Swartziol (BioDeep_00000270591)

Main id: BioDeep_00000290764

 

natural product PANOMIX_OTCML-2023 BioNovoGene_Lab2019


代谢物信息卡片


4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-5,7,4-Trihydroxyflavonol

化学式: C15H10O6 (286.0477)
中文名称: 山奈酚
谱图信息: 最多检出来源 () 0%

分子结构信息

SMILES: c1(cc(c2c(c1)oc(c(c2=O)O)c1ccc(cc1)O)O)O
InChI: InChI=1/C15H10O6/c16-8-3-1-7(2-4-8)15-14(20)13(19)12-10(18)5-9(17)6-11(12)21-15/h1-6,16-18,20H

描述信息

Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].
Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

同义名列表

77 个代谢物同义名

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-5,7,4-Trihydroxyflavonol; 4H-1-Benzopyran-4-one,3,5,7-trihydroxy-2-(4-hydroxyphenyl)-5,7,4-Trihydroxyflavonol; 4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)- (9CI); 4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-; 3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 3,5,7-Trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one; 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4-chromenone; 3,5,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one; 3,5,7-trihydroxy-2-(4-hydroxyphenyl)chromone; 5-18-05-00251 (Beilstein Handbook Reference); Flavone, 3,4,5,7-tetrahydroxy- (7CI,8CI); Flavone, 3,4,5,7-tetrahydroxy-; 3,4′,5,7-Tetrahydroxyflavone; 3,4,5,7-tetrahydroxyflavone; 5,7,4-Trihydroxyflavonol; nchembio.2007.28-comp30; 3,5,7-triOH-Flavone; Pelargidenolon 1497; nchembio718-comp14; Prestwick2_001098; Prestwick0_001098; Prestwick3_001098; Prestwick1_001098; EINECS 208-287-6; NCGC00091036-01; NCGC00016480-01; NCGC00016480-02; Pelargidenolon; Oprea1_650954; Indigo Yellow; BSPBio_001176; BPBio1_001294; MEGxp0_001283; ZINC00137345; Rhamnolutein; Pelargidenon; SPBio_003058; HSCI1_000027; CAS-520-18-3; ACon1_001867; K0133_SIGMA; Rhamnolutin; BRN 0304401; AIDS-001404; CHEBI:28499; 60010_FLUKA; C.I. 75640; NSC 407289; NSC 656277; Populnetin; Nimbecetin; Kaempherol; Kaempferol; AIDS001404; Trifolitin; NSC407289; Swartziol; NSC656277; AI3-36096; Kampcetin; kempferol; Robigenin; Kampferol; Kaemferol; Campherol; Kampherol; CCRIS 41; TNP00039; CPD1F-90; ST030560; 520-18-3; S00111; C05903; KMP; 3,5,7-Trihydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one; 3,5,7,4-Tetrahydroxyflavone; Kaempferol



数据库引用编号

17 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

0 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

1230 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 8 ANG, CDKN1A, CYP1A1, ESR1, HPGDS, MAPK1, PRKAA2, TP53
Peripheral membrane protein 4 ACHE, CYP1A1, CYP1B1, ESR1
Endoplasmic reticulum membrane 2 CYP1A1, CYP1B1
Nucleus 10 ACHE, ANG, CDKN1A, ESR1, JUND, MAPK1, MPO, PPARA, PRKAA2, TP53
cytosol 8 ANG, CDKN1A, ESR1, HPGDS, IL1B, MAPK1, PRKAA2, TP53
dendrite 1 PRKAA2
nuclear body 1 CDKN1A
centrosome 2 MAPK1, TP53
nucleoplasm 9 CDKN1A, ESR1, HPGDS, JUND, MAPK1, MPO, PPARA, PRKAA2, TP53
RNA polymerase II transcription regulator complex 1 JUND
Cell membrane 3 ACHE, ESR1, MGAM
Cytoplasmic side 1 ESR1
Synapse 2 ACHE, MAPK1
cell surface 2 ACHE, ICAM1
Golgi apparatus 4 ACHE, ESR1, MAPK1, PRKAA2
growth cone 1 ANG
mitochondrial inner membrane 1 CYP1A1
neuromuscular junction 1 ACHE
neuronal cell body 2 ANG, PRKAA2
Cytoplasm, cytosol 1 IL1B
Lysosome 2 IL1B, MPO
plasma membrane 5 ACHE, ESR1, ICAM1, MAPK1, MGAM
Membrane 7 ACHE, CYP1B1, ESR1, ICAM1, MGAM, PRKAA2, TP53
apical plasma membrane 1 MGAM
axon 1 PRKAA2
caveola 1 MAPK1
extracellular exosome 4 ICAM1, MGAM, MMP9, MPO
endoplasmic reticulum 1 TP53
extracellular space 9 ACHE, ANG, CCL2, CXCL8, ICAM1, IL1B, IL4, MMP9, MPO
perinuclear region of cytoplasm 2 ACHE, CDKN1A
mitochondrion 4 CYP1A1, CYP1B1, MAPK1, TP53
protein-containing complex 3 CDKN1A, ESR1, TP53
intracellular membrane-bounded organelle 4 CYP1A1, CYP1B1, HPGDS, MPO
Microsome membrane 2 CYP1A1, CYP1B1
Single-pass type I membrane protein 1 ICAM1
Secreted 7 ACHE, ANG, CCL2, CXCL8, IL1B, IL4, MGAM
extracellular region 10 ACHE, ANG, CCL2, CXCL8, IL1B, IL4, MAPK1, MGAM, MMP9, MPO
Single-pass membrane protein 1 MGAM
Mitochondrion matrix 1 TP53
mitochondrial matrix 1 TP53
Extracellular side 1 ACHE
transcription regulator complex 3 ESR1, JUND, TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 2 MAPK1, TP53
external side of plasma membrane 1 ICAM1
Secreted, extracellular space, extracellular matrix 1 MMP9
actin cytoskeleton 1 ANG
nucleolus 3 ANG, CDKN1A, TP53
Early endosome 1 MAPK1
Mitochondrion inner membrane 1 CYP1A1
Membrane raft 1 ICAM1
Cell junction, focal adhesion 1 MAPK1
Cytoplasm, cytoskeleton 1 TP53
Cytoplasm, cytoskeleton, spindle 1 MAPK1
focal adhesion 2 ICAM1, MAPK1
spindle 1 MAPK1
basement membrane 2 ACHE, ANG
Nucleus, PML body 1 TP53
PML body 1 TP53
collagen-containing extracellular matrix 2 ICAM1, MMP9
secretory granule 2 IL1B, MPO
nuclear speck 1 PRKAA2
Late endosome 1 MAPK1
chromatin 4 ESR1, JUND, PPARA, TP53
mitotic spindle 1 MAPK1
Chromosome 1 ANG
cytoskeleton 1 MAPK1
Nucleus, nucleolus 1 ANG
Lipid-anchor, GPI-anchor 1 ACHE
site of double-strand break 1 TP53
Membrane, caveola 1 MAPK1
tertiary granule membrane 1 MGAM
Cytoplasm, Stress granule 1 ANG
cytoplasmic stress granule 2 ANG, PRKAA2
euchromatin 1 ESR1
side of membrane 1 ACHE
germ cell nucleus 1 TP53
replication fork 1 TP53
pseudopodium 1 MAPK1
azurophil granule 1 MPO
ficolin-1-rich granule lumen 2 MAPK1, MMP9
endoplasmic reticulum lumen 1 MAPK1
nuclear matrix 1 TP53
transcription repressor complex 2 JUND, TP53
tertiary granule lumen 1 MMP9
endocytic vesicle 1 ANG
Secreted, extracellular exosome 1 IL1B
azurophil granule lumen 2 MAPK1, MPO
immunological synapse 1 ICAM1
phagocytic vesicle lumen 1 MPO
[Isoform 1]: Nucleus 2 ESR1, TP53
synaptic cleft 1 ACHE
ficolin-1-rich granule membrane 1 MGAM
nucleotide-activated protein kinase complex 1 PRKAA2
cyclin-dependent protein kinase holoenzyme complex 1 CDKN1A
transcription factor AP-1 complex 1 JUND
angiogenin-PRI complex 1 ANG
PCNA-p21 complex 1 CDKN1A
[Isoform H]: Cell membrane 1 ACHE


文献列表

  • Yunzhou Pu, Yicun Han, Yiran Ouyang, Haoze Li, Ling Li, Xinnan Wu, Liu Yang, Jingdong Gao, Lei Zhang, Jing Zhou, Qing Ji, Qing Song. Kaempferol inhibits colorectal cancer metastasis through circ_0000345 mediated JMJD2C/β-catenin signalling pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2024 Jun; 128(?):155261. doi: 10.1016/j.phymed.2023.155261. [PMID: 38493716]
  • Yves Iradukunda, Jing-Yan Kang, Xiao-Bo Zhao, Xiao-Kang Fu, Stanislas Nsanzamahoro, Wei Ha, Yan-Ping Shi. Triple Sensing Modes for Triggered β-Galactosidase Activity Assays Based on Kaempferol-Deduced Silicon Nanoparticles and Biological Imaging of MCF-7 Breast Cancer Cells. ACS applied bio materials. 2024 May; 7(5):3154-3163. doi: 10.1021/acsabm.4c00185. [PMID: 38695332]
  • Qiuxiang Chen, Juan Wang, Lihua Sun, Bayinsilema Ba, Difei Shen. Mechanism of Astragalus membranaceus (Huangqi, HQ) for treatment of heart failure based on network pharmacology and molecular docking. Journal of cellular and molecular medicine. 2024 May; 28(10):e18331. doi: 10.1111/jcmm.18331. [PMID: 38780500]
  • Anna Balykina, Lidia Naida, Kürsat Kirkgöz, Viacheslav O Nikolaev, Ekaterina Fock, Michael Belyakov, Anastasiia Whaley, Andrei Whaley, Valentina Shpakova, Natalia Rukoyatkina, Stepan Gambaryan. Antiplatelet Effects of Flavonoid Aglycones Are Mediated by Activation of Cyclic Nucleotide-Dependent Protein Kinases. International journal of molecular sciences. 2024 Apr; 25(9):. doi: 10.3390/ijms25094864. [PMID: 38732081]
  • Kexin Chang, Kuangshi Fan, Hua Zhang, Qiong Wu, Yonghong Zhang, Le Wang, Hongcen Chen, Jinjin Tong, Defeng Cui. Fuzhengjiedu San inhibits porcine reproductive and respiratory syndrome virus by activating the PI3K/AKT pathway. PloS one. 2024; 19(5):e0283728. doi: 10.1371/journal.pone.0283728. [PMID: 38709810]
  • Xu Lian, Kaidi Fan, Xuemei Qin, Yuetao Liu. Amalgamated Pharmacoinformatics Study to Investigate the Mechanism of Xiao Jianzhong Tang against Chronic Atrophic Gastritis. Current computer-aided drug design. 2023 Jul; ?(?):. doi: 10.2174/1573409919666230720141115. [PMID: 37475552]
  • Lu Yan, Min-Yue Jiang, Xin-Sheng Fan. Research into the anti-pulmonary fibrosis mechanism of Renshen Pingfei formula based on network pharmacology, metabolomics, and verification of AMPK/PPAR-γ pathway of active ingredients. Journal of ethnopharmacology. 2023 Jun; ?(?):116773. doi: 10.1016/j.jep.2023.116773. [PMID: 37308028]
  • Xiling Zhu, Yan Li, Xiaodong Wang, Yuanshe Huang, Jingxin Mao. Investigation of the mechanism of Prunella vulgaris in treatment of papillary thyroid carcinoma based on network pharmacology integrated molecular docking and experimental verification. Medicine. 2023 Apr; 102(17):e33360. doi: 10.1097/md.0000000000033360. [PMID: 37115092]
  • Yanhong Sun, Xiaoyan Duan, Fenghe Wang, Huixin Tan, Jiahuan Hu, Wanting Bai, Xinbo Wang, Baolian Wang, Jinping Hu. Inhibitory effects of flavonoids on glucose transporter 1 (GLUT1): From library screening to biological evaluation to structure-activity relationship. Toxicology. 2023 Mar; ?(?):153475. doi: 10.1016/j.tox.2023.153475. [PMID: 36870413]
  • Adeola Oluwatosin Adedara, Guilherme Wildner, Julia Sepel Loreto, Matheus Mulling Dos Santos, Amos Olalekan Abolaji, Nilda Vargas Barbosa. Kaempferol counteracts toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in D. melanogaster: An implication of its mitoprotective activity. Neurotoxicology. 2022 Dec; 95(?):23-34. doi: 10.1016/j.neuro.2022.12.008. [PMID: 36592898]
  • Argyrios Periferakis, Konstantinos Periferakis, Ioana Anca Badarau, Elena Madalina Petran, Delia Codruta Popa, Ana Caruntu, Raluca Simona Costache, Cristian Scheau, Constantin Caruntu, Daniel Octavian Costache. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. International journal of molecular sciences. 2022 Nov; 23(23):. doi: 10.3390/ijms232315054. [PMID: 36499380]
  • Kaiyang Liu, Xi Chen, Yue Ren, Chaoqun Liu, Anlei Yuan, Lulu Zheng, Beiyan Li, Yanling Zhang. Identification of a novel farnesoid X receptor agonist, kaempferol-7-O-rhamnoside, a compound ameliorating drug-induced liver injury based on virtual screening and in vitro validation. Toxicology and applied pharmacology. 2022 11; 454(?):116251. doi: 10.1016/j.taap.2022.116251. [PMID: 36150480]
  • Ruyang Yu, Jia Zhong, Qilyu Zhou, Wei Ren, Zhongjie Liu, Yifei Bian. Kaempferol prevents angiogenesis of rat intestinal microvascular endothelial cells induced by LPS and TNF-α via inhibiting VEGF/Akt/p38 signaling pathways and maintaining gut-vascular barrier integrity. Chemico-biological interactions. 2022 Oct; 366(?):110135. doi: 10.1016/j.cbi.2022.110135. [PMID: 36049518]
  • Anand Kumar Sahu, Ashok Kumar Mishra. Photophysical Behavior of Plant Flavonols Galangin, Kaempferol, Quercetin, and Myricetin in Homogeneous Media and the DMPC Model Membrane: Unveiling the Influence of the B-Ring Hydroxylation of Flavonols. The journal of physical chemistry. B. 2022 04; 126(15):2863-2875. doi: 10.1021/acs.jpcb.2c00929. [PMID: 35404618]
  • Shiquan Chang, Xin Li, Yachun Zheng, Huimei Shi, Di Zhang, Bei Jing, Zhenni Chen, Guoqiang Qian, Guoping Zhao. Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-ĸB signaling pathway. Phytotherapy research : PTR. 2022 Apr; 36(4):1678-1691. doi: 10.1002/ptr.7396. [PMID: 35234314]
  • Antoine Berger, Scott Latimer, Lauren R Stutts, Eric Soubeyrand, Anna K Block, Gilles J Basset. Kaempferol as a precursor for ubiquinone (coenzyme Q) biosynthesis: An atypical node between specialized metabolism and primary metabolism. Current opinion in plant biology. 2022 04; 66(?):102165. doi: 10.1016/j.pbi.2021.102165. [PMID: 35026487]
  • Xichuan Li, Ce Wang, Jinqian Chen, Xia Hu, Hao Zhang, Zhiying Li, Bei Lan, Wei Zhang, Yanjun Su, Chunze Zhang. Potential interactions among myricetin and dietary flavonols through the inhibition of human UDP-glucuronosyltransferase in vitro. Toxicology letters. 2022 Apr; 358(?):40-47. doi: 10.1016/j.toxlet.2022.01.007. [PMID: 35063619]
  • Tsung-Ming Yeh, Ching-Dong Chang, Shyh-Shyan Liu, Chi-I Chang, Wen-Ling Shih. Tea Seed Kaempferol Triglycoside Attenuates LPS-Induced Systemic Inflammation and Ameliorates Cognitive Impairments in a Mouse Model. Molecules (Basel, Switzerland). 2022 Mar; 27(7):. doi: 10.3390/molecules27072055. [PMID: 35408453]
  • Xiaoyan Li, Imran Khan, Guoxin Huang, Yiyan Lu, Liping Wang, Yuanyuan Liu, Linlin Lu, W L Wendy Hsiao, Zhongqiu Liu. Kaempferol acts on bile acid signaling and gut microbiota to attenuate the tumor burden in ApcMin/+ mice. European journal of pharmacology. 2022 Mar; 918(?):174773. doi: 10.1016/j.ejphar.2022.174773. [PMID: 35065044]
  • Agata Walkowiak, Kacper Wnuk, Michał Cyrankiewicz, Bogumiła Kupcewicz. Discrimination of Adulterated Ginkgo Biloba Products Based on 2T2D Correlation Spectroscopy in UV-Vis Range. Molecules (Basel, Switzerland). 2022 Jan; 27(2):. doi: 10.3390/molecules27020433. [PMID: 35056747]
  • Magdalena Kluska, Michał Juszczak, Jerzy Żuchowski, Anna Stochmal, Katarzyna Woźniak. Effect of Kaempferol and Its Glycoside Derivatives on Antioxidant Status of HL-60 Cells Treated with Etoposide. Molecules (Basel, Switzerland). 2022 Jan; 27(2):. doi: 10.3390/molecules27020333. [PMID: 35056649]
  • Xiaolin Xiao, Qichao Hu, Xinyu Deng, Kaiyun Shi, Wenwen Zhang, Yinxiao Jiang, Xiao Ma, Jinhao Zeng, Xiaoyin Wang. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases. Pharmacological research. 2022 01; 175(?):106005. doi: 10.1016/j.phrs.2021.106005. [PMID: 34843960]
  • Yifei Bian, Jiaqi Lei, Jia Zhong, Bo Wang, Yan Wan, Jinxin Li, Chaoyong Liao, Yang He, Zhongjie Liu, Koichi Ito, Bingkun Zhang. Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. The Journal of nutritional biochemistry. 2022 01; 99(?):108840. doi: 10.1016/j.jnutbio.2021.108840. [PMID: 34419569]
  • Wenling Tu, Yinjie Hong, Miaoan Huang, Meimei Chen, Huijuan Gan. Effect of kaempferol on hedgehog signaling pathway in rats with --chronic atrophic gastritis - Based on network pharmacological screening and experimental verification. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Jan; 145(?):112451. doi: 10.1016/j.biopha.2021.112451. [PMID: 34839256]
  • Olha Mykhailenko, Vilma Petrikaite, Michal Korinek, Fang-Rong Chang, Mohamed El-Shazly, Chia-Hung Yen, Ivan Bezruk, Bing-Hung Chen, Chung-Fan Hsieh, Dmytro Lytkin, Liudas Ivanauskas, Victoriya Georgiyants, Tsong-Long Hwang. Pharmacological Potential and Chemical Composition of Crocus sativus Leaf Extracts. Molecules (Basel, Switzerland). 2021 Dec; 27(1):. doi: 10.3390/molecules27010010. [PMID: 35011243]
  • Huihao Tang, Lili Yang, Longlong Wu, Huimin Wang, Kaixian Chen, Huali Wu, Yiming Li. Kaempferol, the melanogenic component of Sanguisorba officinalis, enhances dendricity and melanosome maturation/transport in melanocytes. Journal of pharmacological sciences. 2021 Dec; 147(4):348-357. doi: 10.1016/j.jphs.2021.08.009. [PMID: 34663517]
  • Zhuo Feng, Changyuan Wang, Yue, Jin, Qiang Meng, Jingjing Wu, Huijun Sun. Kaempferol-induced GPER upregulation attenuates atherosclerosis via the PI3K/AKT/Nrf2 pathway. Pharmaceutical biology. 2021 Dec; 59(1):1106-1116. doi: 10.1080/13880209.2021.1961823. [PMID: 34403325]
  • Jing Jin, Yi-Qing Lv, Wei-Zhong He, Da Li, Ying Ye, Zai-Fa Shu, Jing-Na Shao, Jia-Hao Zhou, Ding-Mi Chen, Qing-Sheng Li, Jian-Hui Ye. Screening the Key Region of Sunlight Regulating the Flavonoid Profiles of Young Shoots in Tea Plants (Camellia sinensis L.) Based on a Field Experiment. Molecules (Basel, Switzerland). 2021 Nov; 26(23):. doi: 10.3390/molecules26237158. [PMID: 34885740]
  • Ritu Sharma, Rajinder Jindal, Caterina Faggio. Cassia fistula ameliorates chronic toxicity of cypermethrin in Catla catla. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 2021 Oct; 248(?):109113. doi: 10.1016/j.cbpc.2021.109113. [PMID: 34153505]
  • Ayasa Ochiai, Mahmoud Ben Othman, Kazuichi Sakamoto. Kaempferol ameliorates symptoms of metabolic syndrome by improving blood lipid profile and glucose tolerance. Bioscience, biotechnology, and biochemistry. 2021 Sep; 85(10):2169-2176. doi: 10.1093/bbb/zbab132. [PMID: 34279554]
  • Ji-Nam Kang, Woo-Haeng Lee, So Youn Won, Saemin Chang, Jong-Pil Hong, Tae-Jin Oh, Si Myung Lee, Sang-Ho Kang. Systemic Expression of Genes Involved in the Plant Defense Response Induced by Wounding in Senna tora. International journal of molecular sciences. 2021 Sep; 22(18):. doi: 10.3390/ijms221810073. [PMID: 34576236]
  • Xueni Wang, Junjie Zhu, Huimin Yan, Mengyao Shi, Qiaoqi Zheng, Yu Wang, Yan Zhu, Lin Miao, Xiumei Gao. Kaempferol inhibits benign prostatic hyperplasia by resisting the action of androgen. European journal of pharmacology. 2021 Sep; 907(?):174251. doi: 10.1016/j.ejphar.2021.174251. [PMID: 34129879]
  • Fangfang Tie, Jin Ding, Na Hu, Qi Dong, Zhi Chen, Honglun Wang. Kaempferol and Kaempferide Attenuate Oleic Acid-Induced Lipid Accumulation and Oxidative Stress in HepG2 Cells. International journal of molecular sciences. 2021 Aug; 22(16):. doi: 10.3390/ijms22168847. [PMID: 34445549]
  • Lixia Li, Rui Wang, Huaiyue Hu, Xu Chen, Zhongqiong Yin, Xiaoxia Liang, Changliang He, Lizi Yin, Gang Ye, Yuanfeng Zou, Guizhou Yue, Huaqiao Tang, Renyong Jia, Xu Song. The antiviral activity of kaempferol against pseudorabies virus in mice. BMC veterinary research. 2021 Jul; 17(1):247. doi: 10.1186/s12917-021-02953-3. [PMID: 34275451]
  • Arathi H S, Elisa Bernklau. Context-Dependent Effect of Dietary Phytochemicals on Honey Bees Exposed to a Pesticide, Thiamethoxam. Journal of insect science (Online). 2021 Jul; 21(4):. doi: 10.1093/jisesa/ieab053. [PMID: 34374762]
  • Monika Beszterda, Rafał Frański. Elucidation of glycosylation sites of kaempferol di-O-glycosides from methanolic extract of the leaves of Prunus domestica subsp. syriaca. Rapid communications in mass spectrometry : RCM. 2021 Jun; 35(12):e9100. doi: 10.1002/rcm.9100. [PMID: 33830532]
  • Yuan Yuan, Yanyu Zhai, Jingjiong Chen, Xiaofeng Xu, Hongmei Wang. Kaempferol Ameliorates Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Ferroptosis by Activating Nrf2/SLC7A11/GPX4 Axis. Biomolecules. 2021 06; 11(7):. doi: 10.3390/biom11070923. [PMID: 34206421]
  • Peng Yuan, Xifeng Sun, Xiao Liu, Georg Hutterer, Karl Pummer, Boris Hager, Zhangqun Ye, Zhiqiang Chen. Kaempferol alleviates calcium oxalate crystal-induced renal injury and crystal deposition via regulation of the AR/NOX2 signaling pathway. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2021 Jun; 86(?):153555. doi: 10.1016/j.phymed.2021.153555. [PMID: 33852977]
  • Andrea Magnavacca, Stefano Piazza, Anna Cammisa, Marco Fumagalli, Giulia Martinelli, Flavio Giavarini, Enrico Sangiovanni, Mario Dell'Agli. Ribes nigrum Leaf Extract Preferentially Inhibits IFN-γ-Mediated Inflammation in HaCaT Keratinocytes. Molecules (Basel, Switzerland). 2021 May; 26(10):. doi: 10.3390/molecules26103044. [PMID: 34065200]
  • Tariq Javed, Sarwat Ali Raja, Kashif Ur Rehman, Samrah Khalid, Namrah Khalid, Sana Riaz. In silico bimolecular characterization of anticancer phytochemicals from Fagonia indica. Pakistan journal of pharmaceutical sciences. 2021 May; 34(3):883-889. doi: ". [PMID: 34602410]
  • Paulina Laszuk, Aneta D Petelska. Interactions between Phosphatidylcholine and Kaempferol or Myristicin: Langmuir Monolayers and Microelectrophoretic Studies. International journal of molecular sciences. 2021 Apr; 22(9):. doi: 10.3390/ijms22094729. [PMID: 33946951]
  • Luis Fernando Méndez-López, Pierluigi Caboni, Eder Arredondo-Espinoza, Juan J J Carrizales-Castillo, Isaías Balderas-Rentería, María Del Rayo Camacho-Corona. Bioassay-Guided Identification of the Antiproliferative Compounds of Cissus trifoliata and the Transcriptomic Effect of Resveratrol in Prostate Cancer Pc3 Cells. Molecules (Basel, Switzerland). 2021 Apr; 26(8):. doi: 10.3390/molecules26082200. [PMID: 33920405]
  • Ashraf Al-Brakati, Alaa Jameel A Albarakati, Maha S Lokman, Abdulrahman Theyab, Mohammad Algahtani, Salah Menshawi, Ohoud D AlAmri, Naif E Al Omairi, Ehab A Essawy, Rami B Kassab, Ahmed E Abdel Moneim. Possible Role of Kaempferol in Reversing Oxidative Damage, Inflammation, and Apoptosis-Mediated Cortical Injury Following Cadmium Exposure. Neurotoxicity research. 2021 Apr; 39(2):198-209. doi: 10.1007/s12640-020-00300-2. [PMID: 33141427]
  • Magdalena Kluska, Michał Juszczak, Jerzy Żuchowski, Anna Stochmal, Katarzyna Woźniak. Kaempferol and Its Glycoside Derivatives as Modulators of Etoposide Activity in HL-60 Cells. International journal of molecular sciences. 2021 Mar; 22(7):. doi: 10.3390/ijms22073520. [PMID: 33805363]
  • Wu Luo, Xiaojun Chen, Lin Ye, Xuemei Chen, Wenjing Jia, Yanni Zhao, Aleksandr V Samorodov, Yali Zhang, Xueting Hu, Fei Zhuang, Jianchang Qian, Chao Zheng, Guang Liang, Yi Wang. Kaempferol attenuates streptozotocin-induced diabetic nephropathy by downregulating TRAF6 expression: The role of TRAF6 in diabetic nephropathy. Journal of ethnopharmacology. 2021 Mar; 268(?):113553. doi: 10.1016/j.jep.2020.113553. [PMID: 33152432]
  • Yrvinn Campos-Vidal, Maribel Herrera-Ruiz, Gabriela Trejo-Tapia, Manases Gonzalez-Cortazar, Antonio Jiménez Aparicio, Alejandro Zamilpa. Gastroprotective activity of kaempferol glycosides from Malvaviscus arboreus Cav. Journal of ethnopharmacology. 2021 Mar; 268(?):113633. doi: 10.1016/j.jep.2020.113633. [PMID: 33253829]
  • Ankur Kumar Tanwar, Neha Dhiman, Amit Kumar, Vikas Jaitak. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. European journal of medicinal chemistry. 2021 Mar; 213(?):113037. doi: 10.1016/j.ejmech.2020.113037. [PMID: 33257172]
  • Sen Ling Feng, Jing Zhang, Hongliu Jin, Wen Ting Zhu, Zhongwen Yuan. A Network Pharmacology Study of the Molecular Mechanisms of Hypericum japonicum in the Treatment of Cholestatic Hepatitis with Validation in an Alpha-Naphthylisothiocyanate (ANIT) Hepatotoxicity Rat Model. Medical science monitor : international medical journal of experimental and clinical research. 2021 Mar; 27(?):e928402. doi: 10.12659/msm.928402. [PMID: 33657087]
  • Xiao-Yuan Guo, Yi-Qing Lv, Ying Ye, Ze-Ye Liu, Xin-Qiang Zheng, Jian-Liang Lu, Yue-Rong Liang, Jian-Hui Ye. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves. Food chemistry. 2021 Mar; 339(?):128088. doi: 10.1016/j.foodchem.2020.128088. [PMID: 32979714]
  • Mira Oh, Seo-Young Kim, SeonJu Park, Kil-Nam Kim, Seung Hyun Kim. Phytochemicals in Chinese Chive (Allium tuberosum) Induce the Skeletal Muscle Cell Proliferation via PI3K/Akt/mTOR and Smad Pathways in C2C12 Cells. International journal of molecular sciences. 2021 Feb; 22(5):. doi: 10.3390/ijms22052296. [PMID: 33669060]
  • Soyoung Hur, Eungyeong Jang, Jang-Hoon Lee. Beneficial Actions of Orostachys japonica and Its Compounds against Tumors via MAPK Signaling Pathways. Nutrients. 2021 Feb; 13(2):. doi: 10.3390/nu13020555. [PMID: 33567572]
  • Kouadio Ibrahime Sinan, Gunes Ak, Ouattara Katinan Etienne, József Jekő, Zoltán Cziáky, Katalin Gupcsó, Maria João Rodrigues, Luisa Custodio, Mohamad Fawzi Mahomoodally, Jugreet B Sharmeen, Luigi Brunetti, Sheila Leone, Lucia Recinella, Annalisa Chiavaroli, Giustino Orlando, Luigi Menghini, Massimo Tacchini, Claudio Ferrante, Gokhan Zengin. Deeper Insights on Alchornea cordifolia (Schumach. & Thonn.) Müll.Arg Extracts: Chemical Profiles, Biological Abilities, Network Analysis and Molecular Docking. Biomolecules. 2021 02; 11(2):. doi: 10.3390/biom11020219. [PMID: 33557215]
  • Assad Ullah, Aftab Ahmad Anjum, Masood Rabbani, Muhammad Nawaz, Muhammad Ashraf, Muhammad Ijaz, Asad Ali, Anjum Rashid, Imran Najeeb, Asim Pervez. Phytochemical composition and In-vitro activity of ethanolic extract of Eucalyptus globulus leaves against multidrug resistant poultry pathogens. Cellular and molecular biology (Noisy-le-Grand, France). 2021 Jan; 67(1):159-164. doi: 10.14715/cmb/2021.67.1.24. [PMID: 34817352]
  • Fabián Olazarán-Santibañez, Gildardo Rivera, Venancio Vanoye-Eligio, Arturo Mora-Olivo, Gabriel Aguirre-Guzmán, Mónica Ramírez-Cabrera, Eder Arredondo-Espinoza. Antioxidant and Antiproliferative Activity of The Ethanolic Extract of Equisetum Myriochaetum and Molecular Docking of Its Main Metabolites (Apigenin, Kaempferol, and Quercetin) on β-Tubulin. Molecules (Basel, Switzerland). 2021 Jan; 26(2):. doi: 10.3390/molecules26020443. [PMID: 33466999]
  • Thamizharasi Erusappan, Sree Karani Kondapuram, Sanmuga Priya Ekambaram, Mohane Selvaraj Coumar. Investigation of Alpinia calcarata constituent interactions with molecular targets of rheumatoid arthritis: docking, molecular dynamics, and network approach. Journal of molecular modeling. 2021 Jan; 27(1):14. doi: 10.1007/s00894-020-04651-7. [PMID: 33403456]
  • Yifan Qu, Xinyi Li, Fengying Xu, Shimin Zhao, Xuemei Wu, Yuzhen Wang, Jiming Xie. Kaempferol Alleviates Murine Experimental Colitis by Restoring Gut Microbiota and Inhibiting the LPS-TLR4-NF-κB Axis. Frontiers in immunology. 2021; 12(?):679897. doi: 10.3389/fimmu.2021.679897. [PMID: 34367139]
  • Shuzhen Wang, Shiying Huang, Jie Yang, Zhiliang Li, Mingju Zhang, Yuanping Fang, Qiaofeng Yang, Weibin Jin. Metabolite profiling of violet, white and pink flowers revealing flavonoids composition patterns in Rhododendron pulchrum Sweet. Journal of biosciences. 2021; 46(?):. doi: 10.1007/s12038-020-00125-3. [PMID: 33576341]
  • Jing Fan, Xin-Huai Zhao, Tie-Jing Li. Heat treatment of galangin and kaempferol inhibits their benefits to improve barrier function in rat intestinal epithelial cells. The Journal of nutritional biochemistry. 2021 01; 87(?):108517. doi: 10.1016/j.jnutbio.2020.108517. [PMID: 33011286]
  • Jingyun Jin, Bin Chen, Xiangyang Zhan, Zhiyi Zhou, Hui Liu, Yun Dong. Network pharmacology and molecular docking study on the mechanism of colorectal cancer treatment using Xiao-Chai-Hu-Tang. PloS one. 2021; 16(6):e0252508. doi: 10.1371/journal.pone.0252508. [PMID: 34125845]
  • Yan-Yun Liu, Li-Hua Yu, Juan Zhang, Dao-Jun Xie, Xin-Xiang Zhang, Jia-Ming Yu. Network Pharmacology-Based and Molecular Docking-Based Analysis of Suanzaoren Decoction for the Treatment of Parkinson's Disease with Sleep Disorder. BioMed research international. 2021; 2021(?):1752570. doi: 10.1155/2021/1752570. [PMID: 34660782]
  • Jordan M Chapman, Gloria K Muday. Flavonols modulate lateral root emergence by scavenging reactive oxygen species in Arabidopsis thaliana. The Journal of biological chemistry. 2021 Jan; 296(?):100222. doi: 10.1074/jbc.ra120.014543. [PMID: 33839683]
  • Peramaiyan Rajendran, Rebai Ben Ammar, Fatma J Al-Saeedi, Maged E Mohamed, Medhat A ElNaggar, Saeed Y Al-Ramadan, Gamal M Bekhet, Ahmed M Soliman. Kaempferol Inhibits Zearalenone-Induced Oxidative Stress and Apoptosis via the PI3K/Akt-Mediated Nrf2 Signaling Pathway: In Vitro and In Vivo Studies. International journal of molecular sciences. 2020 Dec; 22(1):. doi: 10.3390/ijms22010217. [PMID: 33379332]
  • José Antonio Velázquez-Domínguez, Verónica Ivonne Hernández-Ramírez, Fernando Calzada, Luis Varela-Rodríguez, Diana L Pichardo-Hernández, Elihú Bautista, Mayra Herrera-Martínez, Rodrigo D Castellanos-Mijangos, Audifas Salvador Matus-Meza, Bibiana Chávez-Munguía, Patricia Talamás-Rohana. Linearolactone and Kaempferol Disrupt the Actin Cytoskeleton in Entamoeba histolytica: Inhibition of Amoebic Liver Abscess Development. Journal of natural products. 2020 12; 83(12):3671-3680. doi: 10.1021/acs.jnatprod.0c00892. [PMID: 33231455]
  • Yin-Sheng Quan, Xiao-Yong Zhang, Xiu-Mei Yin, Si-Hong Wang, Li-Li Jin. Potential α-glucosidase inhibitor from Hylotelephium erythrostictum. Bioorganic & medicinal chemistry letters. 2020 12; 30(24):127665. doi: 10.1016/j.bmcl.2020.127665. [PMID: 33152378]
  • Jianwei Chen, Yaojia Lu, Xinyi Ye, Mahmoud Emam, Huawei Zhang, Hong Wang. Current advances in Vibrio harveyi quorum sensing as drug discovery targets. European journal of medicinal chemistry. 2020 Dec; 207(?):112741. doi: 10.1016/j.ejmech.2020.112741. [PMID: 32871343]
  • Jiao Cao, Chaomei Li, Pengyu Ma, Yuanyuan Ding, Jiapan Gao, Qianqian Jia, Jing Zhu, Tao Zhang. Effect of kaempferol on IgE-mediated anaphylaxis in C57BL/6 mice and LAD2 cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2020 Dec; 79(?):153346. doi: 10.1016/j.phymed.2020.153346. [PMID: 33002828]
  • Daiane M O Quaresma, Allisson B Justino, Raquel M F Sousa, Rodrigo A A Munoz, Francisco J T de Aquino, Mário M Martins, Luiz R Goulart, Marcos Pivatto, Foued S Espindola, Alberto de Oliveira. Antioxidant compounds from Banisteriopsis argyrophylla leaves as α-amylase, α-glucosidase, lipase, and glycation inhibitors. Bioorganic chemistry. 2020 12; 105(?):104335. doi: 10.1016/j.bioorg.2020.104335. [PMID: 33074116]
  • Yifei Lu, Mingmei Shao, Hongjiao Xiang, Peiyong Zheng, Tao Wu, Guang Ji. Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis. Food & function. 2020 Nov; 11(11):10058-10069. doi: 10.1039/d0fo02123g. [PMID: 33135718]
  • Fujiao Nie, Wenjuan Zhang, Qun Cui, Yajing Fu, Hongkun Li, Jun Zhang. Kaempferol promotes proliferation and osteogenic differentiation of periodontal ligament stem cells via Wnt/β-catenin signaling pathway. Life sciences. 2020 Oct; 258(?):118143. doi: 10.1016/j.lfs.2020.118143. [PMID: 32717269]
  • Yi-Chao Du, Li Lai, Hao Zhang, Fu-Rui Zhong, Huan-Li Cheng, Bao-Lin Qian, Peng Tan, Xian-Ming Xia, Wen-Guang Fu. Kaempferol from Penthorum chinense Pursh suppresses HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity. Food & function. 2020 Sep; 11(9):7925-7934. doi: 10.1039/d0fo00724b. [PMID: 32820776]
  • Jiao Cao, Yuejin Wang, Shiling Hu, Yuanyuan Ding, Qianqian Jia, Jing Zhu, Hongli An. Kaempferol ameliorates secretagogue-induced pseudo-allergic reactions via inhibiting intracellular calcium fluctuation. The Journal of pharmacy and pharmacology. 2020 Sep; 72(9):1221-1231. doi: 10.1111/jphp.13312. [PMID: 32557699]
  • Keke Li, Shasha Li, Fei Xu, Guiyun Cao, Xiaojie Gong. A novel acylated quercetin glycoside and compounds of inhibitory effects on α-glucosidase from Panax ginseng flower buds. Natural product research. 2020 Sep; 34(18):2559-2565. doi: 10.1080/14786419.2018.1543685. [PMID: 30450965]
  • Lucía Fernández-Del-Río, Eric Soubeyrand, Gilles J Basset, Catherine F Clarke. Metabolism of the Flavonol Kaempferol in Kidney Cells Liberates the B-ring to Enter Coenzyme Q Biosynthesis. Molecules (Basel, Switzerland). 2020 Jun; 25(13):. doi: 10.3390/molecules25132955. [PMID: 32605010]
  • Camile Cecconi Cechinel-Zanchett, Luísa Nathália Bolda Mariano, Thaise Boeing, Juliana de Carvalho da Costa, Luísa Mota Da Silva, Jairo K Bastos, Valdir Cechinel-Filho, Priscila de Souza. Diuretic and Renal Protective Effect of Kaempferol 3-O-Alpha-l-rhamnoside (Afzelin) in Normotensive and Hypertensive Rats. Journal of natural products. 2020 06; 83(6):1980-1989. doi: 10.1021/acs.jnatprod.0c00274. [PMID: 32453565]
  • Stefania Cicolari, Marco Dacrema, Arold Jorel Tsetegho Sokeng, Jianbo Xiao, Achille Parfait Atchan Nwakiban, Carmen Di Giovanni, Cristina Santarcangelo, Paolo Magni, Maria Daglia. Hydromethanolic Extracts from Adansonia digitata L. Edible Parts Positively Modulate Pathophysiological Mechanisms Related to the Metabolic Syndrome. Molecules (Basel, Switzerland). 2020 Jun; 25(12):. doi: 10.3390/molecules25122858. [PMID: 32575811]
  • Xiaoqing Fan, Jie Bai, Minwan Hu, Yanxia Xu, Shengyu Zhao, Yanhong Sun, Baolian Wang, Jinping Hu, Yan Li. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects. Toxicology. 2020 05; 437(?):152445. doi: 10.1016/j.tox.2020.152445. [PMID: 32259555]
  • Mohamed A Salem, Haidy E Michel, Marwa I Ezzat, Mona M Okba, Ahmed M El-Desoky, Shanaz O Mohamed, Shahira M Ezzat. Optimization of an Extraction Solvent for Angiotensin-Converting Enzyme Inhibitors from Hibiscus sabdariffa L. Based on Its UPLC-MS/MS Metabolic Profiling. Molecules (Basel, Switzerland). 2020 May; 25(10):. doi: 10.3390/molecules25102307. [PMID: 32422967]
  • Yu Wang, Yan-Jiao Chen, Cheng Xiang, Guang-Wei Jiang, Yu-Dong Xu, Lei-Miao Yin, Dong-Dong Zhou, Yan-Yan Liu, Yong-Qing Yang. Discovery of potential asthma targets based on the clinical efficacy of Traditional Chinese Medicine formulas. Journal of ethnopharmacology. 2020 Apr; 252(?):112635. doi: 10.1016/j.jep.2020.112635. [PMID: 32004629]
  • Jing-Ran Fan, Yi Kuang, Ze-Yuan Dong, Yang Yi, Yan-Xia Zhou, Bin Li, Xue Qiao, Min Ye. Prenylated Phenolic Compounds from the Aerial Parts of Glycyrrhiza uralensis as PTP1B and α-Glucosidase Inhibitors. Journal of natural products. 2020 04; 83(4):814-824. doi: 10.1021/acs.jnatprod.9b00262. [PMID: 32196343]
  • Saleeha Hameed, Muhammad Sajid Arshad, Rabia Shabir Ahmad, Ghulam Hussain, Muhammad Imran, Muhammad Umair Arshad, Aftab Ahmed, Muhammad Imran, Ali Imran. Potential preventive and protective perspectives of different spice powders and their mixtures in rat model. Lipids in health and disease. 2020 Apr; 19(1):78. doi: 10.1186/s12944-020-01223-9. [PMID: 32326942]
  • Claudio Frezza, Daniela De Vita, Giulia Spinaci, Marco Sarandrea, Alessandro Venditti, Armandodoriano Bianco. Secondary metabolites of Tilia tomentosa Moench inflorescences collected in Central Italy: chemotaxonomy relevance and phytochemical rationale of traditional use. Natural product research. 2020 Apr; 34(8):1167-1174. doi: 10.1080/14786419.2018.1550487. [PMID: 30638062]
  • Sourav Das, Zaved Hazarika, Sharat Sarmah, Kakali Baruah, Mostofa Ataur Rohman, Debojit Paul, Anupam Nath Jha, Atanu Singha Roy. Exploring the interaction of bioactive kaempferol with serum albumin, lysozyme and hemoglobin: A biophysical investigation using multi-spectroscopic, docking and molecular dynamics simulation studies. Journal of photochemistry and photobiology. B, Biology. 2020 Apr; 205(?):111825. doi: 10.1016/j.jphotobiol.2020.111825. [PMID: 32142995]
  • Ana M Ribes-Moya, Ana M Adalid, Maria D Raigón, Pilar Hellín, Ana Fita, Adrián Rodríguez-Burruezo. Variation in flavonoids in a collection of peppers (Capsicum sp.) under organic and conventional cultivation: effect of the genotype, ripening stage, and growing system. Journal of the science of food and agriculture. 2020 Mar; 100(5):2208-2223. doi: 10.1002/jsfa.10245. [PMID: 31909478]
  • Huifang Zhang, Rui Liu, Qun Lu. Separation and Characterization of Phenolamines and Flavonoids from Rape Bee Pollen, and Comparison of Their Antioxidant Activities and Protective Effects Against Oxidative Stress. Molecules (Basel, Switzerland). 2020 Mar; 25(6):. doi: 10.3390/molecules25061264. [PMID: 32168811]
  • Chit Care, Wannapa Sornjai, Janejira Jaratsittisin, Atitaya Hitakarun, Nitwara Wikan, Kanokporn Triwitayakorn, Duncan R Smith. Discordant Activity of Kaempferol Towards Dengue Virus and Japanese Encephalitis Virus. Molecules (Basel, Switzerland). 2020 Mar; 25(5):. doi: 10.3390/molecules25051246. [PMID: 32164193]
  • Yinrui Chen, Guoji Pan, Wenfen Xu, Qingwen Sun, Bo Wang, Ye Zhang, Tianjin Yang. Spectrum-effect relationship study between HPLC fingerprints and antioxidant activity of Sabia parviflora. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2020 Mar; 1140(?):121970. doi: 10.1016/j.jchromb.2020.121970. [PMID: 32032821]
  • Yue Yang, Mingchang Liu, Kai Wang, Yange Yang, Ning Su, Wensheng Huang, Yajun Wu. Chemical and cytological evaluation of honeybee pollen antioxidant ability. Journal of food science. 2020 Mar; 85(3):824-833. doi: 10.1111/1750-3841.15047. [PMID: 32078757]
  • Namfa Sermkaew, Thipapun Plyduang. Self-microemulsifying drug delivery systems of Moringa oleifera extract for enhanced dissolution of kaempferol and quercetin. Acta pharmaceutica (Zagreb, Croatia). 2020 Mar; 70(1):77-88. doi: 10.2478/acph-2020-0012. [PMID: 31677372]
  • Flavien Bermont, Aurelie Hermant, Romy Benninga, Christian Chabert, Guillaume Jacot, Jaime Santo-Domingo, Marine R-C Kraus, Jerome N Feige, Umberto De Marchi. Targeting Mitochondrial Calcium Uptake with the Natural Flavonol Kaempferol, to Promote Metabolism/Secretion Coupling in Pancreatic β-cells. Nutrients. 2020 Feb; 12(2):. doi: 10.3390/nu12020538. [PMID: 32093050]
  • Wenping Huang, Zhiqi Wen, Mengmeng Wang, Bubin Xu, Bin Zhou, Xiaojing Li. Anticomplement and antitussive activities of major compound extracted from Chimonanthus nitens Oliv. leaf. Biomedical chromatography : BMC. 2020 Feb; 34(2):e4736. doi: 10.1002/bmc.4736. [PMID: 31696526]
  • Wei-Chen Xiong, He-Zhen Wu, Yi-Yi Xiong, Bo Liu, Zhou-Tao Xie, Song-Tao Wu, Yun-Feng Yao, Yan-Fang Yang. Network Pharmacology-based Research of Active Components of Albiziae Flos and Mechanisms of Its Antidepressant Effect. Current medical science. 2020 Feb; 40(1):123-129. doi: 10.1007/s11596-020-2155-7. [PMID: 32166674]
  • William Y Boadi, Elbert L Myles, Alekzander S Garcia. Phospho Tensin Homolog in Human and Lipid Peroxides in Peripheral Blood Mononuclear Cells Following Exposure to Flavonoids. Journal of the American College of Nutrition. 2020 02; 39(2):135-146. doi: 10.1080/07315724.2019.1616234. [PMID: 31192773]
  • Atsumi Shimada, Hiroshi Ueno, Masanori Inagaki, Hitoshi Yoshimitsu. Comparative studies of the biological activities of selected herbal extracts and phenolic compounds isolated from Rosa gallica. Zeitschrift fur Naturforschung. C, Journal of biosciences. 2020 Jan; 75(1-2):31-39. doi: 10.1515/znc-2019-0117. [PMID: 32031983]
  • Lu Zhao, Junbo Sun, Suqin Shi, Xiao Qin, Keke Zhang, Jiangyan Xu. Kaempferol protects retinal ganglion ceils from high-glucose-induced injury by regulating vasohibin-1. Neuroscience letters. 2020 01; 716(?):134633. doi: 10.1016/j.neulet.2019.134633. [PMID: 31743752]
  • Jing Chen, Yan-Han Xuan, Ming-Xiao Luo, Xiang-Gui Ni, Li-Qian Ling, Shi-Jia Hu, Jing-Qiao Chen, Jia-Yi Xu, Li-Ya Jiang, Wen-Zhang Si, Lin Xu, Hui Gao, Zheng Liu, Haiyu Li. Kaempferol alleviates acute alcoholic liver injury in mice by regulating intestinal tight junction proteins and butyrate receptors and transporters. Toxicology. 2020 01; 429(?):152338. doi: 10.1016/j.tox.2019.152338. [PMID: 31785310]
  • Liangjun Yang, Haiwen Li, Maoyi Yang, Weijian Zhang, Mianli Li, Yifei Xu, Jingwei Li, Jianyuan Kang, Jingchao Zhang, Shaoju Guo. Exploration in the Mechanism of Kaempferol for the Treatment of Gastric Cancer Based on Network Pharmacology. BioMed research international. 2020; 2020(?):5891016. doi: 10.1155/2020/5891016. [PMID: 33145355]
  • Yuyang Wang, Tongtong Liu, Fang Ma, Xiaoguang Lu, Huimin Mao, Weie Zhou, Liping Yang, Ping Li, Yongli Zhan. A Network Pharmacology-Based Strategy for Unveiling the Mechanisms of Tripterygium Wilfordii Hook F against Diabetic Kidney Disease. Journal of diabetes research. 2020; 2020(?):2421631. doi: 10.1155/2020/2421631. [PMID: 33274236]
  • Janet Alejandra Gutierrez-Uribe, Mauricio Salinas-Santander, Delia Serna-Guerrero, Sergio Roman Othon Serna-Saldivar, Ana Maria Rivas-Estilla, Clara Patricia Rios-Ibarra. Inhibition of miR31 and miR92a as Oncological Biomarkers in RKO Colon Cancer Cells Treated with Kaempferol-3-O-Glycoside Isolated from Black Bean. Journal of medicinal food. 2020 Jan; 23(1):50-55. doi: 10.1089/jmf.2019.0059. [PMID: 31441682]
  • Xiaojun Ji, Jing Cao, Liting Zhang, Zhirui Zhang, Weiwei Shuai, Wu Yin. Kaempferol Protects Renal Fibrosis through Activating the BMP-7-Smad1/5 Signaling Pathway. Biological & pharmaceutical bulletin. 2020; 43(3):533-539. doi: 10.1248/bpb.b19-01010. [PMID: 32115512]