NCBI Taxonomy: 46417
Tetrapanax papyrifer (ncbi_taxid: 46417)
found 290 associated metabolites at species taxonomy rank level.
Ancestor: Tetrapanax
Child Taxonomies: none taxonomy data.
Coumarin
Coumarin appears as colorless crystals, flakes or colorless to white powder with a pleasant fragrant vanilla odor and a bitter aromatic burning taste. (NTP, 1992) Coumarin is a chromenone having the keto group located at the 2-position. It has a role as a fluorescent dye, a plant metabolite and a human metabolite. Coumarin is a natural product found in Eupatorium cannabinum, Eupatorium japonicum, and other organisms with data available. Coumarin is o hydroxycinnamic acid. Pleasant smelling compound found in many plants and released on wilting. Has anticoagulant activity by competing with Vitamin K. Coumarin is a chemical compound/poison found in many plants, notably in high concentration in the tonka bean, woodruff, and bison grass. It has a sweet scent, readily recognised as the scent of newly-mown hay. It has clinical value as the precursor for several anticoagulants, notably warfarin. --Wikipedia. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. The parent compound, coumarin, occurs naturally in many plants, natural spices, and foods such as tonka bean, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% to 6.4\\\\% in fine fragrances to <0.01\\\\% in detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and ... Coumarin belongs to the class of chemicals known as chromenones. Specifically it is a chromenone having the keto group located at the 2-position. A chromenone is a benzene molecule with two adjacent hydrogen atoms replaced by a lactone-like chain forming a second six-membered heterocycle that shares two carbons with the benzene ring. Coumarin is also described as a benzopyrone and is considered as a lactone. Coumarin is a colorless crystalline solid with a bitter taste and sweet odor resembling the scent of vanilla or the scent of newly-mowed or recently cut hay. It is a chemical poison found in many plants where it may serve as a chemical defense against predators. Coumarin occurs naturally in many plants and foods such as the tonka bean, woodruff, bison grass, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, to 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% To 6.4\\\\% In fine fragrances to <0.01\\\\% In detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. It has clinical value as the precursor for several anticoagulants, notably warfarin. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 Mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 Mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and other coumarin derivatives, coumarin has no anti-coagulant activity. However, at low doses (typically 7 to 10 mg/day), coumarin has been used as a venotonic to promote... C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent A chromenone having the keto group located at the 2-position. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB013_Coumarin_pos_20eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_30eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_10eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_50eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_40eV_CB000008.txt Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.
Cinnamic acid
Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID C016 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
Kaempferol
Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].
Araloside A
Chikusetsusaponin-IV is a triterpenoid saponin. It has a role as a metabolite. Araloside A is a natural product found in Kalopanax septemlobus, Bassia muricata, and other organisms with data available. Araloside A is found in green vegetables. Araloside A is from Aralia elata (Japanese angelica tree From Aralia elata (Japanese angelica tree). Araloside A is found in green vegetables. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1]. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1].
3,4-Dihydro-2H-1-benzopyran-2-one
3,4-Dihydro-2H-1-benzopyran-2-one, also known as 3,4-dihydrocoumarin or 1,2-benzodihydropyrone, belongs to the class of organic compounds known as 3,4-dihydrocoumarins. These are 3,4-dihydrogenated coumarins. Coumarin is a bicyclic compound that are 1-benzopyran carrying an oxo group at the 2-position. 3,4-Dihydro-2H-1-benzopyran-2-one exists in all living organisms, ranging from bacteria to humans. 3,4-Dihydro-2H-1-benzopyran-2-one is a sweet, almond, and cinnamon tasting compound. 3,4-Dihydro-2H-1-benzopyran-2-one has been detected, but not quantified, in several different foods, such as green vegetables, pulses, sour cherries, and tarragons. A chromanone that is the 3,4-dihydro derivative of coumarin. 3,4-dihydrocoumarin is a white to pale yellow clear oily liquid with a sweet odor. Solidifies around room temperature. (NTP, 1992) 3,4-dihydrocoumarin is a chromanone that is the 3,4-dihydro derivative of coumarin. It has a role as a plant metabolite. It is functionally related to a coumarin. 3,4-Dihydrocoumarin is a natural product found in Glebionis segetum, Prunus mahaleb, and other organisms with data available. Isolated from Melilotus officinalis (sweet clover). Flavouring ingredient. 3,4-Dihydro-2H-1-benzopyran-2-one is found in many foods, some of which are sour cherry, tarragon, green vegetables, and pulses. A chromanone that is the 3,4-dihydro derivative of coumarin. [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_20eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_30eV_CB000080.txt [Raw Data] CB236_3; 4-Dihydrocoumarin_pos_10eV_CB000080.txt Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
beta-Sitosterol 3-O-beta-D-galactopyranoside
Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.
trans-Cinnamyl alcohol
Cinnamyl alcohol is a primary alcohol comprising an allyl core with a hydroxy substituent at the 1-position and a phenyl substituent at the 3-position (geometry of the C=C bond unspecified). It has a role as a plant metabolite. Cinnamyl alcohol is a naturally occurring compound that is found within cinnamon. Due to the low levels found in cinnamon, cinnamyl alcohol is usually supplied as [DB14184] within commercial products. Cinnamyl alcohol has been shown to be a skin sensitizer, with a NOEL (No Effect Level) of ~4\\\\%. Sensitivity to cinnamyl alcohol may be identified with a clinical patch test. Cinnamyl alcohol is a Standardized Chemical Allergen. The physiologic effect of cinnamyl alcohol is by means of Increased Histamine Release, and Cell-mediated Immunity. Cinnamyl alcohol is a natural product found in Nicotiana bonariensis, Cinnamomum burmanni, and other organisms with data available. See also: Cinnamon (part of); Chinese Cinnamon (part of); Cinnamomum cassia twig (part of). Constituent of storax and Peruvian balsam, mainly as ester of Cinnamic acid. Flavouring. Stabiliser. trans-Cinnamyl alcohol is found in many foods, some of which are chinese mustard, italian sweet red pepper, alfalfa, and canada blueberry. trans-Cinnamyl alcohol is found in bilberry. trans-Cinnamyl alcohol is a constituent of storax and Peruvian balsam, mainly as ester of Cinnamic acid. trans-Cinnamyl alcohol is a flavouring. trans-Cinnamyl alcohol is a stabiliser A primary alcohol comprising an allyl core with a hydroxy substituent at the 1-position and a phenyl substituent at the 3-position (geometry of the C=C bond unspecified). Cinnamyl Alcohol is an active component from chestnut flower, inhibits increased PPARγ expression, with anti-obesity activity[1]. Cinnamyl Alcohol is an active component from chestnut flower, inhibits increased PPARγ expression, with anti-obesity activity[1].
Calenduloside E
Oleanolic acid 3-O-beta-D-glucosiduronic acid is a beta-D-glucosiduronic acid. It is functionally related to an oleanolic acid. Calenduloside E is a natural product found in Anredera baselloides, Polyscias scutellaria, and other organisms with data available. See also: Calendula Officinalis Flower (part of). Constituent of Calendula officinalis (pot marigold), Beta vulgaris (sugar beet) and Momordica cochinchinensis (Chinese cucumber). Oleanolic acid 3-glucuronide is found in common beet, green vegetables, and root vegetables. Calenduloside E is found in common beet. Calenduloside E is a constituent of Calendula officinalis (pot marigold), Beta vulgaris (sugar beet) and Momordica cochinchinensis (Chinese cucumber). Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1]. Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1].
Astragalin
Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].
Cinnamic acid
Cinnamic acid, also known as (Z)-cinnamate or 3-phenyl-acrylate, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Cinnamic acid can be obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is a weakly acidic compound (based on its pKa). It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Cinnamic acid exists in all living organisms, ranging from bacteria to plants to humans. Outside of the human body, cinnamic acid has been detected, but not quantified in, chinese cinnamons. In plants, cinnamic acid is a central intermediate in the biosynthesis of myriad natural products include lignols (precursors to lignin and lignocellulose), flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3778; ORIGINAL_PRECURSOR_SCAN_NO 3776 CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3783; ORIGINAL_PRECURSOR_SCAN_NO 3781 Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. cis-Cinnamic acid is found in chinese cinnamon. CONFIDENCE standard compound; INTERNAL_ID 183 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
Trifolin
Kaempferol 3-o-beta-d-galactopyranoside, also known as trifolin or trifolioside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-o-beta-d-galactopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-d-galactopyranoside can be found in horseradish, which makes kaempferol 3-o-beta-d-galactopyranoside a potential biomarker for the consumption of this food product. Kaempferol 3-O-beta-D-galactoside is a beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position. It has a role as a plant metabolite and an antifungal agent. It is a beta-D-galactoside, a monosaccharide derivative, a glycosyloxyflavone and a trihydroxyflavone. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferol 3-O-beta-D-galactoside(1-). Trifolin is a natural product found in Lotus ucrainicus, Saxifraga tricuspidata, and other organisms with data available. Isoastragalin is found in fats and oils. Isoastragalin is isolated from Gossypium hirsutum (cotton) and other plant species. A beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position.
Cinnamyl alcohol
Flavouring ingredient. Cinnamyl alcohol is found in many foods, some of which are papaya, kumquat, german camomile, and common mushroom. Cinnamyl alcohol is found in anise. Cinnamyl alcohol is a flavouring ingredien Cinnamyl Alcohol is an active component from chestnut flower, inhibits increased PPARγ expression, with anti-obesity activity[1]. Cinnamyl Alcohol is an active component from chestnut flower, inhibits increased PPARγ expression, with anti-obesity activity[1].
Durupcoside A
Durupcoside A is found in green vegetables. Durupcoside A is a constituent of Aralia elata (Japanese angelica tree) Constituent of Aralia elata (Japanese angelica tree). Durupcoside A is found in green vegetables.
Tarasaponin IV
Tarasaponin IV is found in green vegetables. Tarasaponin IV is a constituent of Aralia elata (Japanese angelica tree). Constituent of Aralia elata (Japanese angelica tree). Tarasaponin IV is found in green vegetables.
Afzelin
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one can be found in a number of food items such as endive, linden, peach, and ginkgo nuts, which makes 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one a potential biomarker for the consumption of these food products. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Chikusetsu saponin iva
Momordin B
Momordin b, also known as oleanolic acid 3-O-glucuronide or 3-O-(b-D-glucopyranuronosyl)oleanolate, is a member of the class of compounds known as triterpene saponins. Triterpene saponins are glycosylated derivatives of triterpene sapogenins. The sapogenin moiety backbone is usually based on the oleanane, ursane, taraxastane, bauerane, lanostane, lupeol, lupane, dammarane, cycloartane, friedelane, hopane, 9b,19-cyclo-lanostane, cycloartane, or cycloartanol skeleton. Momordin b is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Momordin b can be found in bitter gourd, which makes momordin b a potential biomarker for the consumption of this food product. Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1]. Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1].
1,2,3-Trimethoxybenzene
1,2,3-trimethoxybenzene, also known as methylsyringol or pyrogallol trimethyl ether, is a member of the class of compounds known as anisoles. Anisoles are organic compounds containing a methoxybenzene or a derivative thereof. 1,2,3-trimethoxybenzene is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 1,2,3-trimethoxybenzene can be found in tea, which makes 1,2,3-trimethoxybenzene a potential biomarker for the consumption of this food product. 1,2,3-Trimethoxybenzene is a member of the class of compounds known as anisoles. 1,2,3-Trimethoxybenzene can be found in tea, which makes 1,2,3-trimethoxybenzene a potential biomarker for the consumption of this food product.
Astragalin
Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].
Afzelin
Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].
Swartziol
Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].
Trifolin
Isolated from Gossypium hirsutum (cotton) and other plant subspecies Isoastragalin is found in fats and oils. Isolated from liquorice (Glycyrrhiza glabra). Acetylastragalin is found in herbs and spices. Widespread occurrence in plant world, e.g. Pinus sylvestris (Scotch pine) and fruits of Scolymus hispanicus (Spanish salsify). Kaempferol 3-galactoside is found in many foods, some of which are horseradish, almond, peach, and tea.
Cinnamic Acid
Trans-cinnamic acid, also known as (2e)-3-phenyl-2-propenoic acid or (E)-cinnamate, is a member of the class of compounds known as cinnamic acids. Cinnamic acids are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Trans-cinnamic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Trans-cinnamic acid is a sweet, balsam, and honey tasting compound and can be found in a number of food items such as maitake, mustard spinach, common wheat, and barley, which makes trans-cinnamic acid a potential biomarker for the consumption of these food products. Trans-cinnamic acid can be found primarily in saliva. Trans-cinnamic acid exists in all living species, ranging from bacteria to humans. Trans-cinnamic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cinnamic acid is an organic compound with the formula C6H5CHCHCO2H. It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Classified as an unsaturated carboxylic acid, it occurs naturally in a number of plants. It exists as both a cis and a trans isomer, although the latter is more common . Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
dimethoxyanisole
A methoxybenzene that is benzene substituted by methoxy groups at positions 1, 2 and 3 respectively. 1,2,3-Trimethoxybenzene is a member of the class of compounds known as anisoles. 1,2,3-Trimethoxybenzene can be found in tea, which makes 1,2,3-trimethoxybenzene a potential biomarker for the consumption of this food product.
Kaempferol
Annotation level-3 Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.010 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.011 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2141; CONFIDENCE confident structure IPB_RECORD: 3341; CONFIDENCE confident structure IPB_RECORD: 3321; CONFIDENCE confident structure CONFIDENCE confident structure; IPB_RECORD: 3321 IPB_RECORD: 141; CONFIDENCE confident structure Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].
Daucosterol
Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.
Coumarin
Coumarin, also known as 1,2-benzopyrone or benzo-alpha-pyrone, belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Coumarin is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Coumarin is a sweet, green, and new mown hay tasting compound and can be found in a number of food items such as malus (crab apple), sunburst squash (pattypan squash), european cranberry, and star anise, which makes coumarin a potential biomarker for the consumption of these food products. Coumarin can be found primarily in saliva. Coumarin is formally rated as an unfounded non-carcinogenic (IARC 3) potentially toxic compound. Coumarin was first synthesized in 1868. It is used in the pharmaceutical industry as a precursor reagent in the synthesis of a number of synthetic anticoagulant pharmaceuticals similar to dicoumarol, the notable ones being warfarin (brand name Coumadin) and some even more potent rodenticides that work by the same anticoagulant mechanism. 4-hydroxycoumarins are a type of vitamin K antagonist. Pharmaceutical (modified) coumarins were all developed from the study of sweet clover disease; see warfarin for this history. However, unmodified coumarin itself, as it occurs in plants, has no effect on the vitamin K coagulation system, or on the action of warfarin-type drugs . C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2337 COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.657 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.654 IPB_RECORD: 3881; CONFIDENCE confident structure Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.
Araloside A
Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1]. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1].
Coumarin
Coumarin (/ˈkuːmərɪn/) or 2H-chromen-2-one is an aromatic organic chemical compound with formula C9H6O2. Its molecule can be described as a benzene molecule with two adjacent hydrogen atoms replaced by an unsaturated lactone ring −(CH)=(CH)−(C=O)−O−, forming a second six-membered heterocycle that shares two carbons with the benzene ring. It belongs to the benzopyrone chemical class and considered as a lactone.[1] Coumarin is a colorless crystalline solid with a sweet odor resembling the scent of vanilla and a bitter taste.[1] It is found in many plants, where it may serve as a chemical defense against predators. Coumarin inhibits synthesis of vitamin K, a key component in blood clotting. A related compound, the prescription drug anticoagulant warfarin, is used to inhibit formation of blood clots, deep vein thrombosis, and pulmonary embolism.[1][2] Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.
Cinnamyl alcohol
Cinnamyl Alcohol is an active component from chestnut flower, inhibits increased PPARγ expression, with anti-obesity activity[1]. Cinnamyl Alcohol is an active component from chestnut flower, inhibits increased PPARγ expression, with anti-obesity activity[1].
Durupcoside A
kaempferol 7-O-(2-E-p-coumaroyl-alpha-L-rhamnopyranoside)
A glycosyloxyflavone that consists of kaempferol attached to a 2-E-p-coumaroyl-alpha-L-rhamnopyranosyl moiety at position 7 via a glycosidic linkage. Isolated from the flowers and fruits of Tetrapanax papyriferus, it exhibits antineoplastic activity.
Rattex
C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.
Styrone
Cinnamyl Alcohol is an active component from chestnut flower, inhibits increased PPARγ expression, with anti-obesity activity[1]. Cinnamyl Alcohol is an active component from chestnut flower, inhibits increased PPARγ expression, with anti-obesity activity[1].
Zimtsaeure
Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
AI3-02077
1,2,3-Trimethoxybenzene is a member of the class of compounds known as anisoles. 1,2,3-Trimethoxybenzene can be found in tea, which makes 1,2,3-trimethoxybenzene a potential biomarker for the consumption of this food product.
melilotin
Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1]. Dihydrocoumarin is a compound found in Melilotus officinalis. Dihydrocoumarin is a yeast Sir2p inhibitor. Dihydrocoumarin also inhibits human SIRT1 and SIRT2 with IC50s of 208 μM and 295 μM, respectively[1].
kaempferol 7-O-(2,3-di-E-p-coumaroyl-alpha-L-rhamnopyranoside)
A glycosyloxyflavone that consists of kaempferol attached to a 2,3-di-E-p-coumaroyl-alpha-L-rhamnopyranosyl moiety at position 7. Isolated from the flowers and fruits of Tetrapanax papyriferus, it exhibits antineoplastic activity.
trans-Cinnamic acid
trans-Cinnamic acid, also known as (e)-cinnamic acid or phenylacrylic acid, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. trans-Cinnamic acid exists in all living species, ranging from bacteria to humans. trans-Cinnamic acid is a sweet, balsam, and cinnamon tasting compound. Outside of the human body, trans-Cinnamic acid is found, on average, in the highest concentration within a few different foods, such as chinese cinnamons, olives, and lingonberries and in a lower concentration in redcurrants, red raspberries, and corianders. trans-Cinnamic acid has also been detected, but not quantified in several different foods, such as common oregano, pepper (spice), fennels, pomegranates, and european cranberries. This could make trans-cinnamic acid a potential biomarker for the consumption of these foods. Cinnamic acid has been shown to be a microbial metabolite; it can be found in Alcaligenes, Brevibacterium, Cellulomonas, and Pseudomonas (PMID:16349793). trans-Cinnamic acid is a potentially toxic compound. Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is found in many foods, some of which are green bell pepper, olive, pepper (spice), and pear. A monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].
Araloside_A
Chikusetsusaponin-IV is a triterpenoid saponin. It has a role as a metabolite. Araloside A is a natural product found in Kalopanax septemlobus, Bassia muricata, and other organisms with data available. A natural product found in Panax japonicus var. major. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1]. Araloside A (Chikusetsusaponin IV) is a component of Panax japonicus, with low-renin-inhibitory activity, with an IC50 of 77.4 μM[1].
Momordin B
Oleanolic acid 3-O-beta-D-glucosiduronic acid is a beta-D-glucosiduronic acid. It is functionally related to an oleanolic acid. Calenduloside E is a natural product found in Anredera baselloides, Polyscias scutellaria, and other organisms with data available. See also: Calendula Officinalis Flower (part of). Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1]. Calenduloside E (CE) is a natural pentacyclic triterpenoid saponin extracted from Aralia elata. Calenduloside E (CE) has anti-apoptotic potent by targeting heat shock protein 90 (Hsp90)[1].
6-{[8a-({[6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4ar,6as,6br,8ar,10r,12ar,12br,14bs)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picene-4a-carboxylate
(3r,4r,4as,6as,6br,8ar,10r,12as,12br)-3,4,10-trihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (3r,4ar,6as,6br,8ar,12as,12br,13r,14bs)-3-hydroxy-13-methoxy-2,2,6a,6b,9,9,12a-heptamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydro-1h-picene-4a-carboxylate
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
6-[({6-[(acetyloxy)methyl]-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)methyl]-3,4,5-trihydroxyoxan-2-yl 10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picene-4a-carboxylate
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
methyl 10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b-decahydro-1h-picene-4a-carboxylate
5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one
(3r,4ar,6as,6br,8ar,12as,12br)-3-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b-decahydro-1h-picene-4a-carboxylic acid
6-[(8a-carboxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
(6as,6br,8ar,12as,12br)-2,2,6a,6b,9,9,12a-heptamethyl-5,6,7,8,8a,11,12,12b-octahydro-1h-picene-3,10-dione
methyl 6-{[8a-(methoxycarbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate
(3s,4ar,6as,6br,8ar,12as,12br)-3-(acetyloxy)-3-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-oxo-1,4,5,6,7,8,8a,11,12,12b-decahydropicene-4a-carboxylic acid
(4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-5-hydroxy-10-{[(2s,3s,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-6-[(acetyloxy)methyl]-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4ar,6as,6br,8ar,10r,12ar,12br,14bs)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picene-4a-carboxylate
6-{[8a-({[6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
C54H86O23 (1102.5559606000002)
(4ar,6as,6br,8ar,10r,12as,12br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b-decahydro-1h-picene-4a-carboxylic acid
10-[(3,5-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picene-4a-carboxylic acid
(2s,3r,4r,5s,6s)-2-{[3,5-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl]oxy}-5-hydroxy-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-6-methyloxan-3-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate
2,2,6a,6b,9,9,12a-heptamethyl-3,10-dioxo-1,4,5,6,7,8,8a,11,12,12b-decahydropicene-4a-carboxylic acid
2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
2,2,6a,6b,9,9,12a-heptamethyl-5,6,7,8,8a,11,12,12b-octahydro-1h-picene-3,10-dione
10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b-decahydro-1h-picene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4ar,6ar,6bs,8ar,12as,14bs)-2,2,6a,6b,9,9,12a-heptamethyl-3,10-dioxo-1,4,5,6,7,8,8a,11,12,14b-decahydropicene-4a-carboxylate
methyl (4ar,6as,6br,8ar,10s,12as,12br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b-decahydro-1h-picene-4a-carboxylate
(2r,4as,4br,9s,9as,11as,13as,13br,15ar)-2,9-dihydroxy-1,1,4a,8,8,13a,13b-heptamethyl-2h,3h,4h,4bh,7h,9h,9ah,12h,13h,14h,15h,15ah-piceno[4,4a-b]oxet-11-one
3,10-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydropicene-4a-carboxylic acid
methyl 6-{[8a-({[6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxyoxane-2-carboxylate
6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 3-hydroxy-13-methoxy-2,2,6a,6b,9,9,12a-heptamethyl-10-oxo-3,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydro-1h-picene-4a-carboxylate
10-{[5-hydroxy-3,4-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
3-(acetyloxy)-3-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-oxo-1,4,5,6,7,8,8a,11,12,12b-decahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4ar,6ar,6bs,8ar,10r,12as,14bs)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,14b-decahydro-1h-picene-4a-carboxylate
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-({[(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid
C54H86O23 (1102.5559606000002)
10-[(4,5-dihydroxy-6-methyl-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-6-[(acetyloxy)methyl]-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4ar,6as,6br,8ar,10r,12as,12br,13r,14bs)-10-hydroxy-13-methoxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picene-4a-carboxylate
C51H80O20 (1012.5242680000001)
6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 2,2,6a,6b,9,9,12a-heptamethyl-3,10-dioxo-1,4,5,6,7,8,8a,11,12,14b-decahydropicene-4a-carboxylate
6-({[3,4-dihydroxy-6-(hydroxymethyl)-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl 10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,14b-decahydro-1h-picene-4a-carboxylate
2,9-dihydroxy-1,1,4a,8,8,13a,13b-heptamethyl-2h,3h,4h,4bh,7h,9h,9ah,12h,13h,14h,15h,15ah-piceno[4,4a-b]oxet-11-one
6-[({6-[(acetyloxy)methyl]-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)methyl]-3,4,5-trihydroxyoxan-2-yl 13-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3,10-dioxo-1,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydropicene-4a-carboxylate
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5r,6r)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-({[(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate
C54H86O23 (1102.5559606000002)
2-{[3,5-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl]oxy}-4,5-dihydroxy-6-methyloxan-3-yl 3-(4-hydroxyphenyl)prop-2-enoate
methyl 6-{[4,4,6a,6b,11,11,14b-heptamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate
2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate
5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-10-[(3,4,5-trihydroxyoxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(4ar,6as,6br,8ar,12as,12br)-2,2,6a,6b,9,9,12a-heptamethyl-3,10-dioxo-1,4,5,6,7,8,8a,11,12,12b-decahydropicene-4a-carboxylic acid
methyl (2s,3s,4r,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-({[(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4,5-dihydroxyoxane-2-carboxylate
6-[({6-[(acetyloxy)methyl]-3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)methyl]-3,4,5-trihydroxyoxan-2-yl 10-hydroxy-13-methoxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picene-4a-carboxylate
C51H80O20 (1012.5242680000001)
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,5,6,7,8,8a,10,11,12,12b-decahydropicen-3-one
(4ar,5r,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
2-{[3,5-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-7-yl]oxy}-5-hydroxy-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-6-methyloxan-3-yl 3-(4-hydroxyphenyl)prop-2-enoate
4-[3,7-bis(acetyloxy)-5-hydroxy-4-oxochromen-2-yl]phenyl acetate
(4as,6as,6br,8ar,10s,12ar,12br,14bs)-10-{[(2s,3r,4s,5s)-5-hydroxy-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
10-[(4,5-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-5-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid
(2s,3r,4s,5s,6r)-6-({[(2r,3r,4r,5s,6r)-6-[(acetyloxy)methyl]-3,4-dihydroxy-5-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl (4ar,6as,6br,8ar,12as,12br,13r,14bs)-13-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3,10-dioxo-1,4,5,6,7,8,8a,11,12,12b,13,14b-dodecahydropicene-4a-carboxylate
methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-(methoxycarbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-{[(2s,3r,4r,5s)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4-hydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate
(4ar,6as,6br,8ar,10r,12ar,12br,14bs)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-3-oxo-4,5,6,7,8,8a,10,11,12,12b,13,14b-dodecahydro-1h-picene-4a-carboxylic acid
(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4-dihydroxy-5-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylic acid
3,4,10-trihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydropicene-4a-carboxylic acid
methyl 6-{[4,4,6a,6b,11,11,14b-heptamethyl-8a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-4-hydroxy-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-2-carboxylate
C54H86O23 (1102.5559606000002)