,8as)-2-isopropyl-4a-methyl-8-methylidene-hexahydro-1h-naphthalen-2-ol

(2s,4ar,8as)-2-isopropyl-4a-methyl-8-methylidene-hexahydro-1h-naphthalen-2-ol

C15H26O (222.1984)


   

(1r,2r,3r,6s)-3,7,7-trimethylspiro[bicyclo[4.1.0]heptane-2,1'-cyclopentan]-2'-ene-3'-carbaldehyde

(1r,2r,3r,6s)-3,7,7-trimethylspiro[bicyclo[4.1.0]heptane-2,1'-cyclopentan]-2'-ene-3'-carbaldehyde

C15H22O (218.1671)


   

(1s,3r,6r,7s,8s)-6-isopropyl-3-methyl-2-methylidenetricyclo[5.2.1.0³,⁸]decane

(1s,3r,6r,7s,8s)-6-isopropyl-3-methyl-2-methylidenetricyclo[5.2.1.0³,⁸]decane

C15H24 (204.1878)


   

(20e)-4,6,12,23-tetrachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20e)-4,6,12,23-tetrachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H18Cl4O4 (557.9959)


   

1-[(1r,3as,7r,7ar)-3a-hydroxy-7,7a-dimethyl-hexahydro-1h-inden-1-yl]-2-methylpropan-1-one

1-[(1r,3as,7r,7ar)-3a-hydroxy-7,7a-dimethyl-hexahydro-1h-inden-1-yl]-2-methylpropan-1-one

C15H26O2 (238.1933)


   

2,6,6-trimethyl-9-methylidenetricyclo[5.4.0.0²,⁸]undecane

2,6,6-trimethyl-9-methylidenetricyclo[5.4.0.0²,⁸]undecane

C15H24 (204.1878)


   

(1as,4as,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

(1as,4as,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

(1ar,4r,4ar,7as,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

(1ar,4r,4ar,7as,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O (222.1984)


   

(1r,2s,3r,6s)-3,7,7-trimethylspiro[bicyclo[4.1.0]heptane-2,1'-cyclopentan]-2'-ene-3'-carbaldehyde

(1r,2s,3r,6s)-3,7,7-trimethylspiro[bicyclo[4.1.0]heptane-2,1'-cyclopentan]-2'-ene-3'-carbaldehyde

C15H22O (218.1671)


   

(20z)-4,12,17,21,23,26-hexachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-4,12,17,21,23,26-hexachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H16Cl6O4 (625.918)


   

(4r,4as)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydronaphthalene

(4r,4as)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydronaphthalene

C15H24 (204.1878)


   

(1s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.1878)


   

(20z)-4,17,21-trichloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-4,17,21-trichloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H19Cl3O4 (524.0349)


   

(20z)-6,17,21,23,26-pentachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-6,17,21,23,26-pentachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H17Cl5O4 (591.9569)


   

2-isopropyl-6,10-dimethylspiro[4.5]dec-6-en-2-ol

2-isopropyl-6,10-dimethylspiro[4.5]dec-6-en-2-ol

C15H26O (222.1984)


   

(20z)-4,6,12,17,23-pentachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-4,6,12,17,23-pentachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H17Cl5O4 (591.9569)


   

(1as,3ar,7s,7as,7br)-1,1,3a,7-tetramethyl-octahydrocyclopropa[a]naphthalen-7a-ol

(1as,3ar,7s,7as,7br)-1,1,3a,7-tetramethyl-octahydrocyclopropa[a]naphthalen-7a-ol

C15H26O (222.1984)


   

(20e)-4,6,12,17,23,26-hexachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20e)-4,6,12,17,23,26-hexachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H16Cl6O4 (625.918)


   

4,17-dichloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,22(26),23-dodecaene-5,13,16,24-tetrol

4,17-dichloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,22(26),23-dodecaene-5,13,16,24-tetrol

C28H22Cl2O4 (492.0895)


   

(20e)-6,17,21,23,26-pentachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20e)-6,17,21,23,26-pentachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H17Cl5O4 (591.9569)


   

(20z)-6,12,17,21,23-pentachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-6,12,17,21,23-pentachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H17Cl5O4 (591.9569)


   

(20z)-6,17,21,26-tetrachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(24),2,4,6,10,12,14(28),15(27),16,18,20,22,25-tridecaene-5,13,16,24-tetrol

(20z)-6,17,21,26-tetrachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(24),2,4,6,10,12,14(28),15(27),16,18,20,22,25-tridecaene-5,13,16,24-tetrol

C28H18Cl4O4 (557.9959)


   

(2r,8s,8ar)-2-isopropyl-8,8a-dimethyl-1,3,4,6,7,8-hexahydronaphthalen-2-ol

(2r,8s,8ar)-2-isopropyl-8,8a-dimethyl-1,3,4,6,7,8-hexahydronaphthalen-2-ol

C15H26O (222.1984)


   

(1s,4r,5r,6r,7s,10s)-7-isopropyl-4,10-dimethyltricyclo[4.4.0.0¹,⁵]decane

(1s,4r,5r,6r,7s,10s)-7-isopropyl-4,10-dimethyltricyclo[4.4.0.0¹,⁵]decane

C15H26 (206.2034)


   

(1s,7r,8s,12s)-7-isopropyl-10-methyl-2-oxatricyclo[6.3.1.0⁴,¹²]dodeca-4,10-dien-3-one

(1s,7r,8s,12s)-7-isopropyl-10-methyl-2-oxatricyclo[6.3.1.0⁴,¹²]dodeca-4,10-dien-3-one

C15H20O2 (232.1463)


   

3-isopropyl-6-methyl-7-methylidenetricyclo[4.4.0.0²,⁸]decane

3-isopropyl-6-methyl-7-methylidenetricyclo[4.4.0.0²,⁸]decane

C15H24 (204.1878)


   

(1ar,4ar,7s,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(1ar,4ar,7s,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.1827)


   

(1as,3ar,7as,7bs)-1,1,3a-trimethyl-7-methylidene-octahydrocyclopropa[a]naphthalene

(1as,3ar,7as,7bs)-1,1,3a-trimethyl-7-methylidene-octahydrocyclopropa[a]naphthalene

C15H24 (204.1878)


   

(20e)-4,12,17,21,23,26-hexachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20e)-4,12,17,21,23,26-hexachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H16Cl6O4 (625.918)


   

(1r,2r,4s)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

(1r,2r,4s)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


   

(1s,2e,6e,10s)-7,11,11-trimethylbicyclo[8.1.0]undeca-2,6-diene-3-carbaldehyde

(1s,2e,6e,10s)-7,11,11-trimethylbicyclo[8.1.0]undeca-2,6-diene-3-carbaldehyde

C15H22O (218.1671)


   

(1as,4ar,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

(1as,4ar,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

(+)-α-barbatene

(+)-α-barbatene

C15H24 (204.1878)


   

(20e)-4,6,17,23,26-pentachloro-13-methoxypentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,16,24-triol

(20e)-4,6,17,23,26-pentachloro-13-methoxypentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,16,24-triol

C29H19Cl5O4 (605.9726)


   

(4s)-1,4-dimethyl-4-[(1r)-1-methyl-2-methylidenecyclopentyl]cyclohex-1-ene

(4s)-1,4-dimethyl-4-[(1r)-1-methyl-2-methylidenecyclopentyl]cyclohex-1-ene

C15H24 (204.1878)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

(1s,2r,6r,7r,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1s,2r,6r,7r,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.1878)


   

(2r,5s,10s)-2-isopropyl-6,10-dimethylspiro[4.5]dec-6-en-2-ol

(2r,5s,10s)-2-isopropyl-6,10-dimethylspiro[4.5]dec-6-en-2-ol

C15H26O (222.1984)


   

(1ar,7s,7as,7bs)-1,1,4,7-tetramethyl-1ah,2h,3h,5h,6h,7h,7ah,7bh-cyclopropa[e]azulene

(1ar,7s,7as,7bs)-1,1,4,7-tetramethyl-1ah,2h,3h,5h,6h,7h,7ah,7bh-cyclopropa[e]azulene

C15H24 (204.1878)


   

(1ar,4ar,7r,7as,7bs)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

(1ar,4ar,7r,7as,7bs)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

10,23-dichloro-16-methoxyhexacyclo[13.9.3.1²,⁶.0⁹,¹⁴.0¹⁸,²⁶.0²¹,²⁵]octacosa-1(24),2(28),3,5,9,11,13,15(27),16,18(26),19,21(25),22-tridecaene-3,13,24-triol

10,23-dichloro-16-methoxyhexacyclo[13.9.3.1²,⁶.0⁹,¹⁴.0¹⁸,²⁶.0²¹,²⁵]octacosa-1(24),2(28),3,5,9,11,13,15(27),16,18(26),19,21(25),22-tridecaene-3,13,24-triol

C29H20Cl2O4 (502.0739)


   

(1r,2e,6z,10s)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(1r,2e,6z,10s)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.1878)


   

2-isopropyl-4,6b-dimethyl-1h,1ah,2h,3h,3ah,6h,6ah-cyclopropa[e]indene

2-isopropyl-4,6b-dimethyl-1h,1ah,2h,3h,3ah,6h,6ah-cyclopropa[e]indene

C15H24 (204.1878)


   

(1s,2e,6z,10s)-7,11,11-trimethylbicyclo[8.1.0]undeca-2,6-diene-3-carbaldehyde

(1s,2e,6z,10s)-7,11,11-trimethylbicyclo[8.1.0]undeca-2,6-diene-3-carbaldehyde

C15H22O (218.1671)


   

1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

3-methylidene-6-(1,2,2-trimethylcyclopentyl)cyclohex-1-ene

3-methylidene-6-(1,2,2-trimethylcyclopentyl)cyclohex-1-ene

C15H24 (204.1878)


   

(1as,4as,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(1as,4as,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.1827)


   

(1r,2r,7s,8r)-2,6,6-trimethyl-9-methylidenetricyclo[5.4.0.0²,⁸]undecane

(1r,2r,7s,8r)-2,6,6-trimethyl-9-methylidenetricyclo[5.4.0.0²,⁸]undecane

C15H24 (204.1878)


   

4-ethenyl-1-isopropyl-4-methyl-3-(prop-1-en-2-yl)cyclohex-1-ene

4-ethenyl-1-isopropyl-4-methyl-3-(prop-1-en-2-yl)cyclohex-1-ene

C15H24 (204.1878)


   

(4as)-2-isopropyl-4a-methyl-8-methylidene-hexahydro-1h-naphthalen-2-ol

(4as)-2-isopropyl-4a-methyl-8-methylidene-hexahydro-1h-naphthalen-2-ol

C15H26O (222.1984)


   

(20z)-4,17,21,23-tetrachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-4,17,21,23-tetrachloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2(7),3,5,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H18Cl4O4 (557.9959)


   

(20e)-17-chloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20e)-17-chloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H21ClO4 (456.1128)


   

(1r,2s)-1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1,2-dihydronaphthalene-2,3-dicarboxylic acid

(1r,2s)-1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1,2-dihydronaphthalene-2,3-dicarboxylic acid

C18H14O8 (358.0689)


   

2,6,6-trimethyl-8-methylidenetricyclo[5.3.1.0¹,⁵]undecane

2,6,6-trimethyl-8-methylidenetricyclo[5.3.1.0¹,⁵]undecane

C15H24 (204.1878)


   

(20z)-17,21,23-trichloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

(20z)-17,21,23-trichloropentacyclo[20.2.2.1¹⁰,¹⁴.1¹⁵,¹⁹.0²,⁷]octacosa-1(25),2,4,6,10,12,14(28),15(27),16,18,20,22(26),23-tridecaene-5,13,16,24-tetrol

C28H19Cl3O4 (524.0349)


   

(6r)-3-methylidene-6-[(1s)-1,2,2-trimethylcyclopentyl]cyclohex-1-ene

(6r)-3-methylidene-6-[(1s)-1,2,2-trimethylcyclopentyl]cyclohex-1-ene

C15H24 (204.1878)