Hesperidin (BioDeep_00000000354)
Secondary id: BioDeep_00000270276, BioDeep_00000344407, BioDeep_00000866218
natural product human metabolite PANOMIX_OTCML-2023
代谢物信息卡片
化学式: C28H34O15 (610.1898)
中文名称: 橙皮苷, 橙皮甙, 二氢黄酮甙
谱图信息:
最多检出来源 Viridiplantae(feces) 15.9%
分子结构信息
SMILES: c1(cc(c2c(c1)O[C@@H](CC2=O)c1cc(c(cc1)OC)O)O)O[C@H]1[C@@H]([C@H]([C@@H]([C@@H](O1)CO[C@@H]1O[C@H]([C@@H]([C@H]([C@@H]1O)O)O)C)O)O)O
InChI: InChI=1/C28H34O15/c1-10-21(32)23(34)25(36)27(40-10)39-9-19-22(33)24(35)26(37)28(43-19)41-12-6-14(30)20-15(31)8-17(42-18(20)7-12)11-3-4-16(38-2)13(29)5-11/h3-7,10,17,19,21-30,32-37H,8-9H2,1-2H3/t10-,17-,19+,21-,22+,23+,24-,25+,26+,27+,28+/m0/s1
描述信息
Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit. Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit due to vitamin C deficiency such as bruising due to capillary fragility were found in early studies to be relieved by crude vitamin C extract but not by purified vitamin C. The bioflavonoids, formerly called "vitamin P", were found to be the essential components in correcting this bruising tendency and improving the permeability and integrity of the capillary lining. These bioflavonoids include hesperidin, citrin, rutin, flavones, flavonols, catechin and quercetin. Of historical importance is the observation that "citrin", a mixture of two flavonoids, eriodictyol and hesperidin, was considered to possess a vitamin-like activity, as early as in 1949. Hesperidin deficiency has since been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. Supplemental hesperidin also helps in reducing oedema or excess swelling in the legs due to fluid accumulation. As with other bioflavonoids, hesperidin works best when administered concomitantly with vitamin C. No signs of toxicity have been observed with normal intake of hesperidin. Hesperidin was first discovered in 1827, by Lebreton, but not in a pure state and has been under continuous investigation since then (PMID:11746857).
Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin.
Hesperidin is a flavan-on glycoside found in citrus fruits.
Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available.
A flavanone glycoside found in CITRUS fruit peels.
See also: Tangerine peel (part of).
Found in most citrus fruits and other members of the Rutaceae, also in Mentha longifolia
Acquisition and generation of the data is financially supported in part by CREST/JST.
COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.770
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.767
[Raw Data] CB217_Hesperidin_pos_50eV_CB000076.txt
[Raw Data] CB217_Hesperidin_pos_20eV_CB000076.txt
[Raw Data] CB217_Hesperidin_pos_30eV_CB000076.txt
[Raw Data] CB217_Hesperidin_pos_10eV_CB000076.txt
[Raw Data] CB217_Hesperidin_pos_40eV_CB000076.txt
[Raw Data] CB217_Hesperidin_neg_20eV_000038.txt
[Raw Data] CB217_Hesperidin_neg_50eV_000038.txt
[Raw Data] CB217_Hesperidin_neg_10eV_000038.txt
[Raw Data] CB217_Hesperidin_neg_30eV_000038.txt
[Raw Data] CB217_Hesperidin_neg_40eV_000038.txt
Annotation level-1
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].
Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].
同义名列表
91 个代谢物同义名
(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one; (S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yloxy)methyl)tetrahydro-2H-pyran-2-yloxy)chroman-4-one; (2S)-5-hydroxy-2-(3-hydroxy-4-methoxy-phenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxy-chroman-4-one; (2S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one; (2S)-2-(4-methoxy-3-oxidanyl-phenyl)-7-[(2S,3R,4S,5S,6R)-6-[[(2R,3R,4R,5R,6S)-6-methyl-3,4,5-tris(oxidanyl)oxan-2-yl]oxymethyl]-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-5-oxidanyl-2,3-dihydrochromen-4-one; (2S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-oxanyl]oxymethyl]-2-oxanyl]oxy]-3,4-dihydro-2H-1-benzopyran-4-one; (2S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(3R,4S,5R,6R)-3,4,5-trihydroxy-6-({[(2S,3R,4R,5S,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one; (2S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxymethyl]oxan-2-yl]oxy-2,3-dihydrochromen-4-one; (2S)-5-hydroxy-2-(3-hydroxy-4-methoxy-phenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5S,6S)-3,4,5-trihydroxy-6-methyl-oxan-2-yl]oxymethyl]oxan-2-yl]oxy-chroman-4-one; (2S)-7-[[6-O-(6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl]oxy]-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydro-4H-1-benzopyran-4-one (Hesperidin); 4H-1-BENZOPYRAN-4-ONE, 7-((6-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)-.BETA.-D-GLUCOPYRANOSYL)OXY)-2,3-DIHYDO-5-HYDROXY-2-(3-HYDROXY-4-METHOXYPHENYL)-, (S)-; (2S)-7-((6-O-(6-DEOXY-.ALPHA.-L-MANNOPYRANOSYL)-.BETA.-D-GLUCOPYRANOSYL)OXY)-2,3-DIHYDRO-5-HYDROXY-2-(3-HYDROXY-4-METHOXYPHENYL)-4H-1-BENZOPYRAN-4-ONE; 4H-1-Benzopyran-4-one, 7-((6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-, (2S)-; (S)-7-[[6-O-(6-Deoxy-.alpha.-L-mannopyranosyl)-.beta.-D-glucopyranosyl]oxy]-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one; 4H-1-Benzopyran-4-one, 7-((6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-, (S)-; 4H-1-Benzopyran-4-one, 7-((6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydo-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-, (S)-; 7-((6-O-(6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one, (S)-; (2S)-7-((6-O-(6-DEOXY-alpha-L-MANNOPYRANOSYL)-beta-D-GLUCOPYRANOSYL)OXY)-2,3-DIHYDRO-5-HYDROXY-2-(3-HYDROXY-4-METHOXYPHENYL)-4H-1-BENZOPYRAN-4-ONE; (s)-7-[[6-o-(6-deoxy-alpha-l-mannopyranosyl)-beta-d-glucopyranosyl]oxy]-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4h-1-benzopyran-4-one; (2S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-oxo-3,4-dihydro-2H-chromen-7-yl 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside; 7-(6-O-Desoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyloxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-chromanon; 5-HYDROXY-2-(3-HYDROXY-4-METHOXYPHENYL)-7-((6-O-.ALPHA.-L-RHAMNOPYRANOSYL-.BETA.-D-GLUCOPYRANOSYL)OXY)-4-CHROMANON; 5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-((6-O-alpha-L-rhamnopyranosyl-beta-D-glucopyranosyl)oxy)-4-chromanon; Flavanone, 3,5,7-trihydroxy-4-methoxy-, 7-(6-O-alpha-L-rhamnosyl-delta-glucoside) (7ci); Flavanone, 3,5,7-trihydroxy-4-methoxy-, 7-(6-O-a-L-rhamnosyl-D-glucoside) (7ci); Flavanone, 3,5,7-trihydroxy-4-methoxy-, 7-(6-O-alpha-L-rhamnosyl-D-glucoside); Glucopyranoside, hesperetin-7 6-O-(6-deoxy-alpha-L-mannopyranosyl)-, beta-D-; Hesperidin, Pharmaceutical Secondary Standard; Certified Reference Material; Hesperetin, 7-(6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside); hesperetin 7-(6-O-alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside; Hesperidin, European Pharmacopoeia (EP) Reference Standard; Hesperidin, primary pharmaceutical reference standard; methyltetrahydro-2H-pyran-2-yloxy)methyl)tetrahydro-; 3,5-DIHYDROXY-4-METHOXY-7-RUTINOSYLOXYFLAVAN-4-ONE; 3,5-Dihydroxy-4-methoxy-7-rutinosyloxyflavan-4-on; 5-18-05-00218 (Beilstein Handbook Reference); (S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-; 7-((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-; Hesperetin-1-rhamnosido-D-Glucose; Aurantiamarin (Methyl Hesperidin); Hesperidin, analytical standard; 2H-pyran-2-yloxy)chroman-4-one; Hesperetin-7-O-rhamnoglucoside; 7-Rhamnoglucoside, Hesperetin; Hesperetin 7 Rhamnoglucoside; Hesperitin-7-rhamnoglucoside; hesperetin 7-rhamnoglucoside; QUQPHWDTPGMPEX-QJBIFVCTSA-N; Hesperetin 7-O-rutinoside; Hesperetin 7-rutinoside; Hesperetin 7 Rutinoside; Hesperetin-7-rutinoside; Hesperetin-rutinoside; Hesperidin, (S)-(-)-; Hesperetin Glycoside; Hesperetin-rutinosid; HESPERIDIN (USP-RS); HESPERIDIN [USP-RS]; HESPERIDIN [WHO-DD]; Hesperidin, >=80\\%; HESPERIDIN [MART.]; HESPERIDIN [VANDF]; (S)-(-)-Hesperidin; HESPERIDIN (MART.); HESPERIDIN [INCI]; Hesperidin, (2S)-; Prestwick3_000400; Hesperidin (JAN); HESPERIDIN [JAN]; BCBcMAP01_000136; HESPERIDIN [MI]; (2S)-Hesperidin; 2S, Hesperidin; Hesperidin,(S); BPBio1_000681; Hesperidin 2S; Hesper bitabs; Atripliside b; DIOSMIN [NDI]; Hesperidoside; Tox21_110448; Hesperidine; Hesperidina; SMP1_000149; Hesperidin; Hesperiden; USAF CF-3; DIOSVEIN; Cirantin; Ciratin; Hesperidin
数据库引用编号
61 个数据库交叉引用编号
- ChEBI: CHEBI:28775
- KEGG: C09755
- KEGGdrug: D01038
- PubChem: 53477767
- PubChem: 10621
- PubChem: 3594
- HMDB: HMDB0003265
- Metlin: METLIN3678
- DrugBank: DB04703
- ChEMBL: CHEMBL449317
- Wikipedia: Hesperidin
- LipidMAPS: LMPK12140451
- MeSH: Hesperidin
- ChemIDplus: 0000520263
- MetaCyc: CPD-7075
- KNApSAcK: C00000970
- foodb: FDB002680
- chemspider: 35013051
- chemspider: 10176
- CAS: 520-26-3
- MoNA: FIO00483
- MoNA: PS084909
- MoNA: PS084912
- MoNA: BML00664
- MoNA: TY000027
- MoNA: BML00682
- MoNA: PR308798
- MoNA: BML00653
- MoNA: PS084907
- MoNA: BML00642
- MoNA: BML00690
- MoNA: PR310491
- MoNA: FIO00486
- MoNA: FIO00492
- MoNA: FIO00490
- MoNA: BML81385
- MoNA: FIO00491
- MoNA: TY000206
- MoNA: PR100801
- MoNA: FIO00488
- MoNA: TY000036
- MoNA: FIO00484
- MoNA: BML81386
- MoNA: PR100354
- MoNA: PS084908
- MoNA: FIO00485
- MoNA: FIO00487
- MoNA: PR020046
- MoNA: PS084910
- MoNA: PS084911
- MoNA: BML00674
- MoNA: FIO00489
- medchemexpress: HY-15337
- PMhub: MS000000867
- PubChem: 11943
- 3DMET: B03253
- NIKKAJI: J4.480F
- RefMet: Hesperidin
- KNApSAcK: 28775
- LOTUS: LTS0011065
- LOTUS: LTS0261835
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
代谢反应
10 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(1)
- hesperitin glycoside biosynthesis:
UDP-β-L-rhamnose + hesperitin-7-O-β-D-glucoside ⟶ H+ + UDP + hesperidin
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(9)
- hesperitin glycoside biosynthesis:
UDP-β-L-rhamnose + hesperitin-7-O-β-D-glucoside ⟶ H+ + UDP + hesperidin
- hesperitin glycoside biosynthesis:
UDP-β-L-rhamnose + hesperitin-7-O-β-D-glucoside ⟶ H+ + UDP + hesperidin
- hesperitin glycoside biosynthesis:
UDP-β-L-rhamnose + hesperitin-7-O-β-D-glucoside ⟶ H+ + UDP + hesperidin
- hesperitin glycoside biosynthesis:
UDP-β-L-rhamnose + hesperitin-7-O-β-D-glucoside ⟶ H+ + UDP + hesperidin
- hesperitin glycoside biosynthesis:
UDP-β-L-rhamnose + hesperitin-7-O-β-D-glucoside ⟶ H+ + UDP + hesperidin
- hesperitin glycoside biosynthesis:
UDP-β-L-rhamnose + hesperitin-7-O-β-D-glucoside ⟶ H+ + UDP + hesperidin
- hesperitin glycoside biosynthesis:
UDP-β-L-rhamnose + hesperitin-7-O-β-D-glucoside ⟶ H+ + UDP + hesperidin
- hesperitin glycoside biosynthesis:
UDP-β-L-rhamnose + hesperitin-7-O-β-D-glucoside ⟶ H+ + UDP + hesperidin
- hesperitin glycoside biosynthesis:
(2S)-eriodictyol + SAM ⟶ (2S)-hesperetin + H+ + SAH
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
372 个相关的物种来源信息
- 378919 - Agathosma: LTS0261835
- 501610 - Agathosma betulina: 10.1016/S0731-7085(01)00476-9
- 501610 - Agathosma betulina: LTS0261835
- 4678 - Allium: LTS0261835
- 35875 - Allium fistulosum: 10.1002/JSFA.955
- 35875 - Allium fistulosum: LTS0261835
- 4668 - Amaryllidaceae: LTS0261835
- 4050 - Araliaceae: LTS0261835
- 4219 - Artemisia: LTS0261835
- 265783 - Artemisia capillaris: 10.1016/S0968-0896(00)00225-X
- 265783 - Artemisia capillaris: LTS0261835
- 6656 - Arthropoda: LTS0261835
- 40552 - Asparagaceae: LTS0011065
- 40552 - Asparagaceae: LTS0261835
- 1196499 - Aster souliei: 10.4268/CJCMM20111611
- 4210 - Asteraceae: LTS0261835
- 41487 - Baccharis: LTS0261835
- 3504 - Betula: LTS0261835
- 3505 - Betula pendula: 10.5586/ASBP.1980.025
- 3505 - Betula pendula: LTS0261835
- 1685989 - Betula × obscura: 10.5586/ASBP.1980.025
- 3514 - Betulaceae: LTS0261835
- 68528 - Boronia: LTS0261835
- 49798 - Calicotome: LTS0011065
- 49798 - Calicotome: LTS0261835
- 49799 - Calicotome villosa: 10.1016/S0367-326X(03)00061-3
- 49799 - Calicotome villosa: LTS0011065
- 49799 - Calicotome villosa: LTS0261835
- 3481 - Cannabaceae: LTS0261835
- 4200 - Caprifoliaceae: LTS0261835
- 13422 - Chrysanthemum: LTS0261835
- 41568 - Chrysanthemum × morifolium: 10.1021/NP50103A006
- 41549 - Cirsium: LTS0261835
- 41550 - Cirsium arvense: LTS0261835
- 2706 - Citrus: LTS0011065
- 2706 - Citrus: LTS0261835
- 159033 - Citrus aurantiifolia: 10.1016/0031-9422(93)85237-L
- 159033 - Citrus aurantiifolia: 10.1021/JF00037A011
- 159033 - Citrus aurantiifolia: 10.1021/JF901718U
- 43166 - Citrus aurantium: 10.1016/0031-9422(93)85237-L
- 43166 - Citrus aurantium: 10.1016/J.FITOTE.2003.12.010
- 43166 - Citrus aurantium: 10.1016/J.FOODCHEM.2003.09.037
- 43166 - Citrus aurantium: 10.1016/S0021-9673(97)00779-6
- 43166 - Citrus aurantium: 10.1016/S0021-9673(97)01131-X
- 43166 - Citrus aurantium: 10.1016/S0367-326X(99)00131-8
- 43166 - Citrus aurantium: 10.1021/JF00037A011
- 43166 - Citrus aurantium: 10.1021/JF00078A040
- 43166 - Citrus aurantium: 10.1021/JF0400967
- 43166 - Citrus aurantium: 10.1111/J.1365-2621.1998.TB15675.X
- 43166 - Citrus aurantium: 10.1201/B19644-31
- 43166 - Citrus aurantium: 10.1248/BPB.23.356
- 43166 - Citrus aurantium: 10.1248/YAKUSHI1947.108.10_1008
- 2709 - Citrus cavaleriei: 10.1016/0305-1978(95)00109-3
- 2709 - Citrus cavaleriei: LTS0261835
- 558547 - Citrus deliciosa:
- 558547 - Citrus deliciosa: 10.1002/PCA.771
- 1766678 - Citrus excelsa: 10.1016/0031-9422(93)85237-L
- 1766678 - Citrus excelsa: LTS0261835
- 76963 - Citrus glauca: 10.1016/0031-9422(93)85237-L
- 76963 - Citrus glauca: LTS0261835
- 170989 - Citrus hystrix:
- 170989 - Citrus hystrix: 10.1016/0031-9422(93)85237-L
- 170989 - Citrus hystrix: 10.1016/0305-1978(95)00109-3
- 170989 - Citrus hystrix: LTS0261835
- 416197 - Citrus inodora: 10.1016/0031-9422(93)85237-L
- 416197 - Citrus inodora: LTS0261835
- 64884 - Citrus jambhiri: 10.1016/0031-9422(93)85237-L
- 64884 - Citrus jambhiri: LTS0261835
- 135197 - Citrus junos: 10.1016/0305-1978(95)00109-3
- 135197 - Citrus junos: 10.1055/S-2001-16484
- 135197 - Citrus junos: LTS0011065
- 135197 - Citrus junos: LTS0261835
- 170988 - Citrus latipes: 10.1016/0305-1978(95)00109-3
- 170988 - Citrus latipes: LTS0261835
- 2708 - Citrus limon: 10.1007/BF00579159
- 2708 - Citrus limon: 10.1016/0021-9673(95)00676-1
- 2708 - Citrus limon: 10.1016/0031-9422(89)80118-9
- 2708 - Citrus limon: 10.1016/0031-9422(93)85237-L
- 2708 - Citrus limon: 10.1016/J.FOODCHEM.2003.09.037
- 2708 - Citrus limon: 10.1016/S0308-8146(02)00102-4
- 2708 - Citrus limon: 10.1021/JF00037A011
- 2708 - Citrus limon: 10.1021/JF0304775
- 2708 - Citrus limon: 10.1201/B19644-31
- 171249 - Citrus limonia: LTS0011065
- 171249 - Citrus limonia: LTS0261835
- 481548 - Citrus longispina: 10.1016/0031-9422(93)85237-L
- 481548 - Citrus longispina: LTS0261835
- 307630 - Citrus macrophylla:
- 307630 - Citrus macrophylla: 10.1016/0031-9422(93)85237-L
- 307630 - Citrus macrophylla: 10.1016/0305-1978(95)00109-3
- 307630 - Citrus macrophylla: LTS0261835
- 37334 - Citrus maxima:
- 37334 - Citrus maxima: 10.1002/PCA.771
- 37334 - Citrus maxima: 10.1016/0021-9673(94)89051-X
- 37334 - Citrus maxima: 10.1016/0031-9422(93)85237-L
- 37334 - Citrus maxima: 10.1021/JF00078A040
- 37334 - Citrus maxima: 10.1111/J.1365-2621.1998.TB15675.X
- 37334 - Citrus maxima: LTS0261835
- 171251 - Citrus medica:
- 171251 - Citrus medica: 10.1016/0031-9422(93)85237-L
- 171251 - Citrus medica: 10.1021/NP060217S
- 171251 - Citrus medica: 10.1271/NOGEIKAGAKU1924.59.405
- 171251 - Citrus medica: LTS0011065
- 171251 - Citrus medica: LTS0261835
- 171251 - Citrus medica L.var.sarcodactylis Swingle: -
- 109792 - Citrus natsudaidai: 10.1248/YAKUSHI1947.108.10_1008
- 109792 - Citrus natsudaidai: 10.1248/YAKUSHI1947.109.8_560
- 109792 - Citrus natsudaidai: LTS0261835
- 481549 - Citrus nobilis: 10.1201/B19644-31
- 481549 - Citrus nobilis: LTS0261835
- 85571 - Citrus reticulata:
- 85571 - Citrus Reticulata: -
- 85571 - Citrus reticulata: 10.1002/1097-0215(20001001)88:1<146::AID-IJC23>3.0.CO;2-I
- 85571 - Citrus reticulata: 10.1002/PCA.771
- 85571 - Citrus reticulata: 10.1007/BF00580086
- 85571 - Citrus reticulata: 10.1007/BF00597874
- 85571 - Citrus reticulata: 10.1007/S00216-002-1300-4
- 85571 - Citrus reticulata: 10.1016/0021-9673(94)89051-X
- 85571 - Citrus reticulata: 10.1016/0031-9422(93)85237-L
- 85571 - Citrus reticulata: 10.1021/JF00078A040
- 85571 - Citrus reticulata: 10.1201/B19644-31
- 85571 - Citrus reticulata: 10.1248/YAKUSHI1947.108.10_1008
- 85571 - Citrus reticulata: 10.1248/YAKUSHI1947.111.3_193
- 85571 - Citrus reticulata: LTS0261835
- 85571 - Citrus reticulata Blanco: -
- 2711 - Citrus sinensis: 10.1016/0021-9673(93)83125-C
- 2711 - Citrus sinensis: 10.1016/0021-9673(95)00304-6
- 2711 - Citrus sinensis: 10.1016/0031-9422(93)85237-L
- 2711 - Citrus sinensis: 10.1016/J.FOODCHEM.2003.09.037
- 2711 - Citrus sinensis: 10.1016/S0021-9673(00)00256-9
- 2711 - Citrus sinensis: 10.1016/S0021-9673(97)01131-X
- 2711 - Citrus sinensis: 10.1021/JF00037A011
- 2711 - Citrus sinensis: 10.1021/JF00046A020
- 2711 - Citrus sinensis: 10.1021/JF00078A040
- 2711 - Citrus sinensis: 10.1021/JF020986R
- 2711 - Citrus sinensis: 10.1021/JF025590U
- 2711 - Citrus sinensis: 10.1021/JF0400967
- 2711 - Citrus sinensis: 10.1021/JF60220A039
- 2711 - Citrus sinensis: 10.1021/JF801103P
- 2711 - Citrus sinensis: 10.1021/JF9605097
- 2711 - Citrus sinensis: 10.1093/CHROMSCI/30.10.383
- 2711 - Citrus sinensis: 10.1201/B19644-31
- 2711 - Citrus sinensis: LTS0011065
- 2711 - Citrus sinensis: LTS0261835
- 2711 - Citrus sinensis Osbeck: -
- 558546 - Citrus sudachi:
- 558546 - Citrus sudachi: 10.1021/NP060217S
- 558546 - Citrus sudachi: 10.1271/NOGEIKAGAKU1924.59.405
- 558546 - Citrus sudachi: LTS0011065
- 558546 - Citrus sudachi: LTS0261835
- 237573 - Citrus sulcata: 10.1016/0031-9422(93)85237-L
- 237573 - Citrus sulcata: LTS0261835
- 488172 - Citrus tamurana: 10.1016/0031-9422(93)85237-L
- 488172 - Citrus tamurana: LTS0261835
- 1008980 - Citrus tankan: 10.1002/PCA.771
- 37690 - Citrus trifoliata: 10.1002/PCA.771
- 37690 - Citrus trifoliata: 10.1016/0031-9422(93)85237-L
- 37690 - Citrus trifoliata: LTS0261835
- 55188 - Citrus unshiu:
- 55188 - Citrus unshiu: 10.1002/1097-0215(20001001)88:1<146::AID-IJC23>3.0.CO;2-I
- 55188 - Citrus unshiu: 10.1002/PCA.771
- 55188 - Citrus unshiu: 10.1007/BF00580086
- 55188 - Citrus unshiu: 10.1007/BF00597874
- 55188 - Citrus unshiu: 10.1016/0021-9673(94)89051-X
- 55188 - Citrus unshiu: 10.1248/YAKUSHI1947.108.10_1008
- 55188 - Citrus unshiu: 10.1248/YAKUSHI1947.111.3_193
- 55188 - Citrus unshiu: LTS0261835
- 481550 - Citrus webberi:
- 481550 - Citrus webberi: 10.1016/0031-9422(93)85237-L
- 481550 - Citrus webberi: 10.1016/0305-1978(95)00109-3
- 481550 - Citrus webberi: LTS0261835
- 475932 - Citrus wilsonii: 10.1002/PCA.771
- 475932 - Citrus wilsonii: 10.1016/0305-1978(95)00109-3
- 475932 - Citrus wilsonii: LTS0261835
- 164113 - Citrus × microcarpa: 10.1016/0031-9422(93)85237-L
- 37656 - Citrus × paradisi: 10.1016/0031-9422(93)85237-L
- 37656 - Citrus × paradisi: 10.1016/J.FITOTE.2003.12.010
- 37656 - Citrus × paradisi: 10.1016/J.FOODCHEM.2003.09.037
- 37656 - Citrus × paradisi: 10.1016/S0021-9673(97)01131-X
- 37656 - Citrus × paradisi: 10.1016/S0367-326X(99)00131-8
- 37656 - Citrus × paradisi: 10.1021/JF00037A011
- 37656 - Citrus × paradisi: 10.1021/JF00078A040
- 37656 - Citrus × paradisi: 10.1021/JF0400967
- 37656 - Citrus × paradisi: 10.1111/J.1365-2621.1998.TB15675.X
- 182371 - Clinopodium: LTS0261835
- 2809248 - Clinopodium laxiflorum: LTS0261835
- 2749874 - Cyanothamnus inconspicuus: 10.1016/S0031-9422(00)89821-0
- 434644 - Cyanthillium: LTS0261835
- 211151 - Cyanthillium cinereum: 10.1590/S0103-50531999000200015
- 211151 - Cyanthillium cinereum: LTS0261835
- 70072 - Cyclopia: LTS0011065
- 70072 - Cyclopia: LTS0261835
- 337839 - Cyclopia falcata: 10.1021/JF040097Z
- 337839 - Cyclopia falcata: LTS0011065
- 337839 - Cyclopia falcata: LTS0261835
- 384038 - Cyclopia intermedia: 10.1021/JF980258X
- 155109 - Cyclopia subternata: 10.1021/JF040097Z
- 155109 - Cyclopia subternata: LTS0011065
- 155109 - Cyclopia subternata: LTS0261835
- 282607 - Drummondita: LTS0261835
- 1226072 - Drummondita calida: 10.1016/0031-9422(92)80274-I
- 1226072 - Drummondita calida: LTS0261835
- 50304 - Eleutherococcus: LTS0261835
- 68541 - Eriostemon: LTS0261835
- 124297 - Esenbeckia: LTS0261835
- 372452 - Esenbeckia: 10.1016/S0031-9422(98)00110-1
- 2759 - Eukaryota: LTS0011065
- 2759 - Eukaryota: LTS0261835
- 3803 - Fabaceae: LTS0011065
- 3803 - Fabaceae: LTS0261835
- 3493 - Ficus: LTS0261835
- 66383 - Ficus erecta: LTS0261835
- 1008913 - Ficus erecta var. beecheyana: 10.1016/J.JEP.2008.06.025
- 1008913 - Ficus erecta var. beecheyana: LTS0261835
- 1127366 - Ficus formosana: 10.1016/J.JEP.2008.06.025
- 43712 - Flindersia: LTS0011065
- 43712 - Flindersia: LTS0261835
- 67921 - Flindersia acuminata: 10.1071/CH9610469
- 67921 - Flindersia acuminata: LTS0011065
- 67921 - Flindersia acuminata: LTS0261835
- 67927 - Flindersia collina: 10.1071/CH9570480
- 67927 - Flindersia collina: LTS0011065
- 67927 - Flindersia collina: LTS0261835
- 67931 - Flindersia laevicarpa: 10.1071/CH9620819
- 67931 - Flindersia laevicarpa: LTS0011065
- 67931 - Flindersia laevicarpa: LTS0261835
- 67936 - Flindersia xanthoxyla: 10.1071/CH9600426
- 67936 - Flindersia xanthoxyla: LTS0011065
- 67936 - Flindersia xanthoxyla: LTS0261835
- 9606 - Homo sapiens: -
- 3484 - Humulus: LTS0261835
- 3486 - Humulus lupulus: 10.1002/ELPS.200500714
- 3486 - Humulus lupulus: LTS0261835
- 50557 - Insecta: LTS0261835
- 4136 - Lamiaceae: LTS0011065
- 4136 - Lamiaceae: LTS0261835
- 4447 - Liliopsida: LTS0011065
- 4447 - Liliopsida: LTS0261835
- 3398 - Magnoliopsida: LTS0011065
- 3398 - Magnoliopsida: LTS0261835
- 21819 - Mentha: LTS0011065
- 21819 - Mentha: LTS0261835
- 38859 - Mentha longifolia: 10.1007/S10600-012-0349-3
- 38859 - Mentha longifolia: 10.1016/S0367-326X(01)00279-9
- 38859 - Mentha longifolia: LTS0011065
- 38859 - Mentha longifolia: LTS0261835
- 29719 - Mentha spicata: 10.1007/S10600-012-0349-3
- 29719 - Mentha spicata: 10.1016/S0367-326X(01)00279-9
- 29719 - Mentha spicata: LTS0011065
- 29719 - Mentha spicata: LTS0261835
- 34256 - Mentha × piperita: 10.1021/JF00039A015
- 34256 - Mentha × piperita: 10.1248/BPB.25.256
- 3487 - Moraceae: LTS0261835
- 3931 - Myrtaceae: LTS0261835
- 119948 - Myrtus: LTS0261835
- 119949 - Myrtus communis: 10.1076/PHBI.37.1.28.6327
- 119949 - Myrtus communis: LTS0261835
- 39172 - Nepeta: LTS0011065
- 39172 - Nepeta: LTS0261835
- 2849020 - Nepeta tenuifolia:
- 549428 - Philotheca: LTS0011065
- 549428 - Philotheca: LTS0261835
- 2820919 - Philotheca gardneri: LTS0261835
- 2999145 - Philotheca rhomboidea: LTS0011065
- 2999145 - Philotheca rhomboidea: LTS0261835
- 3002539 - Philotheca tomentella: LTS0261835
- 77016 - Pilocarpus: LTS0261835
- 2743282 - Pilocarpus trachylophus: 10.1016/0031-9422(95)00852-7
- 2743282 - Pilocarpus trachylophus: LTS0261835
- 33090 - Plants: -
- 16195 - Polygonatum: LTS0011065
- 16195 - Polygonatum: LTS0261835
- 82207 - Polygonatum odoratum: 10.1021/NP900588Q
- 82207 - Polygonatum odoratum: LTS0011065
- 82207 - Polygonatum odoratum: LTS0261835
- 37881 - Poncirus: LTS0261835
- 3582 - Portulaca: LTS0011065
- 46147 - Portulaca oleracea: 10.1002/PCA.2524
- 46147 - Portulaca oleracea: LTS0011065
- 1150913 - Portulaca oleracea subsp. oleracea: 10.1002/PCA.2524
- 1150913 - Portulaca oleracea subsp. oleracea: LTS0011065
- 3581 - Portulacaceae: LTS0011065
- 3608 - Rhamnaceae: LTS0261835
- 23513 - Rutaceae: 10.1590/S0100-40422009000100025
- 23513 - Rutaceae: LTS0011065
- 23513 - Rutaceae: LTS0261835
- 21880 - Salvia: 10.1021/JF040078P
- 21880 - Salvia: LTS0261835
- 39354 - Salvia abrotanoides: 10.1055/S-2006-951766
- 39367 - Salvia rosmarinus: 10.1016/S0031-9422(00)90434-5
- 39367 - Salvia rosmarinus: 10.1021/JF040078P
- 39367 - Salvia rosmarinus: LTS0261835
- 268885 - Salvia yangii: 10.1515/ZNB-2007-0617
- 135199 - Schizonepeta: LTS0011065
- 135199 - Schizonepeta: LTS0261835
- 135200 - Schizonepeta tenuifolia: 10.1007/BF02986008
- 135200 - Schizonepeta tenuifolia: 10.1248/CPB.34.3097
- 2849020 - Schizonepeta tenuifolia: LTS0011065
- 2849020 - Schizonepeta tenuifolia: LTS0261835
- 2849020 - Schizonepeta tenuifolia Briq.: -
- 4149 - Scrophulariaceae: LTS0011065
- 4149 - Scrophulariaceae: LTS0261835
- 35493 - Streptophyta: LTS0011065
- 35493 - Streptophyta: LTS0261835
- 7205 - Tabanidae: LTS0261835
- 354519 - Tetradium: LTS0261835
- 354521 - Tetradium daniellii: 10.1007/BF02976999
- 354521 - Tetradium daniellii: LTS0261835
- 49990 - Thymus: LTS0011065
- 49990 - Thymus: LTS0261835
- 49992 - Thymus vulgaris: 10.1271/BBB.68.1131
- 49992 - Thymus vulgaris: LTS0011065
- 49992 - Thymus vulgaris: LTS0261835
- 58023 - Tracheophyta: LTS0011065
- 58023 - Tracheophyta: LTS0261835
- 19952 - Valeriana: LTS0261835
- 19953 - Valeriana officinalis: 10.1016/S0091-3057(03)00121-7
- 19953 - Valeriana officinalis: LTS0261835
- 19944 - Valerianaceae: LTS0261835
- 39257 - Verbascum: LTS0011065
- 39257 - Verbascum: LTS0261835
- 90365 - Verbascum phlomoides: 10.1055/S-0028-1101600
- 90365 - Verbascum phlomoides: LTS0011065
- 90365 - Verbascum phlomoides: LTS0261835
- 434719 - Vernonanthura: LTS0261835
- 2364069 - Vernonanthura divaricata: 10.1590/S0103-50531999000200015
- 2364069 - Vernonanthura divaricata: LTS0261835
- 13757 - Viola: LTS0261835
- 97415 - Viola arvensis: 10.1007/S11094-005-0104-1
- 97415 - Viola arvensis: LTS0261835
- 24921 - Violaceae: LTS0261835
- 33090 - Viridiplantae: LTS0011065
- 33090 - Viridiplantae: LTS0261835
- 67937 - Zanthoxylum: LTS0011065
- 67937 - Zanthoxylum: LTS0261835
- 354527 - Zanthoxylum avicennae: 10.1016/0031-9422(75)83064-0
- 354527 - Zanthoxylum avicennae: LTS0011065
- 354527 - Zanthoxylum avicennae: LTS0261835
- 328401 - Zanthoxylum bungeanum:
- 1130873 - Zanthoxylum caribaeum: LTS0261835
- 2839958 - Zanthoxylum caribaeum subsp. caribaeum: LTS0261835
- 1336649 - Zanthoxylum dipetalum:
- 1336649 - Zanthoxylum dipetalum: 10.1016/0031-9422(75)83129-3
- 1336649 - Zanthoxylum dipetalum: 10.1590/S0100-40422009000100025
- 1336649 - Zanthoxylum dipetalum: LTS0011065
- 1336649 - Zanthoxylum dipetalum: LTS0261835
- 2929861 - Zanthoxylum fauriei: LTS0011065
- 2929861 - Zanthoxylum fauriei: LTS0261835
- 1291627 - Zanthoxylum gilletii: 10.1016/S0367-326X(01)00265-9
- 1291627 - Zanthoxylum gilletii: LTS0011065
- 1291627 - Zanthoxylum gilletii: LTS0261835
- 992815 - Zanthoxylum leprieurii: 10.1016/J.BMC.2010.03.040
- 992815 - Zanthoxylum leprieurii: LTS0011065
- 354528 - Zanthoxylum nitidum:
- 354528 - Zanthoxylum Nitidum: -
- 354528 - Zanthoxylum nitidum: 10.1016/0305-1978(95)00096-8
- 354528 - Zanthoxylum nitidum: LTS0261835
- 549434 - Zanthoxylum rhoifolium:
- 549434 - Zanthoxylum rhoifolium: 10.1016/0305-1978(92)90104-L
- 549434 - Zanthoxylum rhoifolium: 10.1590/S0100-40422012001100004
- 549434 - Zanthoxylum rhoifolium: LTS0261835
- 1336656 - Zanthoxylum scandens: 10.1515/ZNC-2002-11-1205
- 1336656 - Zanthoxylum scandens: LTS0261835
- 354530 - Zanthoxylum schinifolium:
- 2099548 - Zanthoxylum zanthoxyloides: 10.1055/S-2006-941504
- 2099548 - Zanthoxylum zanthoxyloides: LTS0011065
- 2099548 - Zanthoxylum zanthoxyloides: LTS0261835
- 72171 - Ziziphus: LTS0261835
- 326968 - Ziziphus jujuba: LTS0261835
- 714518 - Ziziphus jujuba var. spinosa: 10.1111/J.1744-7909.2005.00060.X
- 714518 - Ziziphus jujuba var. spinosa: LTS0261835
- 33090 - 陈皮: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Hong Zhuang, Xiaoliang Zhang, Sijia Wu, Chen Mao, Yaxi Dai, Pang Yong, Xiaodi Niu. Study transport of hesperidin based on the DPPC lipid model and the BSA transport model.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2024 Jun; 314(?):124172. doi:
10.1016/j.saa.2024.124172
. [PMID: 38513316] - Umar Muazu Yunusa, Raziye Ozturk Urek. Phenolic composition, antioxidant, and cytotoxic effects on HeLa and HepG2 cancer cell lines of Mespilus germanica grown in Turkey.
Natural product research.
2024 Jun; 38(11):1972-1976. doi:
10.1080/14786419.2023.2230612
. [PMID: 37395516] - Hanumanthappa Shylaja, Gollapalle Lakshminarayanashastry Viswanatha, Venkategowda Sunil, Shalam M Hussain, Syeda Ayesha Farhana. Effect of hesperidin on blood pressure and lipid profile: A systematic review and meta-analysis of randomized controlled trials.
Phytotherapy research : PTR.
2024 May; 38(5):2560-2571. doi:
10.1002/ptr.8174
. [PMID: 38462779] - Mazhar Hussain, Arslan Hafeez, Muhammad Rizwan, Rizwan Rasheed, Mahmoud F Seleiman, Muhammad Arslan Ashraf, Shafaqat Ali, Umer Farooq, Muhammad Nafees. Pervasive influence of heavy metals on metabolic pathways is potentially relieved by hesperidin to enhance the phytoremediation efficiency of Bassia scoparia.
Environmental science and pollution research international.
2024 May; 31(23):34526-34549. doi:
10.1007/s11356-024-33530-4
. [PMID: 38709411] - Katarzyna Stec, Bożena Kordan, Jan Bocianowski, Beata Gabryś. Hesperidin as a Species-Specific Modifier of Aphid Behavior.
International journal of molecular sciences.
2024 Apr; 25(9):. doi:
10.3390/ijms25094822
. [PMID: 38732039] - Álvaro Pérez-Valero, Juan Serna-Diestro, Albert Tafur Rangel, Simona Barbuto Ferraiuolo, Chiara Schiraldi, Eduard J Kerkhoven, Claudio J Villar, Felipe Lombó. Biosynthesis of Hesperetin, Homoeriodictyol, and Homohesperetin in a Transcriptomics-Driven Engineered Strain of Streptomyces albidoflavus.
International journal of molecular sciences.
2024 Apr; 25(7):. doi:
10.3390/ijms25074053
. [PMID: 38612864] - Fevzi Elbasan, Busra Arikan, Ceyda Ozfidan-Konakci, Aysenur Tofan, Evren Yildiztugay. Hesperidin and chlorogenic acid mitigate arsenic-induced oxidative stress via redox regulation, photosystems-related gene expression, and antioxidant efficiency in the chloroplasts of Zea mays.
Plant physiology and biochemistry : PPB.
2024 Mar; 208(?):108445. doi:
10.1016/j.plaphy.2024.108445
. [PMID: 38402801] - Adeola Oluwatosin Adedara, Getúlio Nicola Bressan, Matheus Mulling Dos Santos, Roselei Fachinetto, Amos Olalekan Abolaji, Nilda Vargas Barbosa. Antioxidant responses driven by Hesperetin and Hesperidin counteract Parkinson's disease-like phenotypes in Drosophila melanogaster.
Neurotoxicology.
2024 Mar; 101(?):117-127. doi:
10.1016/j.neuro.2024.02.006
. [PMID: 38423185] - Bin Duan, Yonghua Zhang, Zhao Feng, Zhaoguo Liu, Nengguo Tao. Octanal enhances disease resistance in postharvest citrus fruit by the biosynthesis and metabolism of aromatic amino acids.
Pesticide biochemistry and physiology.
2024 Mar; 200(?):105835. doi:
10.1016/j.pestbp.2024.105835
. [PMID: 38582597] - Mazhar Hussain, Arslan Hafeez, Arwa Abdulkreem Al-Huqail, Ibtisam Mohammed Alsudays, Suliman Mohammed Suliman Alghanem, Muhammad Arslan Ashraf, Rizwan Rasheed, Muhammad Rizwan, Amany H A Abeed. Effect of hesperidin on growth, photosynthesis, antioxidant systems and uptake of cadmium, copper, chromium and zinc by Celosia argentea plants.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108433. doi:
10.1016/j.plaphy.2024.108433
. [PMID: 38364631] - Ruixi Luo, Yudie Hu, La Wang, Wenjia Wang, Ping Wang, Zunli Ke, Didong Lou, Weiyi Tian. Hesperidin Protects Against High-Fat Diet-Induced Lipotoxicity in Rats by Inhibiting Pyroptosis.
Journal of medicinal food.
2024 Jan; ?(?):. doi:
10.1089/jmf.2023.k.0259
. [PMID: 38294790] - Naveed Ullah Khan, Anam Razzaq, Zhang Rui, Xie Chengfeng, Zaheer Ullah Khan, Asmat Ullah, Serag Eldin I Elbehairi, Ali A Shati, Mohammad Y Alfaifi, Haroon Iqbal, Zhi Min Jin. Bio-evaluations of sericin coated hesperidin nanoparticles for gastric ulcer management.
Colloids and surfaces. B, Biointerfaces.
2024 Jan; 234(?):113762. doi:
10.1016/j.colsurfb.2024.113762
. [PMID: 38244483] - Xianbin Yu, Zhixuan Liu, Yitian Yu, Chengjie Qian, Yuzhe Lin, Shuqing Jin, Long Wu, Shi Li. Hesperetin promotes diabetic wound healing by inhibiting ferroptosis through the activation of SIRT3.
Phytotherapy research : PTR.
2024 Jan; ?(?):. doi:
10.1002/ptr.8121
. [PMID: 38234096] - Iman Nabil, Amira Abulfotooh Eid, Hend A Yassin, Rana Ahmed Abouelrous, Amany A Solaiman. Protective role of hesperidin in finasteride-induced testicular toxicity in adult male Wistar rats: Insights into oxidative stress, apoptosis, and ultrastructure of seminiferous tubules.
Reproductive toxicology (Elmsford, N.Y.).
2024 Jan; 124(?):108535. doi:
10.1016/j.reprotox.2024.108535
. [PMID: 38216069] - Tong Nie, Xin Wang, Aqun Li, Anshan Shan, Jun Ma. The promotion of fatty acid β-oxidation by hesperidin via activating SIRT1/PGC1α to improve NAFLD induced by a high-fat diet.
Food & function.
2024 Jan; 15(1):372-386. doi:
10.1039/d3fo04348g
. [PMID: 38099440] - Guangying Wu, Xingqin Wei, Dongmei Li, Guanlin Xiao, Canchao Jia, Zhihao Zeng, Zhao Chen. Selection and evaluation of quality markers for the regulation of PXR-CYP3A4/FXR-LXRα by Exocarpium Citri Grandis for the treatment of hyperlipidaemia with dispelling blood stasis and removing phlegm.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2024 Jan; 170(?):116089. doi:
10.1016/j.biopha.2023.116089
. [PMID: 38157640] - Filiz Ozyigit, Ayse Nur Deger, Fatma Emel Kocak, Mehmet Fatih Ekici, Hasan Simsek, Ozlem Arık. Protective effects of hesperidin in gastric damage caused by experimental ischemia-reperfusion injury model in rats.
Acta cirurgica brasileira.
2024; 39(?):e391124. doi:
10.1590/acb391124
. [PMID: 38477785] - Vedpal Singh, Rohit Singh, Manish Pal Singh, Archita Katrolia. Therapeutic Role of Desmodium Species on its Isolated Flavonoids.
Current molecular medicine.
2024; 24(1):74-84. doi:
10.2174/1566524023666221213111851
. [PMID: 36515031] - Zhaleh Jamali, Ahmad Salimi, Behzad Garmabi, Saleh Khezri, Mehdi Khaksari. Hesperidin Protects Alcohol-induced Mitochondrial Abnormalities via the Inhibition of Oxidative Stress and MPT Pore opening in Newborn Male Rats as Fetal Alcohol Syndrome Model.
Journal of studies on alcohol and drugs.
2023 Dec; ?(?):. doi:
10.15288/jsad.23-00243
. [PMID: 38147083] - Sanja Ćavar Zeljkovıć, Saliha Seyma Sahinler, Cengiz Sarikurkcu, Bulent Kirkan, Riza Binzet, Petr Tarkowski. Exploring the Pharmacological Potential of Onosma riedliana: Phenolic Compounds and Their Biological Activities.
Plant foods for human nutrition (Dordrecht, Netherlands).
2023 Dec; ?(?):. doi:
10.1007/s11130-023-01131-0
. [PMID: 38103155] - Blanca Sáenz de Miera, Raquel Cañadas, María González-Miquel, Emilio J González. Recovery of Phenolic Compounds from Orange Peel Waste by Conventional and Assisted Extraction Techniques Using Sustainable Solvents.
Frontiers in bioscience (Elite edition).
2023 12; 15(4):30. doi:
10.31083/j.fbe1504030
. [PMID: 38163939] - Merve Akkulak, Emre Evin, Ozlem Durukan, Hasan Ufuk Celebioglu, Orhan Adali. Modulation of Caco-2 Colon Cancer Cell Viability and CYP2W1 Gene Expression by Hesperidin-treated Lacticaseibacillus rhamnosus GG (LGG) Cell-free Supernatants.
Anti-cancer agents in medicinal chemistry.
2023 Dec; ?(?):. doi:
10.2174/0118715206271514231124111026
. [PMID: 38058098] - Jie Tang, Lixiang Wang, Mengge Shi, Shuaixia Feng, Tong Zhang, Han Han. Study on the mechanism of Shuganzhi Tablet against nonalcoholic fatty liver disease and lipid regulation effects of its main substances in vitro.
Journal of ethnopharmacology.
2023 Nov; 316(?):116780. doi:
10.1016/j.jep.2023.116780
. [PMID: 37311504] - Wenqian Wang, Lili Qu, Zhan Cui, Fuping Lu, Li Li, Fufeng Liu. Citrus Flavonoid Hesperetin Inhibits α-Synuclein Fibrillogenesis, Disrupts Mature Fibrils, and Reduces Their Cytotoxicity: In Vitro and In Vivo Studies.
Journal of agricultural and food chemistry.
2023 Nov; 71(43):16174-16183. doi:
10.1021/acs.jafc.3c06816
. [PMID: 37870747] - Mustafa Abdullah Yilmaz, Oğuz Cakir, Ebubekir Izol, Abbas Tarhan, Lutfi Behcet, Gokhan Zengin. Detailed Phytochemical Evaluation of a Locally Endemic Species (Campanula baskilensis) by LC-MS/MS and its In-Depth Antioxidant and Enzyme Inhibitory Activities.
Chemistry & biodiversity.
2023 Oct; ?(?):e202301182. doi:
10.1002/cbdv.202301182
. [PMID: 37846496] - Hong-Yao Hu, Ze-Zhao Zhang, Xiao-Ya Jiang, Tian-Hua Duan, Wei Feng, Xin-Guo Wang. Hesperidin Anti-Osteoporosis by Regulating Estrogen Signaling Pathways.
Molecules (Basel, Switzerland).
2023 Oct; 28(19):. doi:
10.3390/molecules28196987
. [PMID: 37836830] - Elham Shakiba, Ali Bazi, Hamed Ghasemi, Reza Eshaghi-Gorji, Seyyed Alireza Mehdipour, Banafsheh Nikfar, Mohsen Rashidi, Sepideh Mirzaei. Hesperidin suppressed metastasis, angiogenesis and tumour growth in Balb/c mice model of breast cancer.
Journal of cellular and molecular medicine.
2023 Aug; ?(?):. doi:
10.1111/jcmm.17902
. [PMID: 37581480] - Shijie Bi, Yanan Liu, Tianyi Lv, Yue Ren, Kaiyang Liu, Chaoqun Liu, Yanling Zhang. Preliminary exploration of method for screening efficacy markers compatibility in TCM prescriptions based on Q-markers: Anti-inflammatory activity of Dachaihu decoction as an example.
Journal of ethnopharmacology.
2023 Aug; 312(?):116539. doi:
10.1016/j.jep.2023.116539
. [PMID: 37088240] - Lukas Babylon, Julia Meißner, Gunter P Eckert. Combination of Secondary Plant Metabolites and Micronutrients Improves Mitochondrial Function in a Cell Model of Early Alzheimer's Disease.
International journal of molecular sciences.
2023 Jun; 24(12):. doi:
10.3390/ijms241210029
. [PMID: 37373177] - Jia Lihong, Tie Defu, Fan Zhaohui, Chen Dan, Chen Qizhu, Chen Jun, B O Huaben. Mechanism underlying Fanmugua () leaf multicomponent synergistic therapy for anemia: data mining based on hematopoietic network.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2023 Jun; 43(3):542-551. doi:
10.19852/j.cnki.jtcm.2023.03.004
. [PMID: 37147756] - Hui Cao, Dong Yang, Kechao Nie, Ruoheng Lin, Luqi Peng, Xuhui Zhou, Mei Zhang, Ying Zeng, Lini Liu, Wei Huang. Hesperidin may improve depressive symptoms by binding NLRP3 and influencing the pyroptosis pathway in a rat model.
European journal of pharmacology.
2023 May; ?(?):175670. doi:
10.1016/j.ejphar.2023.175670
. [PMID: 37169143] - Magdalena Paczkowska-Walendowska, Andrzej Miklaszewski, Judyta Cielecka-Piontek. Improving Solubility and Permeability of Hesperidin through Electrospun Orange-Peel-Extract-Loaded Nanofibers.
International journal of molecular sciences.
2023 Apr; 24(9):. doi:
10.3390/ijms24097963
. [PMID: 37175671] - Sivaraman Dhanasekaran, Pradeep Pushparaj Selvadoss, Solomon Sundar Manoharan, Srikanth Jeyabalan, Vijayarangan Devi Rajeswari. Revealing anti-fungal potential of plant-derived bioactive therapeutics in targeting secreted aspartyl proteinase (SAP) of Candida albicans: a molecular dynamics approach.
Journal of biomolecular structure & dynamics.
2023 Apr; ?(?):1-15. doi:
10.1080/07391102.2023.2196703
. [PMID: 37021476] - Prithiviraj Swasthikka Roshni, Rajaiah Alexpandi, Gurusamy Abirami, Ravindran Durgadevi, Yurong Cai, Ponnuchamy Kumar, Arumugam Veera Ravi. Hesperidin methyl chalcone, a citrus flavonoid, inhibits Aeromonas hydrophila infection mediated by quorum sensing.
Microbial pathogenesis.
2023 Apr; 177(?):106029. doi:
10.1016/j.micpath.2023.106029
. [PMID: 36775212] - Nur Dina Amalina, Irfani Aura Salsabila, Ummi Maryam Zulfin, Riris Istighfari Jenie, Edy Meiyanto. In vitro synergistic effect of hesperidin and doxorubicin downregulates epithelial-mesenchymal transition in highly metastatic breast cancer cells.
Journal of the Egyptian National Cancer Institute.
2023 Mar; 35(1):6. doi:
10.1186/s43046-023-00166-3
. [PMID: 36967442] - Pakkapong Phucharoenrak, Chawanphat Muangnoi, Dunyaporn Trachootham. Metabolomic Analysis of Phytochemical Compounds from Ethanolic Extract of Lime (Citrus aurantifolia) Peel and Its Anti-Cancer Effects against Human Hepatocellular Carcinoma Cells.
Molecules (Basel, Switzerland).
2023 Mar; 28(7):. doi:
10.3390/molecules28072965
. [PMID: 37049726] - Walaa Hegazy, Manal Abdul-Hamid, Eman S Abdel-Rehiem, Adel Abdel-Moneim, Marwa Salah. The protective impact of hesperidin against carbimazole-induced hypothyroidism, via enhancement of inflammatory cytokines, histopathological alterations, and Nrf2/HO-1.
Environmental science and pollution research international.
2023 Mar; ?(?):. doi:
10.1007/s11356-023-26103-4
. [PMID: 36862292] - Xinyu Li, Wei Huang, Rongrong Tan, Caijuan Xu, Xi Chen, Sixin Li, Ying Liu, Huiwen Qiu, Hui Cao, Quan Cheng. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Mar; 159(?):114222. doi:
10.1016/j.biopha.2023.114222
. [PMID: 36628819] - Banu Orta Yilmaz, Yasemin Aydin. Dynamic assessment of the relationship between oxidative stress and apoptotic pathway in embryonic fibroblast cells exposed to glycidamide: possible protective role of hesperidin.
Environmental science and pollution research international.
2023 Feb; ?(?):. doi:
10.1007/s11356-023-26108-z
. [PMID: 36853541] - Igor M Santana, Maurício A Rostagno, Márcia C Breitkreitz. Analytical quality-by-design (AQbD) approach for comprehensive analysis of bioactive compounds from Citrus peel wastes by UPLC.
Analytical and bioanalytical chemistry.
2023 Feb; ?(?):. doi:
10.1007/s00216-023-04588-9
. [PMID: 36853412] - Hamit Emre Kızıl, Cihan Gür, Adnan Ayna, Ekrem Darendelioğlu, Sefa Küçükler, Sevda Sağ. Contribution of Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress and Autophagy Pathways to the Ameliorative Effects of Hesperidin in NaF-induced Testicular Toxicity.
Chemistry & biodiversity.
2023 Feb; ?(?):e202200982. doi:
10.1002/cbdv.202200982
. [PMID: 36808882] - Mariem Ben Abdallah, Morad Chadni, Nouha M'hiri, Fanny Brunissen, Nesrine Rokbeni, Karim Allaf, Colette Besombes, Irina Ioannou, Nourhene Boudhrioua. Intensifying Effect of Instant Controlled Pressure Drop (DIC) Pre-Treatment on Hesperidin Recovery from Orange Byproducts: In Vitro Antioxidant and Antidiabetic Activities of the Extracts.
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041858
. [PMID: 36838846] - Babalwa Unice Jack, Pritika Ramharack, Christiaan Malherbe, Kwazi Gabuza, Elizabeth Joubert, Carmen Pheiffer. Cyclopia intermedia (Honeybush) Induces Uncoupling Protein 1 and Peroxisome Proliferator-Activated Receptor Alpha Expression in Obese Diabetic Female db/db Mice.
International journal of molecular sciences.
2023 Feb; 24(4):. doi:
10.3390/ijms24043868
. [PMID: 36835279] - Esther Gómez-Mejía, Iván Sacristán, Noelia Rosales-Conrado, María Eugenia León-González, Yolanda Madrid. Effect of Storage and Drying Treatments on Antioxidant Activity and Phenolic Composition of Lemon and Clementine Peel Extracts.
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041624
. [PMID: 36838611] - Liqun Fang, Tingting Lin, Ben Chen, Haibo You, Chunyan Wu, Chu Chu, Shengqiang Tong. High-performance liquid chromatography micro-fraction bioactive evaluation combined with countercurrent chromatographic separation of antioxidants from Citrus peel and their tyrosinase inhibition activities.
Journal of separation science.
2023 Feb; 46(4):e2200764. doi:
10.1002/jssc.202200764
. [PMID: 36583478] - Omolbanin Shahraki, Mohaddeseh Shayganpour, Mahmoud Hashemzaei, Sara Daneshmand. Solid lipid nanoparticles (SLNs), the potential novel vehicle for enhanced in vivo efficacy of hesperidin as an anti-inflammatory agent.
Bioorganic chemistry.
2023 02; 131(?):106333. doi:
10.1016/j.bioorg.2022.106333
. [PMID: 36587504] - Songsong Liu, Kang Liu, Yuwei Wang, Chou Wu, Yang Xiao, Siqi Liu, Jingsu Yu, Zeqiang Ma, Huanjie Liang, Xiangling Li, Yixing Li, Lei Zhou. Hesperidin methyl chalcone ameliorates lipid metabolic disorders by activating lipase activity and increasing energy metabolism.
Biochimica et biophysica acta. Molecular basis of disease.
2023 02; 1869(2):166620. doi:
10.1016/j.bbadis.2022.166620
. [PMID: 36494040] - Nayara A Artero, Marília F Manchope, Thacyana T Carvalho, Telma Saraiva-Santos, Mariana M Bertozzi, Jessica A Carneiro, Anelise Franciosi, Amanda M Dionisio, Tiago H Zaninelli, Victor Fattori, Camila R Ferraz, Maiara Piva, Sandra S Mizokami, Doumit Camilios-Neto, Rubia Casagrande, Waldiceu A Verri. Hesperidin Methyl Chalcone Reduces the Arthritis Caused by TiO2 in Mice: Targeting Inflammation, Oxidative Stress, Cytokine Production, and Nociceptor Sensory Neuron Activation.
Molecules (Basel, Switzerland).
2023 Jan; 28(2):. doi:
10.3390/molecules28020872
. [PMID: 36677929] - Subhadip Banerjee, Amrendra Tiwari, Amit Kar, Joydeb Chanda, Sayan Biswas, Gudrun Ulrich-Merzenich, Pulok K Mukherjee. Combining LC-MS/MS profiles with network pharmacology to predict molecular mechanisms of the hyperlipidemic activity of Lagenaria siceraria stand.
Journal of ethnopharmacology.
2023 Jan; 300(?):115633. doi:
10.1016/j.jep.2022.115633
. [PMID: 36031104] - Folake Olubukola Asejeje, Olalekan Bukunmi Ogunro, Gbolahan Iyiola Asejeje, Olumuyiwa Sunday Adewumi, Amos Olalekan Abolaji. An assessment of the ameliorative role of hesperidin in Drosophila melanogaster model of cadmium chloride-induced toxicity.
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.
2023 Jan; 263(?):109500. doi:
10.1016/j.cbpc.2022.109500
. [PMID: 36347494] - Parth Malik, Manju Bernela, Mahima Seth, Priya Kaushal, Tapan Kumar Mukherjee. Recent Progress in the Hesperetin Delivery Regimes: Significance of Pleiotropic Actions and Synergistic Anticancer Efficacy.
Current pharmaceutical design.
2023; 29(37):2954-2976. doi:
10.2174/0113816128253609231030070414
. [PMID: 38173051] - Sameen Azhar, Ribka Sabahat, Rameen Sajjad, Fatima Nadeem, Aruba Amjad, Nawal Hafeez, Taram Nayab, Saba Wahid, Afifa Tanweer. Effect of Citrus Flavanones on Diabetes: A Systematic Review.
Current diabetes reviews.
2023; 19(5):e070722206679. doi:
10.2174/1573399819666220707102237
. [PMID: 35796456] - Yishuo Wang, Ruisheng Wang, Zhenling Zhang, Yitian Chen, Mengmei Sun, Jia Qiao, Ziwei Du. Analysis of Chemical Constituents of Traditional Chinese Medicine Jianqu before and after Fermentation Based on LC-MS/MS.
Molecules (Basel, Switzerland).
2022 Dec; 28(1):. doi:
10.3390/molecules28010053
. [PMID: 36615248] - Zhaofeng Liang, Jiajia Song, Yumeng Xu, Xinyi Zhang, Yue Zhang, Hui Qian. Hesperidin Reversed Long-Term N-methyl-N-nitro-N-Nitroguanidine Exposure Induced EMT and Cell Proliferation by Activating Autophagy in Gastric Tissues of Rats.
Nutrients.
2022 Dec; 14(24):. doi:
10.3390/nu14245281
. [PMID: 36558440] - Peng Zhou, Xiao-Ni Zhao, Yao-Yao Ma, Tong-Juan Tang, Shu-Shu Wang, Liang Wang, Jin-Ling Huang. Virtual screening analysis of natural flavonoids as trimethylamine (TMA)-lyase inhibitors for coronary heart disease.
Journal of food biochemistry.
2022 12; 46(12):e14376. doi:
10.1111/jfbc.14376
. [PMID: 35945702] - Cordelia Mano John, Sumathy Arockiasamy. Enhanced Inhibition of Adipogenesis by Chrysin via Modification in Redox Balance, Lipogenesis, and Transcription Factors in 3T3-L1 Adipocytes in Comparison with Hesperidin.
Journal of the American Nutrition Association.
2022 Nov; 41(8):758-770. doi:
10.1080/07315724.2021.1961641
. [PMID: 34459715] - Si-Chen Zhu, Min-Zhen Shi, Ya-Ling Yu, Jun Cao. Optimization of mechanically assisted coamorphous dispersion extraction of hydrophobic compounds from plant tea (Citri Reticulatae Pericarpium) using water.
Food chemistry.
2022 Nov; 393(?):133462. doi:
10.1016/j.foodchem.2022.133462
. [PMID: 35751220] - Yang Wang, Weiliang Cui, Chunguo Yang, Haifeng Wei, Qingzhi Liu, Lewen Xiong, Huifen Li, Yongqiang Lin. Comparison of Geqingpi and Sihuaqingpi based on ultra-high-performance liquid chromatography-tandem mass spectrometry combined with multivariate statistics, network pharmacology analysis, and molecular docking.
Journal of separation science.
2022 Nov; 45(22):4079-4098. doi:
10.1002/jssc.202200564
. [PMID: 36200604] - Tamara Carević, Marina Kostić, Biljana Nikolić, Dejan Stojković, Marina Soković, Marija Ivanov. Hesperetin-Between the Ability to Diminish Mono- and Polymicrobial Biofilms and Toxicity.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27206806
. [PMID: 36296398] - Said I Behiry, Bassant Philip, Mohamed Z M Salem, Mostafa A Amer, Ibrahim A El-Samra, Ahmed Abdelkhalek, Ahmed Heflish. Urtica dioica and Dodonaea viscosa leaf extracts as eco-friendly bioagents against Alternaria alternata isolate TAA-05 from tomato plant.
Scientific reports.
2022 10; 12(1):16468. doi:
10.1038/s41598-022-20708-4
. [PMID: 36183011] - Guijian Zhang, Shuai Cao, Tong Guo, Haoran Wang, Xuewei Qi, Xueming Ren, Changying Niu. Identification and expression profiles of gustatory receptor genes in Bactrocera minax larvae (Diptera: Tephritidae): Role of BminGR59f in larval growth.
Insect science.
2022 Oct; 29(5):1240-1250. doi:
10.1111/1744-7917.13014
. [PMID: 35146929] - Sai Zhu, Xin Chen, Si-Yu Chen, Ao Wang, Sha Wu, Yuan-Yuan Wu, Miao Cheng, Jin-Jin Xu, Xiao-Feng Li, Cheng Huang, Jun Li. Hesperetin derivative decreases CCl4 -induced hepatic fibrosis by Ptch1-dependent mechanisms.
Journal of biochemical and molecular toxicology.
2022 Oct; 36(10):e23149. doi:
10.1002/jbt.23149
. [PMID: 35712856] - Cisem Altunayar-Unsalan, Ozan Unsalan, Thomas Mavromoustakos. Molecular interactions of hesperidin with DMPC/cholesterol bilayers.
Chemico-biological interactions.
2022 Oct; 366(?):110131. doi:
10.1016/j.cbi.2022.110131
. [PMID: 36037876] - Viorica Maria Corbu, Irina Gheorghe-Barbu, Ioana Cristina Marinas, Sorin Marius Avramescu, Ionut Pecete, Elisabeta Irina Geanǎ, Mariana Carmen Chifiriuc. Eco-Friendly Solution Based on Rosmarinus officinalis Hydro-Alcoholic Extract to Prevent Biodeterioration of Cultural Heritage Objects and Buildings.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911463
. [PMID: 36232763] - Piyush Kashyap, Mamta Thakur, Nidhi Singh, Deep Shikha, Shiv Kumar, Poonam Baniwal, Yogender Singh Yadav, Minaxi Sharma, Kandi Sridhar, Baskaran Stephen Inbaraj. In Silico Evaluation of Natural Flavonoids as a Potential Inhibitor of Coronavirus Disease.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196374
. [PMID: 36234910] - Eleni Kakouri, Olti Nikola, Charalabos Kanakis, Kyriaki Hatziagapiou, George I Lambrou, Panayiotis Trigas, Christina Kanaka-Gantenbein, Petros A Tarantilis. Cytotoxic Effect of Rosmarinus officinalis Extract on Glioblastoma and Rhabdomyosarcoma Cell Lines.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196348
. [PMID: 36234882] - Cihan Gur, Fatih Mehmet Kandemir, Cuneyt Caglayan, Emine Satıcı. Chemopreventive effects of hesperidin against paclitaxel-induced hepatotoxicity and nephrotoxicity via amendment of Nrf2/HO-1 and caspase-3/Bax/Bcl-2 signaling pathways.
Chemico-biological interactions.
2022 Sep; 365(?):110073. doi:
10.1016/j.cbi.2022.110073
. [PMID: 35921949] - Fatemeh Omidfar, Fatemeh Gheybi, Javid Davoodi, Mostafa Amirinejad, Ali Badiee. Nanophytosomes of hesperidin and of hesperetin: Preparation, characterization, and in vivo evaluation.
Biotechnology and applied biochemistry.
2022 Sep; ?(?):. doi:
10.1002/bab.2404
. [PMID: 36112716] - Ju-Ha Kim, Seong-Ryeong Lim, Dae-Hwa Jung, Eun-Ju Kim, Junghee Sung, Sang Chan Kim, Chang-Hyung Choi, Ji-Woong Kang, Sei-Jung Lee. Grifola frondosa Extract Containing Bioactive Components Blocks Skin Fibroblastic Inflammation and Cytotoxicity Caused by Endocrine Disrupting Chemical, Bisphenol A.
Nutrients.
2022 Sep; 14(18):. doi:
10.3390/nu14183812
. [PMID: 36145189] - Xiaoping Li, Yexuan Yao, Yu Wang, Lun Hua, Min Wu, Fang Chen, Ze-Yuan Deng, Ting Luo. Effect of Hesperidin Supplementation on Liver Metabolomics and Gut Microbiota in a High-Fat Diet-Induced NAFLD Mice Model.
Journal of agricultural and food chemistry.
2022 Sep; 70(36):11224-11235. doi:
10.1021/acs.jafc.2c02334
. [PMID: 36048007] - Punnida Arjsri, Kamonwan Srisawad, Sariya Mapoung, Warathit Semmarath, Pilaiporn Thippraphan, Sonthaya Umsumarng, Supachai Yodkeeree, Pornngarm Dejkriengkraikul. Hesperetin from Root Extract of Clerodendrum petasites S. Moore Inhibits SARS-CoV-2 Spike Protein S1 Subunit-Induced NLRP3 Inflammasome in A549 Lung Cells via Modulation of the Akt/MAPK/AP-1 Pathway.
International journal of molecular sciences.
2022 Sep; 23(18):. doi:
10.3390/ijms231810346
. [PMID: 36142258] - Li-Li Li, Qi Huang, Jia-Jia Qi, Min Yao, Dai-Yin Peng. [Simultaneous determination and pharmacokinetic study of five compounds from total extract of Clinopodium chinense in abnormal uterine bleeding rat plasma by UPLC-MS/MS].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Sep; 47(18):5071-5078. doi:
10.19540/j.cnki.cjcmm.20220421.702
. [PMID: 36164917] - Alpa Shree, Johirul Islam, Vikas Yadav, Sarwat Sultana, Haider Ali Khan. Hesperetin alleviates DMH induced toxicity via suppressing oxidative stress and inflammation in the colon of Wistar rats.
Environmental toxicology.
2022 Sep; 37(9):2153-2166. doi:
10.1002/tox.23558
. [PMID: 35567572] - Faraneh Zareiyan, Habibollah Khajehsharifi. Bioactive compounds analysis in ethanolic extracts of Citrus maxima and Citrus sinensis exocarp and mesocarp.
Natural product research.
2022 Sep; 36(17):4511-4514. doi:
10.1080/14786419.2021.1986819
. [PMID: 34622727] - Lizha Mary Lazer, Yasodha Kesavan, Ravi Gor, Ilangovan Ramachandran, Surajit Pathak, Shoba Narayan, Muralidharan Anbalagan, Satish Ramalingam. Targeting colon cancer stem cells using novel doublecortin like kinase 1 antibody functionalized folic acid conjugated hesperetin encapsulated chitosan nanoparticles.
Colloids and surfaces. B, Biointerfaces.
2022 Sep; 217(?):112612. doi:
10.1016/j.colsurfb.2022.112612
. [PMID: 35738074] - Layzon A Lemos da Silva, Amanda E de Athayde, Monalisa A Moreira, Tiago Tizziani, Stephanie V Gkionis, Lucas V da Silva, Maique W Biavatti, Ana Carolina R de Moraes, Marcus V P Dos Santos Nascimento, Eduardo M Dalmarco, Louis P Sandjo. Anti-inflammatory and anti-aggregating effects of rangpur in the first trimester of growth: ultra-performance liquid chromatography-electrospray mass spectrometry profile and quantification of hesperidin.
Journal of the science of food and agriculture.
2022 Aug; 102(10):4151-4161. doi:
10.1002/jsfa.11764
. [PMID: 35000197] - Hasnaa Osama, Ehdaa O Hamed, Muhammed A Mahmoud, Mohamed E A Abdelrahim. The Effect of Hesperidin and Diosmin Individually or in Combination on Metabolic Profile and Neuropathy among Diabetic Patients with Metabolic Syndrome: A Randomized Controlled Trial.
Journal of dietary supplements.
2022 Aug; ?(?):1-14. doi:
10.1080/19390211.2022.2107138
. [PMID: 35946912] - Jiajia Qi, Qianqian Zhang, Lili Li, Qi Huang, Min Yao, Ning Wang, Daiyin Peng. Spectrum-effect relationship between UPLC-Q-TOF-MS fingerprint and anti-AUB effect of Clinopodium chinense (Benth.) O. Kuntze.
Journal of pharmaceutical and biomedical analysis.
2022 Aug; 217(?):114828. doi:
10.1016/j.jpba.2022.114828
. [PMID: 35569272] - Behçet Varışlı, Ekrem Darendelioğlu, Cuneyt Caglayan, Fatih Mehmet Kandemir, Adnan Ayna, Aydın Genç, Özge Kandemir. Hesperidin Attenuates Oxidative Stress, Inflammation, Apoptosis, and Cardiac Dysfunction in Sodium Fluoride-Induced Cardiotoxicity in Rats.
Cardiovascular toxicology.
2022 08; 22(8):727-735. doi:
10.1007/s12012-022-09751-9
. [PMID: 35606666] - Ankit Gupta, Hayder A Al-Aubaidy, Christian K Narkowicz, Herbert F Jelinek, David S Nichols, John R Burgess, Glenn A Jacobson. Analysis of Citrus Bioflavonoid Content and Dipeptidyl Peptidase-4 Inhibitory Potential of Commercially Available Supplements.
Molecules (Basel, Switzerland).
2022 Jul; 27(15):. doi:
10.3390/molecules27154741
. [PMID: 35897920] - Maria Imperatrice, Iris Cuijpers, Freddy J Troost, Mireille M J P E Sthijns. Hesperidin Functions as an Ergogenic Aid by Increasing Endothelial Function and Decreasing Exercise-Induced Oxidative Stress and Inflammation, Thereby Contributing to Improved Exercise Performance.
Nutrients.
2022 Jul; 14(14):. doi:
10.3390/nu14142955
. [PMID: 35889917] - Lateefat T Olumegbon, Akeem O Lawal, Dare M Oluyede, Monsurat O Adebimpe, Olusola O Elekofehinti, Haruna I Umar. Hesperetin protects against diesel exhaust particles-induced cardiovascular oxidative stress and inflammation in Wistar rats.
Environmental science and pollution research international.
2022 Jul; 29(35):52574-52589. doi:
10.1007/s11356-022-19494-3
. [PMID: 35262885] - Yue Liu, Juan Luo, Yong-Zhe Gu, Yun Luo, Ting Tan, Zheng-Gen Liao, Ming Yang. [Comparative analysis of powder and piece decocting processes of Yinqiao Powder based on determination of multiple primary components].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2022 Jul; 47(14):3788-3797. doi:
10.19540/j.cnki.cjcmm.20210913.302
. [PMID: 35850836] - Tatianny de Araújo Andrade, Luana Heimfarth, Danillo Menezes Dos Santos, Márcio Roberto Viana Dos Santos, Ricardo Luiz Cavalcanti de Albuquerque-Júnior, Agenor Gomes Dos Santos-Neto, Guilherme Rodolfo Souza de Araujo, Ana Amélia Moreira Lira, Saulo Santos Matos, Luiza Abrahão Frank, Thallita Kelly Rabelo, Lucindo José Quintans-Júnior, Jullyana de Souza Siqueira Quintans, Adriano Antunes de Souza Araujo, Mairim Russo Serafini. Hesperetin-Based Hydrogels Protect the Skin against UV Radiation-Induced Damage.
AAPS PharmSciTech.
2022 Jun; 23(6):170. doi:
10.1208/s12249-022-02323-8
. [PMID: 35729366] - Anna Crescenti, Antoni Caimari, Juan María Alcaide-Hidalgo, Roger Mariné-Casadó, Rosa M Valls, Judit Companys, Patricia Salamanca, Lorena Calderón-Pérez, Laura Pla-Pagà, Anna Pedret, Antoni Delpino-Rius, Pol Herrero, Iris Samarra, Lluís Arola, Rosa Solà, Josep M Del Bas. Hesperidin Bioavailability Is Increased by the Presence of 2S-Diastereoisomer and Micronization-A Randomized, Crossover and Double-Blind Clinical Trial.
Nutrients.
2022 Jun; 14(12):. doi:
10.3390/nu14122481
. [PMID: 35745211] - Mehrdad Alikhani, Mahdi Aalikhani, Masoumeh Khalili. Reduction of iron toxicity in the heart of iron-overloaded mice with natural compounds.
European journal of pharmacology.
2022 Jun; 924(?):174981. doi:
10.1016/j.ejphar.2022.174981
. [PMID: 35487255] - Gema Pereira-Caro, Tahani M Almutairi, Alan Crozier, José Luis Ordoñez-Díaz, José Manuel Moreno-Rojas, Víctor Ortiz-Somovilla, Gabriela Morillo-Santander, Svilena Lazarova, Dalia Malkova, Ada L García. Acute effect of oat β-glucan on the bioavailability of orange juice flavanones.
International journal of food sciences and nutrition.
2022 Jun; 73(4):531-537. doi:
10.1080/09637486.2021.2015572
. [PMID: 34933644] - Yaseen Hussain, Haroon Khan, Thomas Efferth, Waqas Alam. Regulation of endoplasmic reticulum stress by hesperetin: Focus on antitumor and cytoprotective effects.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Jun; 100(?):153985. doi:
10.1016/j.phymed.2022.153985
. [PMID: 35358935] - Gizem Toprakçı, İrem Toprakçı, Selin Şahin. Highly clean recovery of natural antioxidants from lemon peels: Lactic acid-based automatic solvent extraction.
Phytochemical analysis : PCA.
2022 Jun; 33(4):554-563. doi:
10.1002/pca.3109
. [PMID: 35112419] - Busra Arikan, Ceyda Ozfidan-Konakci, Fatma Nur Alp, Gökhan Zengin, Evren Yildiztugay. Rosmarinic acid and hesperidin regulate gas exchange, chlorophyll fluorescence, antioxidant system and the fatty acid biosynthesis-related gene expression in Arabidopsis thaliana under heat stress.
Phytochemistry.
2022 Jun; 198(?):113157. doi:
10.1016/j.phytochem.2022.113157
. [PMID: 35271935] - Peter A Noshy, Abdel Azeim A Khalaf, Marwa A Ibrahim, Aya M Mekkawy, Rehab E Abdelrahman, Ahmed Farghali, Ahmed Abd-Eltawab Tammam, Amr R Zaki. Alterations in reproductive parameters and steroid biosynthesis induced by nickel oxide nanoparticles in male rats: The ameliorative effect of hesperidin.
Toxicology.
2022 05; 473(?):153208. doi:
10.1016/j.tox.2022.153208
. [PMID: 35569531] - Heba M Abdou, Fatma A Hamaad, Esraa Y Ali, Mamdooh H Ghoneum. Antidiabetic efficacy of Trifolium alexandrinum extracts hesperetin and quercetin in ameliorating carbohydrate metabolism and activating IR and AMPK signaling in the pancreatic tissues of diabetic rats.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 May; 149(?):112838. doi:
10.1016/j.biopha.2022.112838
. [PMID: 35344738] - Mustafa Onur Yıldız, Hamit Çelik, Cuneyt Caglayan, Fatih Mehmet Kandemir, Cihan Gür, İbrahim Bayav, Aydın Genç, Özge Kandemir. Neuromodulatory effects of hesperidin against sodium fluoride-induced neurotoxicity in rats: Involvement of neuroinflammation, endoplasmic reticulum stress, apoptosis and autophagy.
Neurotoxicology.
2022 05; 90(?):197-204. doi:
10.1016/j.neuro.2022.04.002
. [PMID: 35413380] - Hao Chen, Tong Nie, Penglu Zhang, Jun Ma, Anshan Shan. Hesperidin attenuates hepatic lipid accumulation in mice fed high-fat diet and oleic acid induced HepG2 via AMPK activation.
Life sciences.
2022 May; 296(?):120428. doi:
10.1016/j.lfs.2022.120428
. [PMID: 35218767] - Hany Ezzat Khalil, Miada F Abdelwahab, Promise Madu Emeka, Lorina I Badger-Emeka, Krishnaraj Thirugnanasambantham, Hairul-Islam Mohamed Ibrahim, Sara Mohamed Naguib, Katsuyoshi Matsunami, Nada M Abdel-Wahab. Ameliorative Effect of Ocimum forskolei Benth on Diabetic, Apoptotic, and Adipogenic Biomarkers of Diabetic Rats and 3T3-L1 Fibroblasts Assisted by In Silico Approach.
Molecules (Basel, Switzerland).
2022 Apr; 27(9):. doi:
10.3390/molecules27092800
. [PMID: 35566151] - Dinesh Kumar, M S Ladaniya, Manju Gurjar, Sunil Kumar. Impact of drying methods on natural antioxidants, phenols and flavanones of immature dropped Citrus sinensis L. Osbeck fruits.
Scientific reports.
2022 04; 12(1):6684. doi:
10.1038/s41598-022-10661-7
. [PMID: 35461355] - Mahim Khan, Waqar Rauf, Fazal-E- Habib, Moazur Rahman, Shoaib Iqbal, Aamir Shehzad, Mazhar Iqbal. Hesperidin identified from Citrus extracts potently inhibits HCV genotype 3a NS3 protease.
BMC complementary medicine and therapies.
2022 Apr; 22(1):98. doi:
10.1186/s12906-022-03578-1
. [PMID: 35366855] - Minseo Kwon, Yerin Kim, Jihye Lee, John A Manthey, Yang Kim, Yuri Kim. Neohesperidin Dihydrochalcone and Neohesperidin Dihydrochalcone-O-Glycoside Attenuate Subcutaneous Fat and Lipid Accumulation by Regulating PI3K/AKT/mTOR Pathway In Vivo and In Vitro.
Nutrients.
2022 Mar; 14(5):. doi:
10.3390/nu14051087
. [PMID: 35268062] - Rabiha Salam, Syeda Nayyab Batool Rizvi, Naqi Hussain, Shama Firdous, Muhammad Zaheer, Muhammad Naeem. Role of hesperidin and fresh orange juice in altering the bioavailability of beta-blocker, metoprolol tartrate. An in vivo model.
Xenobiotica; the fate of foreign compounds in biological systems.
2022 Mar; 52(3):295-300. doi:
10.1080/00498254.2022.2067507
. [PMID: 35443873]