NCBI Taxonomy: 202113

Aplysina fistularis (ncbi_taxid: 202113)

found 181 associated metabolites at species taxonomy rank level.

Ancestor: Aplysina

Child Taxonomies: none taxonomy data.

Methyl hexadecanoic acid

Methyl palmitate, United States Pharmacopeia (USP) Reference Standard

C17H34O2 (270.2559)


Methyl hexadecanoate, also known as methyl palmitate or palmitic acid methyl ester, is a member of the class of compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Thus, methyl hexadecanoate is considered to be a fatty ester lipid molecule. Methyl hexadecanoate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Methyl hexadecanoate is a fatty, oily, and waxy tasting compound found in cloves, which makes methyl hexadecanoate a potential biomarker for the consumption of this food product. Methyl hexadecanoate can be found primarily in saliva. Methyl hexadecanoic acid belongs to the class of organic compounds known as fatty acid methyl esters. These are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Methyl palmitate is a fatty acid methyl ester. It has a role as a metabolite. Methyl palmitate is a natural product found in Zanthoxylum beecheyanum, Lonicera japonica, and other organisms with data available. A natural product found in Neolitsea daibuensis. Methyl palmitate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-39-0 (retrieved 2024-07-03) (CAS RN: 112-39-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].

   

Myristic acid

tetradecanoic acid

C14H28O2 (228.2089)


Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Cycloartenol

(3R,6S,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C30H50O (426.3861)


Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

   

Stearic acid

1-Heptadecanecarboxylic acid

C18H36O2 (284.2715)


Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Palmitoleic acid

cis-Delta(9)-Hexadecenoic acid

C16H30O2 (254.2246)


Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as mixed nuts, carrot, hedge mustard, and chanterelle, which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH that is a common constituent of the glycerides of human adipose tissue. Present in all tissues, it is generally found in higher concentrations in the liver. Macadamia oil (Macadamia integrifolia) and sea buckthorn oil (Hippophae rhamnoides) are botanical sources of palmitoleic acid, containing 22 and 40\\\\\% respectively. Palmitoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Palmitoleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=373-49-9 (retrieved 2024-07-15) (CAS RN: 373-49-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Arachidate (20:0)

n-Eicosanoic acid

C20H40O2 (312.3028)


Arachidic acid, also known as icosanoic acid, is a saturated fatty acid with a 20-carbon chain. It is a minor constituent of butter, perilla oil, peanut oil, corn oil, and cocoa butter. It also constitutes 7.08\\\\% of the fats from the fruit of the durian species Durio graveolens. The salts and esters of arachidic acid are known as arachidates. Its name derives from the Latin arachis that means peanut. It can be formed by the hydrogenation of arachidonic acid. The reduction of arachidic acid yields arachidyl alcohol. Arachidic acid is used for the production of detergents, photographic materials and lubricants. Arachidic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Arachidic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Pentadecanoic acid

n-Pentadecanoic acid

C15H30O2 (242.2246)


Pentadecanoic acid, also known as pentadecylic acid or C15:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Pentadecanoic acid (its ester is called pentadecanoate) is a saturated fatty acid that has 15 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. Pentadecanoic acid is found in plants and ruminants. Many "odd" length long-chain fatty acids, such as pentadecanoic acid, are derived from the consumption of cattle fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of pentadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID: 9701185; PMID: 11238766). A fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185; PMID 11238766). Pentadecanoic acid is found in many foods, some of which are common bean, coriander, pepper (c. annuum), and hamburger. CONFIDENCE standard compound; INTERNAL_ID 248 Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.

   

Lignoceric acid (C24)

Tetracosanoic acid

C24H48O2 (368.3654)


Lignoceric acid, also known as N-tetracosanoic acid or tetraeicosanoate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, lignoceric acid is considered to be a fatty acid lipid molecule. Lignoceric acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lignoceric acid can be found in a number of food items such as hazelnut, cheese, rye bread, and cetacea (dolphin, porpoise, whale), which makes lignoceric acid a potential biomarker for the consumption of these food products. Lignoceric acid can be found primarily in blood and feces, as well as in human fibroblasts tissue. Lignoceric acid exists in all eukaryotes, ranging from yeast to humans. In humans, lignoceric acid is involved in a couple of metabolic pathways, which include adrenoleukodystrophy, x-linked and beta oxidation of very long chain fatty acids. Lignoceric acid is also involved in carnitine-acylcarnitine translocase deficiency, which is a metabolic disorder. Lignoceric acid, or tetracosanoic acid, is the saturated fatty acid with formula C23H47COOH. It is found in wood tar, various cerebrosides, and in small amounts in most natural fats. The fatty acids of peanut oil contain small amounts of lignoceric acid (1.1\\\\% – 2.2\\\\%). This fatty acid is also a byproduct of lignin production . Tetracosanoic acid is a C24 straight-chain saturated fatty acid. It has a role as a volatile oil component, a plant metabolite, a human metabolite and a Daphnia tenebrosa metabolite. It is a very long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetracosanoate. Tetracosanoic acid, also known as N-tetracosanoate or lignoceric acid, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tetracosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tetracosanoic acid is a potentially toxic compound. Acquisition and generation of the data is financially supported in part by CREST/JST. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Behenic acid

Docosanoic acid from Rapeseed

C22H44O2 (340.3341)


Behenic acid, also known as docosanoate or 1-docosanoic acid, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, behenic acid is considered to be a fatty acid lipid molecule. Behenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Behenic acid can be found in a number of food items such as rice, opium poppy, pepper (c. frutescens), and gram bean, which makes behenic acid a potential biomarker for the consumption of these food products. Behenic acid can be found primarily in blood, feces, and urine. Behenic acid (also docosanoic acid) is a carboxylic acid, the saturated fatty acid with formula C21H43COOH. In appearance, it consists of white to cream color crystals or powder with a melting point of 80 °C and boiling point of 306 °C . Behenic acid, also docosanoic acid, is a normal carboxylic acid, a fatty acid with formula C21H43COOH. It is an important constituent of the behen oil extracted from the seeds of the Ben-oil tree, and it is so named from the Persian month Bahman when the roots of this tree were harvested. Behenic acid has been identified in the human placenta (PMID:32033212). Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

Brassicasterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,3E,5R)-5,6-dimethylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H46O (398.3548)


Brassicasterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, brassicasterol is considered to be a sterol lipid molecule. Brassicasterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Brassicasterol is a potential CSF biomarker for Alzheimer’s disease (PMID: 21585343). C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Constituent of Brassica rapa oil Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Lanosterol

(2S,5S,7R,11R,14R,15R)-2,6,6,11,15-pentamethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C30H50O (426.3861)


Lanosterol, also known as lanosterin, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Thus, lanosterol is considered to be a sterol lipid molecule. Lanosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Lanosterol is biochemically synthesized starting from acetyl-CoA by the HMG-CoA reductase pathway. The critical step is the enzymatic conversion of the acyclic terpene squalene to the polycylic lanosterol via 2,3-squalene oxide. Constituent of wool fat used e.g. as chewing-gum softenerand is) also from yeast COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Phytanate

3,7,11,15-Tetramethylhexadecoanoic acid

C20H40O2 (312.3028)


Phytanic acid (or 3,7,11,15-tetramethylhexadecanoic acid) is a 20-carbon branched-chain fatty acid that humans can obtain through the consumption of dairy products, ruminant animal fats, and certain fish. It is primarily formed by bacterial degradation of chlorophyll in the intestinal tract of ruminants. Unlike most fatty acids, phytanic acid cannot be metabolized by beta-oxidation (because of a methyl group in the beta position). Instead, it undergoes alpha-oxidation in the peroxisome, where it is converted into pristanic acid by the removal of one carbon. Pristanic acid can undergo several rounds of beta-oxidation in the peroxisome to form medium-chain fatty acids that can be converted into carbon dioxide and water in mitochondria. Refsum disease, an autosomal recessive neurological disorder caused by mutations in the PHYH gene, is characterized by having impaired alpha-oxidation activity. Individuals with Refsum disease accumulate large stores of phytanic acid in their blood and tissues. This frequently leads to peripheral polyneuropathy, cerebellar ataxia, retinitis pigmentosa, anosmia, and hearing loss. Therefore, chronically high levels of phytanic acid can be neurotoxic. Phytanic acids neurotoxicity appears to lie in its ability to initiate astrocyte/neural cell death by activating the mitochondrial route of apoptosis. In particular, phytanic acid can induce the substantial generation of reactive oxygen species in isolated mitochondria as well as in intact cells. It also induces the release of cytochrome c from mitochondria. A 20-carbon branched chain fatty acid, Phytanic acid is present in animal (primarily herbivores or omnivores) tissues where it may be derived from the chlorophyll in consumed plant material. Phytanic acid derives from the corresponding alcohol, phytol, and is ultimately oxidized into pristanic acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids in plasma. These high levels in Refsum disease (a neurological disorder) are due to a phytanic acid alpha-hydroxylase deficiency.; A 20-carbon branched chain fatty acid. In phytanic acid storage disease (Refsum disease) this lipid may comprise as much as 30\\% of the total fatty acids of the plasma. This is due to a phytanic acid alpha-hydroxylase deficiency. [HMDB]

   

Desmosterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H44O (384.3392)


Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is found in many foods, some of which are fig, sago palm, mexican groundcherry, and pepper (c. frutescens). Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].

   

Stearaldehyde

Octadecyl aldehyde

C18H36O (268.2766)


Stearaldehyde or octadecanal is a normal long chain fatty aldehyde that can be found in total lipid extracts of muscle tissue. Stearaldehyde can also be found in the plasma of patients with Sjogren-Larsson syndrome. Sjogren-Larsson syndrome (SLS) is an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH). (PMID 14564703, 11408337). Octadecanal is often used as the substrate of choice to test FALDH activity in patients suspected of having Sjogren-Larsson syndrome. [HMDB] Stearaldehyde or octadecanal is a normal long chain fatty aldehyde that can be found in total lipid extracts of muscle tissue. Stearaldehyde can also be found in the plasma of patients with Sjogren-Larsson syndrome. Sjogren-Larsson syndrome (SLS) is an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH). (PMID 14564703, 11408337). Octadecanal is often used as the substrate of choice to test FALDH activity in patients suspected of having Sjogren-Larsson syndrome.

   

Pentadecanal

N-Pentadecanal

C15H30O (226.2297)


Isolated from essential oil of Cinnamomum micranthum and from lemon oil (Citrus limon). Pentadecanal is found in many foods, some of which are lemon, herbs and spices, citrus, and coriander. Pentadecanal is found in citrus. Pentadecanal is isolated from essential oil of Cinnamomum micranthum and from lemon oil (Citrus limon

   

24-Methylenecholesterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylideneheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548)


24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72). 24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol. 24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol having the structure of cholesterol with a methylene group at C-24. Constituent of clams and oysters 24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].

   

Nonadecanoic acid

nonadecanoic acid

C19H38O2 (298.2872)


Nonadecanoic acid, also known as n-nonadecanoic acid or nonadecylic acid or C19:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms, with nonadecanoic acid (its ester is called nonadecanoate) having 19 carbon atoms. Nonadecanoic acid is a very hydrophobic molecule, practically insoluble (in water). It is a solid with a melting point of 69.4°C. It can be found in bacteria, plants, and animals (including animal milk) (Nature 176:882; PMID: 14168161). It is secreted by termites (Rhinotermes marginalis) as part of its defence mechanism (Comp. Biochem. Physiol. B 71:731). Nonadecanoic acid is a C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. It has a role as a fungal metabolite. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a nonadecanoate. Nonadecanoic acid is a natural product found in Staphisagria macrosperma, Malva sylvestris, and other organisms with data available. An odd-numbered long chain fatty acid, likely derived from bacterial or plant sources. Nonadecanoic acid has been found in ox fats and vegetable oils. It is also used by certain insects as a phermone. [HMDB]. A C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].

   

Zamamistatin

Aeroplysinin I

C9H9Br2NO3 (336.8949)


   
   

Cerebronic acid

2-Hydroxytetraeicosanoic acid

C24H48O3 (384.3603)


Constituent of various glycosphingolipids of wheat, corn and other plant subspecies Cerebronic acid is found in peanut and cereals and cereal products. D-Cerebronic acid is found in mushrooms. D-Cerebronic acid is isolated from Polyporus umbellatus (zhu ling).

   

2-Hydroxyoctadecanoic acid

2-hydroxy-octadecanoic acid

C18H36O3 (300.2664)


A long-chain fatty acid that is stearic (octadecanoic) acid substituted at position 2 by a hydroxy group.

   

Pentacosanoic acid

P-NITROPHENYLPHOSPHATETRISBUFFERSALT

C25H50O2 (382.3811)


Pentacosanoic acid, also known as pentacosanoate or hyenate, is a straight-chain saturated fatty acid and a very long-chain fatty acid. It is a conjugate acid of a pentacosanoate. Pentacosanoic acid belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Pentacosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Pentacosanoic acid is a potentially toxic compound. Pentacosanoic acid is a straight-chain saturated fatty acid and a very long-chain fatty acid. It is a conjugate acid of a pentacosanoate. Pentacosanoic acid is a natural product found in Staphisagria macrosperma, Rhizophora apiculata, and other organisms with data available. Isolated from Citrus bergamia (bergamot orange) Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1]. Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1].

   

Methyl stearate

InChI=1/C19H38O2/c1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19(20)21-2/h3-18H2,1-2H

C19H38O2 (298.2872)


Methyl stearate appears as white crystals or chunky solid. (NTP, 1992) Methyl stearate is a fatty acid methyl ester and an octadecanoate ester. It has a role as a metabolite. Methyl stearate is a natural product found in Cinnamomum kotoense, Hedysarum polybotrys, and other organisms with data available. A fatty acid methyl ester obtained by formal condensation of the carboxy group of octadecanoic (stearic) acid with the hydroxy group of methanol. A natural product found in Neolitsea daibuensis. Antifoaming agent and fermentation nutrient. Methyl stearate is found in cloves. Methyl stearate is found in cloves. Antifoaming agent and fermentation nutrient. Methyl stearate, isolated from Rheum palmatum L. is a compopent of of soybean and rapeseed biodiesels[1]. Methyl stearate, isolated from Rheum palmatum L. is a compopent of of soybean and rapeseed biodiesels[1].

   

Methyl tetradecanoate

Methyl tetradecanoate; methyl myristate 99\\%; Myristic Acid Methyl Ester; Tetradecanoic acid methyl ester

C15H30O2 (242.2246)


Methyl tetradecanoate is a fatty acid methyl ester resulting from the formal condensation of the carboxy group of tetradecanoic acid (myristic acid) with methanol. It has a role as a plant metabolite, a flavouring agent and a fragrance. It is functionally related to a tetradecanoic acid. Methyl tetradecanoate is a natural product found in Astragalus mongholicus, Cyperus conglomeratus, and other organisms with data available. A fatty acid methyl ester resulting from the formal condensation of the carboxy group of tetradecanoic acid (myristic acid) with methanol. Methyl tetradecanoate is a flavour ingredien Flavour ingredient Methyl myristate is a saturated fatty acid methyl ester obtained from the esterification of myristic acid. Methyl myristate shows a high melanin induction in B16F10 melanoma[1]. Methyl myristate is a saturated fatty acid methyl ester obtained from the esterification of myristic acid. Methyl myristate shows a high melanin induction in B16F10 melanoma[1].

   

Heneicosanoic acid

N-Heneicosanoic acid

C21H42O2 (326.3185)


Henicosanoic acid, also known as N-heneicosanoate or 21:0,is a long-chain fatty acid that is henicosane in which one of the methyl groups has been oxidised to give the corresponding carboxylic acid. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a henicosanoate. Heneicosanoic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Heneicosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heneicosanoic acid is a potentially toxic compound. Isolated from olive oil (Olea europaea) Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3]. Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3].

   

Heptadecanoic acid

heptadecanoic acid

C17H34O2 (270.2559)


Heptadecanoic acid, or margaric acid, is a saturated fatty acid. It occurs as a trace component of the fat and milkfat of ruminants, but it does not occur in any natural animal or vegetable fat at concentrations over half a percent. Salts and esters of heptadecanoic acid are called heptadecanoates (Wikipedia). Heptadecanoic acid is found in many foods, some of which are dandelion, potato, ginger, and green bean. Heptadecanoic acid is a constituent of Erythrina crista-galli trunkwood and bark. Common constituent of lipids, e.g. present in Physalia physalis (Portuguese-man-of-war). Heptadecanoic acid is a fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Heptadecanoic acid constitutes 0.61\\\\% of milk fat and 0.83\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185). Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

Tricosanoic acid

Tricosanoic acid, aluminum salt

C23H46O2 (354.3498)


Tricosanoic acid, also known as N-tricosanoate or 22FA, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tricosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tricosanoic acid is a potentially toxic compound. Constituent of Citrus bergamia (bergamot orange) oil Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant. Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant.

   

3D,7D,11D-Phytanic acid

3,7,11,15-Tetramethyl-[3R-(3R*,7R*,11R*)]-hexadecanoic acid

C20H40O2 (312.3028)


3D,7D,11D-Phytanic acid is an isomer of Phytanic acid, an unusual 20-carbon branched-chain fatty acid; Phytanic acid accumulates in blood and tissues of patients with Refsum disease (RD, an inborn error of lipid metabolism inherited as an autosomal recessive trait (OMIM 266500)), and is a reliable identifier of RD from a large number of other neurological disorders. Phytanic acid also accumulates in a number of other disorders with a very different clinical course: disorders of peroxisome biogenesis (Zellweger syndrome (OMIM 214100), neonatal adrenoleukodystrophy (OMIM 202370), infantile Refsum disease (OMIM 266510)) and rhizomelic chondrodysplasia punctata, type 1 (OMIM 215100). Phytanic acid is a 3-methyl fatty acid that cannot be beta-oxidized directly, and first undergoes an alpha-oxidation a reaction catalyzed by the enzyme phytanoyl-CoA hydroxylase, which is deficient in RD, the only true disorder of phytanic acid alpha-oxidation. (The Metabolic and Molecular Bases of Inherited Disease).

   

Undecanal

Undecylic aldehyde

C11H22O (170.1671)


Undecanal, also known as undecyl aldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, undecanal is considered to be a fatty aldehyde lipid molecule. Undecanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecanal is a sweet, aldehydic, and citrus tasting compound. Undecanal is found, on average, in the highest concentration within corianders. Undecanal has also been detected, but not quantified, in several different foods, such as lemons, sweet basils, rocket salad (ssp.), corns, and citrus. This could make undecanal a potential biomarker for the consumption of these foods. Found in many essential oils, e.g. Citrus subspecies and oval kumquat Fortunella marginata. Found in many essential oils, e.g. Citrus subspecies and oval kumquat Fortunella marginata. Flavouring ingredient.

   

Tridecanal

N-Tridecylaldehyde

C13H26O (198.1984)


Volatile flavour component of coriander leafand is also in lemon and cucumber oils. Tridecanal is found in many foods, some of which are herbs and spices, lemon, corn, and citrus. Tridecanal is found in citrus. Tridecanal is a volatile flavour component of coriander leaf. Also in lemon and cucumber oil

   

2-Hydroxyhexadecanoic acid

(2S)-2-Hydroxyhexadecanoic acid

C16H32O3 (272.2351)


2-Hydroxyhexadecanoic acid (CAS: 764-67-0), also known as 2-hydroxypalmitic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. The chain of 2-hydroxyhexadecanoic acid bears a hydroxyl group. 2-Hydroxyhexadecanoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 2-Hydroxyhexadecanoic acid occurs in wool fat, which is used as a chewing gum softener. 2-Hydroxypalmitic acid is an intermediate in phytosphingosine metabolism[1].

   

2(R)-hydroxydocosanoic acid

alpha-Hydroxydocosanoic acid

C22H44O3 (356.329)


Alpha-hydroxybehenic acid, also known as A-hydroxydocosanoate or A-hydroxybehenate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, alpha-hydroxybehenic acid is considered to be a fatty acid lipid molecule. Alpha-hydroxybehenic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Alpha-hydroxybehenic acid can be synthesized from docosanoic acid. Alpha-hydroxybehenic acid can also be synthesized into N-(2-hydroxybehenoyl)-D-galactosylsphingosine. Alpha-hydroxybehenic acid can be found in black elderberry, which makes alpha-hydroxybehenic acid a potential biomarker for the consumption of this food product. 2(R)-Hydroxydocosanoic acid is a long-chain hydroxy fatty acid. In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation.

   

2-Hydroxy-22-methyltetracosanoic acid

2-Hydroxy-22-methyltetracosanoic acid

C25H50O3 (398.376)


2-Hydroxy-22-methyltetracosanoic acid is found in lanolin wool fat. Found in lanolin wool fat

   

2(R)-hydroxyicosanoic acid

alpha-Hydroxyeicosanoic acid

C20H40O3 (328.2977)


2(R)-Hydroxyicosanoic acid is along-chain hydroxy fatty acid. In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation.

   

Heptadecanal

Hexadecyl aldehyde

C17H34O (254.261)


Heptadecanal is found in citrus. Heptadecanal is isolated from lemon oil (Citrus limon Isolated from lemon oil (Citrus limon). Heptadecanal is found in lemon and citrus.

   

Palmitelaidic acid

Palmitoleic acid, potassium salt, (Z)-isomer

C16H30O2 (254.2246)


Palmitelaidic acid is a trans fatty acid (the trans isomer of palmitoleic acid). Trans fatty acids are known to cause changes in plasma lipids and lipoprotein phenotypes, but the mechanisms involved are unknown. The major dietary sources of trans fatty acids are partly hydrogenated vegetable oils, mainly elaidic acid (t-18:1D9). Additional sources are animal and dairy fats [palmitelaidic acid (t-16:1D9) and t-vaccenic acid (t-18:1D11)] and partly hydrogenated fish oils. (very-long-chain trans fatty acids, ie, >C22) (PMID: 9734731). Palmitelaidic acid has been reported as the predominant trans-16:1 isomer in cheeses made with goat and ewe milks (PMID: 11026624). Palmitelaidic acid is a trans fatty acid (the trans isomer of palmitoleic acid). Trans fatty acids are known to cause changes in plasma lipids and lipoprotein phenotypes, but the mechanisms involved are unknown. The major dietary sources of trans fatty acids are partly hydrogenated vegetable oils, mainly elaidic acid (t-18:1D9). Additional sources are animal and dairy fats [palmitelaidic acid (t-16:1D9) and t-vaccenic acid (t-18:1D11)] and partly hydrogenated fish oils

   

2-Hydroxyoctadecanoic acid

alpha-Hydroxyoctadecanoic acid

C18H36O3 (300.2664)


   

9-Hexadecenoic acid, (9Z)-

9-Hexadecenoic acid, (9Z)-

C16H30O2 (254.2246)


   

Eicosatetraenoic acid

icosa-2,4,6,8-tetraenoic acid

C20H32O2 (304.2402)


   

Heptadec-2-enoic acid

Heptadec-2-enoic acid

C17H32O2 (268.2402)


Heptadecenoic acid, also known as heptadecenoate, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Heptadecenoic acid is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Heptadecenoic acid can be found in a number of food items such as common buckwheat, dandelion, italian sweet red pepper, and black walnut, which makes heptadecenoic acid a potential biomarker for the consumption of these food products.

   

C14:0

Tetradecanoic acid

C14H28O2 (228.2089)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

C17:0

HEPTADECANOIC ACID

C17H34O2 (270.2559)


Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Methyl behenate

Docosanoic acid methyl ester

C23H46O2 (354.3498)


Methyl behenate (Methyl docosanoate) is a naturally fatty acid methyl ester isolated from the plant of Aspidopterys obcordata Lemsl[1]. Methyl behenate (Methyl docosanoate) is a naturally fatty acid methyl ester isolated from the plant of Aspidopterys obcordata Lemsl[1].

   

9-Hexadecenoic acid

Hexadec-9-enoic acid

C16H30O2 (254.2246)


   

2-hydroxypentadecanoic acid

(+/-)-2-AMINO-7-PHOSPHONOHEPTANOIC

C15H30O3 (258.2195)


A 2-hydroxy fatty acid that is pentadecanoic acid substituted by a hydroxy group at position 2.

   

pentacosanal

pentacosanal

C25H50O (366.3861)


   

Cycloartenol

9beta,19-cyclolanost-24-en-3beta-ol

C30H50O (426.3861)


   

2-hydroxy-23-methylpentacosanoic acid

2-hydroxy-23-methylpentacosanoic acid

C26H52O3 (412.3916)


   

2-Hydroxyheptadecanoic acid

2-Hydroxyheptadecanoic acid

C17H34O3 (286.2508)


A 2-hydroxy fatty acid that is heptadecanoic acid (margaric acid) substituted by a hydroxy group at position 2.

   

2-Hydroxytricosanoic acid

2-hydroxy Tricosanoic Acid

C23H46O3 (370.3447)


A 2-hydroxy fatty acid that is tricosanoic acid substituted by a hydroxy group at position 2.

   

2-hydroxyhenicosanoic acid

2-hydroxyhenicosanoic acid

C21H42O3 (342.3134)


A 2-hydroxy fatty acid that is henicosanoic acid substituted by a hydroxy group at position 2.

   

2-hydroxy-24-methylpentacosanoic acid

2-hydroxy-24-methylpentacosanoic acid

C26H52O3 (412.3916)


   

2-HYDROXY-14-METHYLPENTADECANOIC ACID

2-HYDROXY-14-METHYLPENTADECANOIC ACID

C16H32O3 (272.2351)


   

2-Hydroxyhexacosanoic acid

2-Hydroxyhexacosanoic acid

C26H52O3 (412.3916)


   

2-hydroxy-17-methyloctadecanoic acid

2-hydroxy-17-methyloctadecanoic acid

C19H38O3 (314.2821)


   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

2-Hydroxy-21-methyldocosanoic acid

2-Hydroxy-21-methyldocosanoic acid

C23H46O3 (370.3447)


   

2-Hydroxy-22-methyltricosanoic acid

2-Hydroxy-22-methyltricosanoic acid

C24H48O3 (384.3603)


   

Methyl lignocerate

Methyl tetracosanoate

C25H50O2 (382.3811)


Methyl tetracosanoate (Methyl lignocerate) is a fatty acid methyl ester with anti-diabetic activity[1]. Methyl tetracosanoate (Methyl lignocerate) is a fatty acid methyl ester with anti-diabetic activity[1].

   

2-hydroxypentacosanoic acid

2-hydroxypentacosanoic acid

C25H50O3 (398.376)


A 2-hydroxy fatty acid that is pentacosanoic acid substituted by a hydroxy group at position 2.

   

Brassicasterol

ergosta-5,22E-dien-3beta-ol

C28H46O (398.3548)


An 3beta-sterol that is (22E)-ergosta-5,22-diene substituted by a hydroxy group at position 3beta. It is a phytosterol found in marine algae, fish, and rapeseed oil. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Lignoceric acid

Tetracosanoic acid

C24H48O2 (368.3654)


A C24 straight-chain saturated fatty acid. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

PENTADECANOIC ACID

PENTADECANOIC ACID

C15H30O2 (242.2246)


A straight-chain saturated fatty acid containing fifteen-carbon atoms. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.

   

Myristic Acid

Tetradecanoic acid

C14H28O2 (228.2089)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Behenic acid

Docosanoic acid

C22H44O2 (340.3341)


A straight-chain, C22, long-chain saturated fatty acid. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

Margaric acid

HEPTADECANOIC ACID

C17H34O2 (270.2559)


A C17 saturated fatty acid and trace component of fats in ruminants. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

TRICOSANOIC ACID

TRICOSANOIC ACID

C23H46O2 (354.3498)


A very long-chain fatty acid that is tricosane in which one of the methyl groups has been oxidised to the corresponding carboxylic acid. Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant. Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant.

   

stearic acid

stearic acid

C18H36O2 (284.2715)


Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Heneicosylic acid

HENEICOSANOIC ACID

C21H42O2 (326.3185)


Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3]. Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3].

   

PHYTANIC ACID

Hexadecanoic acid, 3,7,11,15-tetramethyl-

C20H40O2 (312.3028)


A branched-chain saturated fatty acid consisting of hexadecanoic acid carrying methyl substituents at positions 3, 7, 11 and 15.

   

Arachidic acid

Arachidic acid

C20H40O2 (312.3028)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Pentacosylic acid

Pentacosanoic acid

C25H50O2 (382.3811)


Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1]. Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1].

   

HENEICOSANOIC ACID

HENEICOSANOIC ACID

C21H42O2 (326.3185)


   

HEPTADECANOIC ACID

HEPTADECANOIC ACID

C17H34O2 (270.2559)


   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402)


   

Octadecanoic acid

Octadecanoic acid

C18H36O2 (284.2715)


A C18 straight-chain saturated fatty acid component of many animal and vegetable lipids. As well as in the diet, it is used in hardening soaps, softening plastics and in making cosmetics, candles and plastics.

   

Tetradecanoic acid

Tetradecanoic acid

C14H28O2 (228.2089)


   

Desmosterol

Desmosterol

C27H44O (384.3392)


   

Methyl stearate

n-Octadecanoic acid, methyl ester

C19H38O2 (298.2872)


Methyl stearate, isolated from Rheum palmatum L. is a compopent of of soybean and rapeseed biodiesels[1]. Methyl stearate, isolated from Rheum palmatum L. is a compopent of of soybean and rapeseed biodiesels[1].

   

Desmesterol

cholest-5,24-dien-3beta-ol

C27H44O (384.3392)


A cholestanoid that is cholesta-5,24-diene substituted by a beta-hydroxy group at position 3. It is an intermediate metabolite obtained during the synthesis of cholesterol. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].

   

2-hydroxy Palmitic Acid

2-hydroxy-hexadecanoic acid

C16H32O3 (272.2351)


A 2-hydroxy fatty acid comprising a C16 straight chain carrying a hydroxy substituent at position 2. 2-Hydroxypalmitic acid is an intermediate in phytosphingosine metabolism[1].

   

2-hydroxy behenic

2-hydroxy-docosanoic acid

C22H44O3 (356.329)


   

Nonadecanal

Nonadecanal

C19H38O (282.2922)


   

UNDECANAL

UNDECANAL

C11H22O (170.1671)


A saturated fatty aldehyde formally arising from reduction of the carboxylic acid group of undecanoic acid. It is a component of essential oils from citrus plants like Citrus reticulata.

   

Tridecyl aldehyde

N-Tridecylaldehyde

C13H26O (198.1984)


A long-chain fatty aldehyde that is tridecane in which two hydrogens attached to a terminal carbon are replaced by an oxo group.

   

PENTADECANAL

PENTADECANAL

C15H30O (226.2297)


A long-chain fatty aldehyde that is pentadecane carrying an oxo substituent at position 1. It is a component of essential oils from plants like Solanum erianthum and Cassia siamea.

   

Heptadecanal

Heptadecanal

C17H34O (254.261)


A long-chain fatty aldehyde that is heptadecane carrying an oxo substituent at position 1. It is found in citrus.

   

Uniphat A50

Myristic acid, methyl ester (8CI)

C15H30O2 (242.2246)


Methyl myristate is a saturated fatty acid methyl ester obtained from the esterification of myristic acid. Methyl myristate shows a high melanin induction in B16F10 melanoma[1]. Methyl myristate is a saturated fatty acid methyl ester obtained from the esterification of myristic acid. Methyl myristate shows a high melanin induction in B16F10 melanoma[1].

   

2-Hydroxy-22-methyltetracosanoic acid

2-Hydroxy-22-methyltetracosanoic acid

C25H50O3 (398.376)


   

C20:0

n-Eicosanoic acid

C20H40O2 (312.3028)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

C21:0

HENEICOSANOIC ACID

C21H42O2 (326.3185)


Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3]. Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3].

   

C22:0

Docosanoic acid

C22H44O2 (340.3341)


Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

C23:0

TRICOSANOIC ACID

C23H46O2 (354.3498)


Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant. Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant.

   

FA 25:0;O

2-Hydroxy-22-methyltetracosanoic acid

C25H50O3 (398.376)


   

FAL 11:0

UNDECANAL

C11H22O (170.1671)


   

FAL 13:0

TRIDECANAL

C13H26O (198.1984)


   

FAL 15:0

13-methyltetradecanal

C15H30O (226.2297)


   

FAL 17:0

Heptadecanal

C17H34O (254.261)


   

FAL 18:0

Stearaldehyde

C18H36O (268.2766)


   

FAL 24:0

Tetracosanal

C24H48O (352.3705)


   

FAL 25:0

pentacosanal

C25H50O (366.3861)


   

FAL 19:0

Nonadecanal

C19H38O (282.2922)


   

Lanosterin

Lanosta-8,24-dien-3beta-ol

C30H50O (426.3861)


A tetracyclic triterpenoid that is lanosta-8,24-diene substituted by a beta-hydroxy group at the 3beta position. It is the compound from which all steroids are derived. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-methylpentadecanoic acid

2-methylpentadecanoic acid

C16H32O2 (256.2402)


   

2-Hydroxynonadecanoic acid

2-Hydroxynonadecanoic acid

C19H38O3 (314.2821)


A 2-hydroxy fatty acid that is nonadecanoic acid substituted by a hydroxy group at position 2.

   

WLN: QV19

InChI=1\C20H40O2\c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22\h2-19H2,1H3,(H,21,22

C20H40O2 (312.3028)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Behensaeure

N-Docosanoic acid

C22H44O2 (340.3341)


Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans. Docosanoic acid is poorly absorbed, and a cholesterol-raising saturated fatty acid in humans.

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

506-38-7

n-Pentacosanoic acid

C25H50O2 (382.3811)


Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1]. Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1].

   

557-59-5

N-Tetracosanoic acid

C24H48O2 (368.3654)


Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

Uniphat A60

Palmitic acid, methyl ester (8CI)

C17H34O2 (270.2559)


Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3]. Methyl palmitate, an acaricidal compound occurring in Lantana camara, inhibits phagocytic activity and immune response. Methyl palmitate also posseses anti-inflammatory and antifibrotic effects[1][2][3].

   

Lanol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548)


Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

AI3-36444

cis-.delta.9-Hexadecenoic acid

C16H30O2 (254.2246)


   

Crodacid

4-02-00-01126 (Beilstein Handbook Reference)

C14H28O2 (228.2089)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

AI3-36441

4-02-00-01147 (Beilstein Handbook Reference)

C15H30O2 (242.2246)


Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.

   

AI3-36481

4-02-00-01193 (Beilstein Handbook Reference)

C17H34O2 (270.2559)


Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

AI3-07960

InChI=1\C19H38O2\c1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19(20)21-2\h3-18H2,1-2H

C19H38O2 (298.2872)


Methyl stearate, isolated from Rheum palmatum L. is a compopent of of soybean and rapeseed biodiesels[1]. Methyl stearate, isolated from Rheum palmatum L. is a compopent of of soybean and rapeseed biodiesels[1].

   

Lanster

(3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,5,6,7,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.3861)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Tricosanoic acid (6CI,7CI,8CI,9CI)

Tricosanoic acid (6CI,7CI,8CI,9CI)

C23H46O2 (354.3498)


Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant. Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant.

   

474-67-9

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5R)-5,6-dimethylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3]. Brassicasterol is a metabolite of Ergosterol and has cardiovascular protective effects. Brassicasterol exerts anticancer effects in prostate cancer through dual targeting of AKT and androgen receptor signaling pathways. Brassicasterol inhibits HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis. Brassicasterol also inhibits sterol δ 24-reductase, slowing the progression of atherosclerosis. Brassicasterol is also a cerebrospinal fluid biomarker for Alzheimer's disease[1][2][3][4][5][6]. Brassicasterol, a metabolite of Ergosterol, plays a role in the inhibitory effect on bladder carcinogenesis promotion via androgen signaling[1]. Brassicasterol shows dual anti-infective properties against HSV-1 (IC50=1.2 μM) and Mycobacterium tuberculosis, and cardiovascular protective effect[2]. Brassicasterol exerts an anti-cancer effect by dual-targeting AKT and androgen receptor signaling in prostate cancer[3].

   

Stearaldehyde

Octadecyl aldehyde

C18H36O (268.2766)


   

Ostreasterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methyl-5-methylidene-heptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C28H46O (398.3548)


24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].

   

Hendecenal

Aldehyde C-11, undecylic

C11H22O (170.1671)


   

CHEBI:17302

EINECS 220-435-1

C15H30O (226.2297)


   

AI3-36442

(C16-C22) Alkylcarboxylic acid

C19H38O2 (298.2872)


Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].

   

N-Heneicosanoic acid

N-Heneicosanoic acid

C21H42O2 (326.3185)


Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3]. Heneicosanoic acid is a long-chain saturated fatty acid which is found in plants and animals[1][2][3].

   

AI3-24250

EINECS 211-115-2

C17H34O (254.261)


   

OCTADECANAL

OCTADECANAL

C18H36O (268.2766)


   

Cerebronic acid

2-Hydroxytetracosanoic acid

C24H48O3 (384.3603)


A very long-chain hydroxy fatty acid composed of lignoceric acid having a 2-hydroxy substituent.

   
   

Hexadec-9-enoic acid

Hexadec-9-enoic acid

C16H30O2 (254.2246)


A hexadecenoic acid in which the double bond is located at position 9.

   

2-Hydroxydocosanoic acid

2-hydroxy Docosanoic Acid

C22H44O3 (356.329)


   

2-hydroxyarachidic acid

2-hydroxyarachidic acid

C20H40O3 (328.2977)


A long-chain fatty acid that is arachidic (icosanoic) acid substituted at position 2 by a hydroxy group.

   

Hexadecenoate

Hexadecenoate

C16H29O2 (253.2167)


A long-chain unsaturated fatty acid anion that is the conjugate base of hexadecenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

Henicosanoic acid

Henicosanoic acid

C21H42O2 (326.3185)


A long-chain fatty acid that is henicosane in which one of the methyl groups has been oxidised to give the corresponding carboxylic acid.

   

Icosanoic acid

Icosanoic acid

C20H40O2 (312.3028)


A C20 striaght-chain saturated fatty acid which forms a minor constituent of peanut (L. arachis) and corn oils. Used as an organic thin film in the production of liquid crystals for a wide variety of technical applications.

   

octadec-2-enoic acid

octadec-2-enoic acid

C18H34O2 (282.2559)


An octadecenoic acid with the double bond at position 2.

   

2-hydroxycerotic acid

2-hydroxycerotic acid

C26H52O3 (412.3916)


A very long-chain fatty acid that is cerotic (hexacosanoic) acid substituted at position 2 by a hydroxy group.

   

(5s,10s)-7,9-dibromo-n-(5-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}pentyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5s,10s)-7,9-dibromo-n-(5-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}pentyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C25H28Br4N4O8 (827.864)


   

(14z)-n-(2-phenylethyl)heptadec-14-en-4,16-diynimidic acid

(14z)-n-(2-phenylethyl)heptadec-14-en-4,16-diynimidic acid

C25H33NO (363.2562)


   

(10r)-7,9-dibromo-n-{3-[2,6-dibromo-4-(2-{[(10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-1-hydroxyethyl)phenoxy]-2-hydroxypropyl}-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(10r)-7,9-dibromo-n-{3-[2,6-dibromo-4-(2-{[(10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-1-hydroxyethyl)phenoxy]-2-hydroxypropyl}-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C31H30Br6N4O11 (1107.7011)


   

7,9-dibromo-n-(3-{2,6-dibromo-4-[2-({7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl}formamido)-1-hydroxyethyl]phenoxy}propyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

7,9-dibromo-n-(3-{2,6-dibromo-4-[2-({7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl}formamido)-1-hydroxyethyl]phenoxy}propyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C31H30Br6N4O10 (1091.7062)


   

[(1z,3z)-1-(3-bromo-4,5-dihydroxyphenyl)-4-(3-bromo-4-hydroxyphenyl)-3-(sulfooxy)buta-1,3-dien-2-yl]oxysulfonic acid

[(1z,3z)-1-(3-bromo-4,5-dihydroxyphenyl)-4-(3-bromo-4-hydroxyphenyl)-3-(sulfooxy)buta-1,3-dien-2-yl]oxysulfonic acid

C16H12Br2O11S2 (601.8188)


   

7,9-dibromo-n-(3-{2,6-dibromo-4-[2-({7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl}formamido)-1-hydroxyethyl]phenoxy}-2-hydroxypropyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

7,9-dibromo-n-(3-{2,6-dibromo-4-[2-({7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl}formamido)-1-hydroxyethyl]phenoxy}-2-hydroxypropyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C31H30Br6N4O11 (1107.7011)


   

n-(2-phenylethyl)heptadec-14-en-4,16-diynimidic acid

n-(2-phenylethyl)heptadec-14-en-4,16-diynimidic acid

C25H33NO (363.2562)


   

7,9-dibromo-n-{3-[2,6-dibromo-4-(2-hydroxy-4,5-dihydro-1,3-oxazol-5-yl)phenoxy]-2-hydroxypropyl}-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

7,9-dibromo-n-{3-[2,6-dibromo-4-(2-hydroxy-4,5-dihydro-1,3-oxazol-5-yl)phenoxy]-2-hydroxypropyl}-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C22H21Br4N3O8 (770.8062)


   

2-hydroxy-16-methylheptadecanoic acid

2-hydroxy-16-methylheptadecanoic acid

C18H36O3 (300.2664)


   

2-hydroxy-23-methyltetracosanoic acid

2-hydroxy-23-methyltetracosanoic acid

C25H50O3 (398.376)


   

7,9-dibromo-n-[5-({7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl}formamido)-2-oxopentyl]-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

7,9-dibromo-n-[5-({7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl}formamido)-2-oxopentyl]-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C25H26Br4N4O9 (841.8433)


   

(3as,7ar)-5,7-dibromo-3a-hydroxy-6-methoxy-3,7a-dihydro-1-benzofuran-2-one

(3as,7ar)-5,7-dibromo-3a-hydroxy-6-methoxy-3,7a-dihydro-1-benzofuran-2-one

C9H8Br2O4 (337.8789)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5s)-5,6-dimethylhept-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5s)-5,6-dimethylhept-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H46O (398.3548)


   

(5s,10r)-7,9-dibromo-n-(4-{[(5r,10s)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-oxobutyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5s,10r)-7,9-dibromo-n-(4-{[(5r,10s)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-oxobutyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C24H24Br4N4O9 (827.8277)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r,6e)-6-ethyl-5-methyloct-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r,6e)-6-ethyl-5-methyloct-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.3861)


   

(5r,10s)-7,9-dibromo-n-(5-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}pentyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5r,10s)-7,9-dibromo-n-(5-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}pentyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C25H28Br4N4O8 (827.864)


   

(5s,10r)-7,9-dibromo-n-(5-{[(5r,10s)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-oxopentyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5s,10r)-7,9-dibromo-n-(5-{[(5r,10s)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-oxopentyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C25H26Br4N4O9 (841.8433)


   

methyl cocoate

methyl cocoate

C14H28O2 (228.2089)


   

(5s,10s)-7,9-dibromo-n-[(2s)-3-{2,6-dibromo-4-[(5s)-2-hydroxy-4,5-dihydro-1,3-oxazol-5-yl]phenoxy}-2-hydroxypropyl]-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5s,10s)-7,9-dibromo-n-[(2s)-3-{2,6-dibromo-4-[(5s)-2-hydroxy-4,5-dihydro-1,3-oxazol-5-yl]phenoxy}-2-hydroxypropyl]-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C22H21Br4N3O8 (770.8062)


   

2-hydroxy-15-methylhexadecanoic acid

2-hydroxy-15-methylhexadecanoic acid

C17H34O3 (286.2508)


   

(3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

(3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

C30H50O (426.3861)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5s)-5-ethyl-6-methylhept-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5s)-5-ethyl-6-methylhept-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.3705)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H46O (398.3548)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5,6-dimethylhept-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5,6-dimethylhept-6-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H46O (398.3548)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r,6s)-5,6-dimethyloctan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r,6s)-5,6-dimethyloctan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.3861)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r)-5,6-dimethylhept-5-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r)-5,6-dimethylhept-5-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H46O (398.3548)


   

(5s)-7,9-dibromo-n-(4-{[(5s)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}butyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5s)-7,9-dibromo-n-(4-{[(5s)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}butyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C24H26Br4N4O8 (813.8484)


   

heptacosanal

heptacosanal

C27H54O (394.4174)


   

(5r,10s)-7,9-dibromo-n-[(2r)-2-{3,5-dibromo-4-[(2s)-3-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-hydroxypropoxy]phenyl}-2-hydroxyethyl]-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5r,10s)-7,9-dibromo-n-[(2r)-2-{3,5-dibromo-4-[(2s)-3-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-hydroxypropoxy]phenyl}-2-hydroxyethyl]-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C31H30Br6N4O11 (1107.7011)


   

(5r,10s)-7,9-dibromo-n-{2-[3,5-dibromo-4-(3-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-hydroxypropoxy)phenyl]-2-hydroxyethyl}-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5r,10s)-7,9-dibromo-n-{2-[3,5-dibromo-4-(3-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-hydroxypropoxy)phenyl]-2-hydroxyethyl}-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C31H30Br6N4O11 (1107.7011)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

2-methyltricosanoic acid

2-methyltricosanoic acid

C24H48O2 (368.3654)


   

1-(5-ethyl-6-methylhept-6-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

1-(5-ethyl-6-methylhept-6-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.3705)


   

(5r,10s)-7,9-dibromo-n-[(2r)-2-[3,5-dibromo-4-(3-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}propoxy)phenyl]-2-hydroxyethyl]-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5r,10s)-7,9-dibromo-n-[(2r)-2-[3,5-dibromo-4-(3-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}propoxy)phenyl]-2-hydroxyethyl]-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C31H30Br6N4O10 (1091.7062)


   
   

(7s,9ar,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(7s,9ar,11ar)-1-[(2r,3e,5s)-5,6-dimethylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H46O (398.3548)


   

(5s,10r)-7,9-dibromo-n-{3-[2,6-dibromo-4-(2-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-1-hydroxyethyl)phenoxy]propyl}-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5s,10r)-7,9-dibromo-n-{3-[2,6-dibromo-4-(2-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-1-hydroxyethyl)phenoxy]propyl}-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C31H30Br6N4O10 (1091.7062)


   

(5s,10r)-7,9-dibromo-n-(4-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-hydroxybutyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5s,10r)-7,9-dibromo-n-(4-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-hydroxybutyl)-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C24H26Br4N4O9 (829.8433)


   

(5s,10s)-7,9-dibromo-n-[(2r)-2-{3,5-dibromo-4-[(2s)-3-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-hydroxypropoxy]phenyl}-2-hydroxyethyl]-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

(5s,10s)-7,9-dibromo-n-[(2r)-2-{3,5-dibromo-4-[(2s)-3-{[(5s,10r)-7,9-dibromo-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-trien-3-yl]formamido}-2-hydroxypropoxy]phenyl}-2-hydroxyethyl]-10-hydroxy-8-methoxy-1-oxa-2-azaspiro[4.5]deca-2,6,8-triene-3-carboxamide

C31H30Br6N4O11 (1107.7011)