NCBI Taxonomy: 616984
Alangium salviifolium (ncbi_taxid: 616984)
found 115 associated metabolites at species taxonomy rank level.
Ancestor: Alangium
Child Taxonomies: none taxonomy data.
Cephaeline
Cephaeline is a pyridoisoquinoline comprising emetam having a hydroxy group at the 6-position and methoxy substituents at the 7-, 10- and 11-positions. It derives from a hydride of an emetan. Cephaeline is a natural product found in Dorstenia psilurus, Pogonopus tubulosus, and other organisms with data available. Cephaeline is an alkaloid compound that belongs to the isoquinoline alkaloid family. It is naturally found in certain plant species, particularly those of the Cephalotaxus genus, which includes trees and shrubs native to East Asia and the Himalayas. Cephaeline is known for its pharmacological properties and has been the subject of various studies for its potential therapeutic applications. Chemically, cephaeline has a complex structure characterized by an isoquinoline core with additional functional groups attached. It is classified as a monoterpenoid indole alkaloid, reflecting its biosynthetic origin from the amino acid tryptophan. The presence of these functional groups contributes to its biological activity and pharmacological effects. In terms of its physical properties, cephaeline is typically a crystalline solid with a defined melting point. It is slightly soluble in water but more soluble in organic solvents, which is common for alkaloids of its class. The exact color and solubility characteristics can vary depending on the presence of impurities or derivatives. Cephaeline has been of interest in the field of pharmacognosy and drug discovery due to its potential therapeutic effects, including anti-cancer, anti-inflammatory, and neuroprotective properties. However, further research is needed to fully understand its mechanisms of action and potential uses in medicine. Annotation level-1 (-)-Cephaeline. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=483-17-0 (retrieved 2024-07-12) (CAS RN: 483-17-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Sweroside
Sweroside is a glycoside. Sweroside is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. See also: Lonicera japonica flower (part of); Menyanthes trifoliata leaf (part of); Centaurium erythraea whole (part of). Sweroside, isolated from Lonicera japonica, exhibits cytoprotective, anti-osteoporotic, and hepatoprotective effect[1][2]. Sweroside, isolated from Lonicera japonica, exhibits cytoprotective, anti-osteoporotic, and hepatoprotective effect[1][2].
Loganic_acid
C16H24O10 (376.13694039999996)
Loganic acid is a cyclopentapyran that is 1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid substituted at positions 1, 6 and 7 by beta-D-glucosyloxy, hydroxy and methyl groups respectively It has a role as a plant metabolite. It is a cyclopentapyran, an alpha,beta-unsaturated monocarboxylic acid and a glucoside. It is a conjugate acid of a loganate. Loganic acid is a natural product found in Strychnos axillaris, Strychnos cocculoides, and other organisms with data available. A cyclopentapyran that is 1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carboxylic acid substituted at positions 1, 6 and 7 by beta-D-glucosyloxy, hydroxy and methyl groups respectively KEIO_ID L043 Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].
Kaempferol
Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].
Salicin
Salicin, also known as salicoside or delta-salicin, is an aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. It has a role as a prodrug, an antipyretic, a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is an aryl beta-D-glucoside, an aromatic primary alcohol and a member of benzyl alcohols. It derives from a salicyl alcohol. Salicin belongs to the class of organic compounds known as phenolic glycosides. These are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Salicin exists in all living organisms, ranging from bacteria to humans. Salicin is a bitter tasting compound. Salicin is an aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. It has a role as a prodrug, an antipyretic, a non-narcotic analgesic, a non-steroidal anti-inflammatory drug, an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is an aryl beta-D-glucoside, an aromatic primary alcohol and a member of benzyl alcohols. It is functionally related to a salicyl alcohol. Salicin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicin is a natural product found in Salix candida, Populus tremula, and other organisms with data available. Salicin is an alcoholic β-glycoside that contains D-glucose. Salicin is an anti-inflammatory agent that is produced from willow bark. Salicin is closely related in chemical make-up to aspirin and has a very similar action in the human body. When consumed by humans, Salicin is metabolized into salicylic acid. [HMDB] An aryl beta-D-glucoside that is salicyl alcohol in which the phenolic hydrogen has been replaced by a beta-D-glucosyl residue. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Salicin is a natural COX inhibitor. Salicin is a natural COX inhibitor.
Dopamine
Dopamine is a member of the catecholamine family of neurotransmitters in the brain and is a precursor to epinephrine (adrenaline) and norepinephrine (noradrenaline). Dopamine is synthesized in the body (mainly by nervous tissue and adrenal glands) first by the hydration of the amino acid tyrosine to DOPA by tyrosine hydroxylase and then by the decarboxylation of DOPA by aromatic-L-amino-acid decarboxylase. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (dopamine receptors) mediates its action, which plays a major role in reward-motivated behaviour. Dopamine has many other functions outside the brain. In blood vessels, dopamine inhibits norepinephrine release and acts as a vasodilator (at normal concentrations); in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. Parkinsons disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists, which reduce dopamine activity. Attention deficit hyperactivity disorder, bipolar disorder, and addiction are also characterized by defects in dopamine production or metabolism. It has been suggested that animals derived their dopamine-synthesizing machinery from bacteria via horizontal gene transfer that may have occurred relatively late in evolutionary time. This is perhaps a result of the symbiotic incorporation of bacteria into eukaryotic cells that gave rise to mitochondria. Dopamine is elevated in the urine of people who consume bananas. When present in sufficiently high levels, dopamine can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of dopamine are associated with neuroblastoma, Costello syndrome, leukemia, phaeochromocytoma, aromatic L-amino acid decarboxylase deficiency, and Menkes disease (MNK). High levels of dopamine can lead to hyperactivity, insomnia, agitation and anxiety, depression, delusions, excessive salivation, nausea, and digestive problems. A study has shown that urinary dopamine is produced by Bacillus and Serratia (PMID: 24621061) Occurs in several higher plants, such as banana (Musa sapientum). As a member of the catecholamine family, dopamine is a precursor to norepinephrine (noradrenaline) and then epinephrine (adrenaline) in the biosynthetic pathways for these neurotransmitters. Dopamine is elevated in the urine of people who consume bananas. Dopamine is found in many foods, some of which are garden onion, purslane, garden tomato, and swiss chard. Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80\% of the catecholamine content in the brain. It is an amine synthesized by removing a carboxyl group from a molecule of its precursor chemical, L-DOPA, which is synthesized in the brain and kidneys. Dopamine is also synthesized in plants and most animals. In the brain, dopamine functions as a neurotransmitter—a chemical released by neurons (nerve cells) to send signals to other nerve cells. Neurotransmitters are synthesized in specific regions of the brain, but affect many regions systemically. The brain includes several distinct dopamine pathways, one of which plays a major role in the motivational component of reward-motivated behavior. The anticipation of most types of rewards increases the level of dopamine in the brain,[4] and many addictive drugs increase dopamine release or block its reuptake into neurons following release.[5] Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones. These pathways and cell groups form a dopamine system which is neuromodulatory.[5] In popular culture and media, dopamine is often portrayed as the main chemical of pleasure, but the current opinion in pharmacology is that dopamine instead confers motivational salience;[6][7][8] in other words, dopamine signals the perceived motivational prominence (i.e., the desirability or aversiveness) of an outcome, which in turn propels the organism's behavior toward or away from achieving that outcome.[8][9] Outside the central nervous system, dopamine functions primarily as a local paracrine messenger. In blood vessels, it inhibits norepinephrine release and acts as a vasodilator; in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. With the exception of the blood vessels, dopamine in each of these peripheral systems is synthesized locally and exerts its effects near the cells that release it. Several important diseases of the nervous system are associated with dysfunctions of the dopamine system, and some of the key medications used to treat them work by altering the effects of dopamine. Parkinson's disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. Its metabolic precursor L-DOPA can be manufactured; Levodopa, a pure form of L-DOPA, is the most widely used treatment for Parkinson's. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists which reduce dopamine activity.[10] Similar dopamine antagonist drugs are also some of the most effective anti-nausea agents. Restless legs syndrome and attention deficit hyperactivity disorder (ADHD) are associated with decreased dopamine activity.[11] Dopaminergic stimulants can be addictive in high doses, but some are used at lower doses to treat ADHD. Dopamine itself is available as a manufactured medication for intravenous injection. It is useful in the treatment of severe heart failure or cardiogenic shock.[12] In newborn babies it may be used for hypotension and septic shock.[13] Dopamine is synthesized in a restricted set of cell types, mainly neurons and cells in the medulla of the adrenal glands.[22] The primary and minor metabolic pathways respectively are: Primary: L-Phenylalanine → L-Tyrosine → L-DOPA → Dopamine[19][20] Minor: L-Phenylalanine → L-Tyrosine → p-Tyramine → Dopamine[19][20][21] Minor: L-Phenylalanine → m-Tyrosine → m-Tyramine → Dopamine[21][23][24] The direct precursor of dopamine, L-DOPA, can be synthesized indirectly from the essential amino acid phenylalanine or directly from the non-essential amino acid tyrosine.[25] These amino acids are found in nearly every protein and so are readily available in food, with tyrosine being the most common. Although dopamine is also found in many types of food, it is incapable of crossing the blood–brain barrier that surrounds and protects the brain.[26] It must therefore be synthesized inside the brain to perform its neuronal activity.[26] L-Phenylalanine is converted into L-tyrosine by the enzyme phenylalanine hydroxylase, with molecular oxygen (O2) and tetrahydrobiopterin as cofactors. L-Tyrosine is converted into L-DOPA by the enzyme tyrosine hydroxylase, with tetrahydrobiopterin, O2, and iron (Fe2+) as cofactors.[25] L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with pyridoxal phosphate as the cofactor.[25] Dopamine itself is used as precursor in the synthesis of the neurotransmitters norepinephrine and epinephrine.[25] Dopamine is converted into norepinephrine by the enzyme dopamine β-hydroxylase, with O2 and L-ascorbic acid as cofactors.[25] Norepinephrine is converted into epinephrine by the enzyme phenylethanolamine N-methyltransferase with S-adenosyl-L-methionine as the cofactor.[25] Some of the cofactors also require their own synthesis.[25] Deficiency in any required amino acid or cofactor can impair the synthesis of dopamine, norepinephrine, and epinephrine.[25] Degradation Dopamine is broken down into inactive metabolites by a set of enzymes—monoamine oxidase (MAO), catechol-O-methyl transferase (COMT), and aldehyde dehydrogenase (ALDH), acting in sequence.[27] Both isoforms of monoamine oxidase, MAO-A and MAO-B, effectively metabolize dopamine.[25] Different breakdown pathways exist but the main end-product is homovanillic acid (HVA), which has no known biological activity.[27] From the bloodstream, homovanillic acid is filtered out by the kidneys and then excreted in the urine.[27] The two primary metabolic routes that convert dopamine into HVA are:[28] Dopamine → DOPAL → DOPAC → HVA – catalyzed by MAO, ALDH, and COMT respectively Dopamine → 3-Methoxytyramine → HVA – catalyzed by COMT and MAO+ALDH respectively In clinical research on schizophrenia, measurements of homovanillic acid in plasma have been used to estimate levels of dopamine activity in the brain. A difficulty in this approach however, is separating the high level of plasma homovanillic acid contributed by the metabolism of norepinephrine.[29][30] Although dopamine is normally broken down by an oxidoreductase enzyme, it is also susceptible to oxidation by direct reaction with oxygen, yielding quinones plus various free radicals as products.[31] The rate of oxidation can be increased by the presence of ferric iron or other factors. Quinones and free radicals produced by autoxidation of dopamine can poison cells, and there is evidence that this mechanism may contribute to the cell loss that occurs in Parkinson's disease and other conditions.[32]
Emetine
C29H40N2O4 (480.29879200000005)
A pyridoisoquinoline comprising emetam having methoxy substituents at the 6-, 7-, 10- and 11-positions. It is an antiprotozoal agent and emetic. It inhibits SARS-CoV2, Zika and Ebola virus replication and displays antimalarial, antineoplastic and antiamoebic properties. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01A - Agents against amoebiasis and other protozoal diseases D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D005765 - Gastrointestinal Agents > D002400 - Cathartics D005765 - Gastrointestinal Agents > D004639 - Emetics D002491 - Central Nervous System Agents Origin: Plant; Formula(Parent): C29H40N2O4; Bottle Name:Emetine dihydrochloride; PRIME Parent Name:Emetine; PRIME in-house No.:V0282; SubCategory_DNP: Isoquinoline alkaloids, Emetine alkaloids Annotation level-1 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2501; CONFIDENCE confident structure
(-)-Salsoline
(-)-Salsoline is a compound that crystallizes from alcohol solution, melts at 221 oC, soluble in hot alcohol and chloroform; used in medicine as an antihypertensive agent. Salsoline as well as salsolinol were found in male alcoholic inpatientss urine and lumbar cerebrospinal fluid when patients were still intoxicated after a heavy alcohol debauch and after they had been inpatients and off alcohol for one week.There was a wide interindividual variation and no statistical significant difference in the levels between the first and second sampling in CSF or urine.[PMID: 6935920]. (-)-Salsoline is a compound that crystallizes from alcohol solution, melts at 221 oC, soluble in hot alcohol and chloroform; used in medicine as an antihypertensive agent. D009676 - Noxae > D009498 - Neurotoxins
deacetylisoipecoside
Isoipecoside in which the acetyl group attaced to the nitrogen is replaced by hydrogen.
Marckine
Alangicine
An isoquinoline alkaloid that is 1,2-didehydroemetan bearing two hydroxy substituents at positions 6 and 9 as well as three methoxy substituents at positions 7, 10 and 11.
Alangimarckine
A member of the class of beta-carbolines that is tubulosan bearing methoxy groups at positions 10 and 11 as well as a hydroxy group at position 9.
Alangimarine
A member of the class of isoquinolinonaphthyridines that is 5,6-dihydroisoquinolino[2,1-b][2,7]naphthyridin-8-one bearing additional hydroxy, methoxy and vinyl substituents at positions 2, 3 and 12 respectively.
alangiside
C25H31NO10 (505.19478660000004)
An organic heterotetracyclic compound that is an alkaloidal glycoside isolated from Alangium salviifolium.
Ankorine
C19H29NO4 (335.20964740000005)
A pyridoisoquinoline that is 1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinoline which is substituted at positions 2, 3, and 8 by 2-hydroxyethyl, ethyl, and hydroxy groups, respectively, and by methoxy groups at positions 9 and 10 (the 2R,3R,11bS stereoisomer). It is a benzo[a]quinolizidine alkaloid isolated from the Indian medicinal plant Alangium lamarckii.
Alamarine
C19H18N2O4 (338.12665080000005)
A member of the class of isoquinolinonaphthyridines that is 5,6-dihydroisoquinolino[2,1-b][2,7]naphthyridin-8-one bearing additional hydroxy, methoxy and 1-hydroxyethyl substituents at positions 2, 3 and 12.
Cephaeline
Salsoline
D009676 - Noxae > D009498 - Neurotoxins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.159 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.150
Swartziol
Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].
methyluracil
A pyrimidone that is uracil with a methyl group substituent at position 1.
Kaempferol
Annotation level-3 Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.010 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.011 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2141; CONFIDENCE confident structure IPB_RECORD: 3341; CONFIDENCE confident structure IPB_RECORD: 3321; CONFIDENCE confident structure CONFIDENCE confident structure; IPB_RECORD: 3321 IPB_RECORD: 141; CONFIDENCE confident structure Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].
Loganic acid
C16H24O10 (376.13694039999996)
8-Epiloganic acid is a natural product found in Plantago atrata, Lonicera japonica, and other organisms with data available. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. 8-Epiloganic acid, an iridoid glucoside, can be found in Linaria cymbalaria (Scrophulariaceae)[1]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2]. Loganic acid is an iridoid isolated from cornelian cherry fruits. Loganic acid can modulate diet-induced atherosclerosis and redox status. Loganic acid has strong free radical scavenging activity and remarkable cyto-protective effect against heavy metal mediated toxicity[1][2].
Dopamine
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Catechol in which the hydrogen at position 4 is substituted by a 2-aminoethyl group. D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; VYFYYTLLBUKUHU_STSL_0097_Dopamine_2000fmol_180430_S2_LC02_MS02_90; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.
Dopamin
C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents
Tubulosine
A member of the class of beta-carbolines that is tubulosan bearing methoxy groups at positions 10 and 11 and a hydroxy group at the 8 position.
4-ethenyl-7,8-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,4a,5,5a,10,11-hexahydro-3h-2-oxa-12-azatetraphen-13-one
C24H29NO10 (491.17913740000006)
(3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)methyl (2e)-3-(2-hydroxyphenyl)prop-2-enoate
C22H24O10 (448.13694039999996)
10,11-dihydroxy-1-(hydroxymethyl)-7,8-dihydro-6-azatetraphen-5-one
(3s,4r,4as,5ar)-4-ethenyl-8-hydroxy-7-methoxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,4a,5,5a,10,11-hexahydro-3h-2-oxa-12-azatetraphen-13-one
C25H31NO10 (505.19478660000004)
(3s,4r,4as,5ar)-4-ethenyl-7-hydroxy-8-methoxy-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,4a,5,5a,10,11-hexahydro-3h-2-oxa-12-azatetraphen-13-one
C25H31NO10 (505.19478660000004)
2-{[1-(5-ethyl-6-methylhepta-3,6-dien-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 1-methylpyrrole-2-carboxylate
(2r,3r,4s,5s,6r)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5r)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol
4-ethenyl-7-hydroxy-8-methoxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,4a,5,5a,10,11-hexahydro-3h-2-oxa-12-azatetraphen-13-one
C25H31NO10 (505.19478660000004)
4-ethenyl-8-hydroxy-7-methoxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,4a,5,5a,10,11-hexahydro-3h-2-oxa-12-azatetraphen-13-one
C25H31NO10 (505.19478660000004)