NCBI Taxonomy: 2849020

Schizonepeta tenuifolia (ncbi_taxid: 2849020)

found 71 associated metabolites at species taxonomy rank level.

Ancestor: Schizonepeta

Child Taxonomies: none taxonomy data.

Diosmetin

5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one (Diosmetin)

C16H12O6 (300.0634)


Diosmetin is a monomethoxyflavone that is the 4-methyl ether derivative of luteolin. It is a natural product isolated from citrus fruits which exhibits a range of pharmacological activities. It has a role as an antioxidant, an antineoplastic agent, a plant metabolite, a tropomyosin-related kinase B receptor agonist, an apoptosis inducer, an angiogenesis inhibitor, a cardioprotective agent, a bone density conservation agent, an anti-inflammatory agent and a vasodilator agent. It is a monomethoxyflavone, a trihydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. It is a conjugate acid of a diosmetin-7-olate. Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic and anti-inflamatory activities. It also acts as a weak TrkB receptor agonist. Diosmetin is a natural product found in Vicia tenuifolia, Salvia tomentosa, and other organisms with data available. See also: Agathosma betulina leaf (part of). A monomethoxyflavone that is the 4-methyl ether derivative of luteolin. It is a natural product isolated from citrus fruits which exhibits a range of pharmacological activities. Isolated from peel of lemon (Citrus limon) and others. Diosmetin is found in many foods, some of which are spearmint, citrus, rosemary, and common thyme. Diosmetin is found in citrus. Diosmetin is isolated from peel of lemon (Citrus limon) and other Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell. Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell.

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.0477)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Cosmosiin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one;Apigenin 7-Glucoside

C21H20O10 (432.1056)


Cosmosiin, also known as apigenin 7-O-glucoside or apigetrin, is a member of the class of compounds known as flavonoid-7-O-glycosides. Flavonoid-7-O-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Cosmosiin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cosmosiin can be found in a number of food items, such as common thyme, white lupine, common oregano, and orange mint. Cosmosiin can also be found in dandelion coffee and in Teucrium gnaphalodes (Wikipedia). Cosmosiin can also be found plants such as wild celery and anise. Cosmosiin has been shown to exhibit anti-platelet function (PMID: 21834233). Apigenin 7-O-beta-D-glucoside is a glycosyloxyflavone that is apigenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a non-steroidal anti-inflammatory drug, a metabolite and an antibacterial agent. It is a beta-D-glucoside, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an apigenin. It is a conjugate acid of an apigenin 7-O-beta-D-glucoside(1-). It is an enantiomer of an apigenin 7-O-beta-L-glucoside. Cosmosiin is a natural product found in Galeopsis tetrahit, Carex fraseriana, and other organisms with data available. See also: Chamomile (part of). Apiumetrin, also known as 7-O-beta-D-glucosyl-5,7,4-trihydroxyflavone or cosmosiin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apiumetrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Apiumetrin can be found in wild celery, which makes apiumetrin a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Annotation level-1 Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

Luteolin 7-glucoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Luteolin 7-O-beta-D-glucoside is a glycosyloxyflavone that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and a plant metabolite. It is a beta-D-glucoside, a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a luteolin. It is a conjugate acid of a luteolin 7-O-beta-D-glucoside(1-). Cynaroside is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. See also: Cynara scolymus leaf (part of); Lonicera japonica flower (part of); Chamaemelum nobile flower (part of). Luteolin 7-glucoside is found in anise. Luteolin 7-glucoside is a constituent of the leaves of Capsicum annuum (red pepper).Cynaroside is a flavone, a flavonoid-like chemical compound. It is a 7-O-glucoside of luteolin and can be found in dandelion coffee, in Ferula varia and F. foetida in Campanula persicifolia and C. rotundifolia and in Cynara scolymus (artichoke) A glycosyloxyflavone that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Constituent of the leaves of Capsicum annuum (red pepper) Cynaroside (Luteolin 7-glucoside) is a flavonoid compound that exhibits anti-oxidative capabilities. Cynaroside is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 32 nM. Cynaroside also is a promising inhibitor for H2O2-induced apoptosis, has cytoprotection against oxidative stress-induced cardiovascular diseases. Cynaroside also has antibacterial, antifungal and anticancer activities, antioxidant and anti-inflammatory activities[1][3][4][5].

   

Hesperidin

(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C28H34O15 (610.1898)


Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit. Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit due to vitamin C deficiency such as bruising due to capillary fragility were found in early studies to be relieved by crude vitamin C extract but not by purified vitamin C. The bioflavonoids, formerly called "vitamin P", were found to be the essential components in correcting this bruising tendency and improving the permeability and integrity of the capillary lining. These bioflavonoids include hesperidin, citrin, rutin, flavones, flavonols, catechin and quercetin. Of historical importance is the observation that "citrin", a mixture of two flavonoids, eriodictyol and hesperidin, was considered to possess a vitamin-like activity, as early as in 1949. Hesperidin deficiency has since been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. Supplemental hesperidin also helps in reducing oedema or excess swelling in the legs due to fluid accumulation. As with other bioflavonoids, hesperidin works best when administered concomitantly with vitamin C. No signs of toxicity have been observed with normal intake of hesperidin. Hesperidin was first discovered in 1827, by Lebreton, but not in a pure state and has been under continuous investigation since then (PMID:11746857). Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). Found in most citrus fruits and other members of the Rutaceae, also in Mentha longifolia Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.770 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.767 [Raw Data] CB217_Hesperidin_pos_50eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_20eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_30eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_10eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_40eV_CB000076.txt [Raw Data] CB217_Hesperidin_neg_20eV_000038.txt [Raw Data] CB217_Hesperidin_neg_50eV_000038.txt [Raw Data] CB217_Hesperidin_neg_10eV_000038.txt [Raw Data] CB217_Hesperidin_neg_30eV_000038.txt [Raw Data] CB217_Hesperidin_neg_40eV_000038.txt Annotation level-1 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

Hesperetin

(2S)-5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydro-4H-1-benzopyran-4-one (Hesperetin)

C16H14O6 (302.079)


Hesperetin, also known as prestwick_908 or YSO2, belongs to the class of organic compounds known as 4-o-methylated flavonoids. These are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, hesperetin is considered to be a flavonoid lipid molecule. Hesperetin also seems to upregulate the LDL receptor. Hesperetin, in the form of its glycoside , is the predominant flavonoid in lemons and oranges. Hesperetin is a drug which is used for lowering cholesterol and, possibly, otherwise favorably affecting lipids. In vitro research also suggests the possibility that hesperetin might have some anticancer effects and that it might have some anti-aromatase activity. Hesperetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hesperetin is a bitter tasting compound. Hesperetin is found, on average, in the highest concentration within a few different foods, such as limes, persian limes, and sweet oranges and in a lower concentration in pummelo, welsh onions, and lemons. Hesperetin has also been detected, but not quantified, in several different foods, such as yellow bell peppers, carrots, rapinis, hazelnuts, and beers. Hesperetin is a biomarker for the consumption of citrus fruits. Hesperetin reduces or inhibits the activity of acyl-coenzyme A:cholesterol acyltransferase genes (ACAT1 and ACAT2) and it reduces microsomal triglyceride transfer protein (MTP) activity. Hesperetin is a trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. It has a role as an antioxidant, an antineoplastic agent and a plant metabolite. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-hydroxyflavanones and a member of 4-methoxyflavanones. It is a conjugate acid of a hesperetin(1-). Hesperetin belongs to the flavanone class of flavonoids. Hesperetin, in the form of its glycoside [hesperidin], is the predominant flavonoid in lemons and oranges. Hesperetin is a natural product found in Brassica oleracea var. sabauda, Dalbergia parviflora, and other organisms with data available. Isolated from Mentha (peppermint) and numerous Citrussubspecies, with lemons, tangerines and oranges being especially good sources. Nutriceutical with anti-cancer props. Glycosides also widely distributed A trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB046_Hesperetin_pos_40eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_50eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_30eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_20eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_10eV_CB000021.txt [Raw Data] CB046_Hesperetin_neg_20eV_000014.txt [Raw Data] CB046_Hesperetin_neg_10eV_000014.txt [Raw Data] CB046_Hesperetin_neg_40eV_000014.txt [Raw Data] CB046_Hesperetin_neg_50eV_000014.txt [Raw Data] CB046_Hesperetin_neg_30eV_000014.txt Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.3705)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Polylimonene

1-Methyl-4-(1-methylethenyl)-or 1-methyl-4-isopropenyl-cyclohex-1-ene

C10H16 (136.1252)


Dipentene appears as a colorless liquid with an odor of lemon. Flash point 113 °F. Density about 7.2 lb /gal and insoluble in water. Hence floats on water. Vapors heavier than air. Used as a solvent for rosin, waxes, rubber; as a dispersing agent for oils, resins, paints, lacquers, varnishes, and in floor waxes and furniture polishes. Limonene is a monoterpene that is cyclohex-1-ene substituted by a methyl group at position 1 and a prop-1-en-2-yl group at position 4 respectively. It has a role as a human metabolite. It is a cycloalkene and a p-menthadiene. Limonene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Limonene, (+/-)- is a racemic mixture of limonene, a natural cyclic monoterpene and major component of the oil extracted from citrus rind with chemo-preventive and antitumor activities. The metabolites of DL-limonene, perillic acid, dihydroperillic acid, uroterpenol and limonene 1,2-diol are suggested to inhibit tumor growth through inhibition of p21-dependent signaling, induce apoptosis via the induction of the transforming growth factor beta-signaling pathway, inhibit post-translational modification of signal transduction proteins, result in G1 cell cycle arrest as well as cause differential expression of cell cycle- and apoptosis-related genes. Limonene is a metabolite found in or produced by Saccharomyces cerevisiae. A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). See also: Cannabis sativa subsp. indica top (part of); Larrea tridentata whole (part of). Constituent of many essential oils. (±)-Limonene is found in many foods, some of which are common oregano, nutmeg, herbs and spices, and summer savory. Dipentene is found in carrot. Dipentene is a constituent of many essential oils

   

(-)-alpha-Pinene

(-)-alpha-Pinene, 99\\%, optical purity ee: >=86\\% (GLC)

C10H16 (136.1252)


(-)-alpha-pinene is an alpha-pinene. It is an enantiomer of a (+)-alpha-pinene. (-)-alpha-Pinene is a natural product found in Curcuma amada, Thryptomene saxicola, and other organisms with data available. (-)-alpha-Pinene is found in almond. alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (Wikipedia) (-)-alpha-Pinene belongs to the family of Bicyclic Monoterpenes. These are monoterpenes containing exactly 2 rings, which are fused to each other. alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). (-)-alpha-Pinene is found in almond. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   

Pulegone

(5R)-5-methyl-2-(propan-2-ylidene)cyclohexan-1-one

C10H16O (152.1201)


A p-menthane monoterpenoid that is cyclohexan-1-one substituted by a methyl group at position 5 and a propan-2-ylidene group at position 2. Occurs in oils of Mentha subspecies, Hedeoma pulegioides and many other essential oils. Fragrance and flavour ingredient. (R)-p-Menth-4(8)-en-3-one is found in many foods, some of which are blackcurrant, pepper (c. frutescens), spearmint, and red bell pepper. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].

   

(-)-Menthone

InChI=1/C10H18O/c1-7(2)9-5-4-8(3)6-10(9)11/h7-9H,4-6H2,1-3H3/t8-,9+/m1/s

C10H18O (154.1358)


(-)-menthone, also known as P-menthan-3-one or (2s,5r)-2-isopropyl-5-methylcyclohexanone, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (-)-menthone is considered to be an isoprenoid lipid molecule (-)-menthone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (-)-menthone is a fresh, green, and minty tasting compound and can be found in a number of food items such as lemon, kai-lan, babassu palm, and linden, which makes (-)-menthone a potential biomarker for the consumption of these food products (-)-menthone exists in all eukaryotes, ranging from yeast to humans. (-)-Menthone, also known as (1R,4S)-menthone or L-menthone, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. (-)-Menthone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (-)-menthone is considered to be an isoprenoid lipid molecule. (-)-menthone is a menthone that is cyclohexanone substituted by a methyl and an isopropyl group at positions 5 and 2 respectively (the 2S,5R-stereoisomer). It is an enantiomer of a (+)-menthone. Menthone is a natural product found in Xylopia aromatica, Hedeoma multiflora, and other organisms with data available. Menthone is a metabolite found in or produced by Saccharomyces cerevisiae. A menthone that is cyclohexanone substituted by a methyl and an isopropyl group at positions 5 and 2 respectively (the 2S,5R-stereoisomer). (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\\% and 94.92\\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\% and 94.92\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\% and 94.92\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\% and 94.92\\\%. [2] Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2]. Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2].

   

(-)-Limonene

(S)-(-)-Limonene, purum, >=95.0\\% (sum of enantiomers, GC)

C10H16 (136.1252)


Limonene is a monoterpene with a clear colourless liquid at room temperature, a naturally occurring chemical which is the major component in oil of oranges. Limonene is widely used as a flavour and fragrance and is listed to be generally recognized as safe in food by the Food and Drug Administration (21 CFR 182.60 in the Code of Federal Regulations, U.S.A.). Limonene is a botanical (plant-derived) solvent of low toxicity. Mild skin irritation may occur from exposure to limonene and oxidation products of limonene may produce dermal sensitization, and may have irritative and bronchoconstrictive airway effects; however, data are scant and more studies are required. Limonene has been shown to cause a male rat-specific kidney toxicity referred to as hyaline droplet nephropathy. Furthermore, chronic exposure to limonene causes a significant incidence of renal tubular tumours exclusively in male rats. Limonene is one of the active components of dietary phytochemicals that appears to be protective against cancer (PMID:16563357, 15499193, 15325315, 2024047). (4S)-limonene is an optically active form of limonene having (4S)-configuration. It is an enantiomer of a (4R)-limonene. (-)-Limonene is a natural product found in Poiretia latifolia, Kippistia suaedifolia, and other organisms with data available. A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). See also: Spearmint Oil (part of). An optically active form of limonene having (4S)-configuration. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1].

   

(R)-1-Octen-3-ol

1-Octen-3-ol, (+-)-isomer

C8H16O (128.1201)


Isolated from a number of essential oils, e.g. lavender, leek, mint and mushrooms. Food odorant responsible for typical mushroom odour. Flavouring ingredient. (R)-1-Octen-3-ol is found in mushrooms, onion-family vegetables, and herbs and spices. (R)-1-Octen-3-ol, also known as 1-vinylhexanol or 3-hydroxy-1-octene, belongs to the class of organic compounds known as fatty alcohols. These are aliphatic alcohols consisting of a chain of a least six carbon atoms Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

Ethyl pentyl ketone

Ethyl N-pentyl ketone

C8H16O (128.1201)


Ethyl pentyl ketone, also known as 3-oxooctane or eak, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, ethyl pentyl ketone is considered to be an oxygenated hydrocarbon lipid molecule. Ethyl pentyl ketone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ethyl pentyl ketone is a sweet, butter, and fresh tasting compound and can be found in a number of food items such as rosemary, hyssop, spearmint, and rocket salad (sspecies), which makes ethyl pentyl ketone a potential biomarker for the consumption of these food products. Ethyl pentyl ketone can be found primarily in feces and saliva. Ethyl pentyl ketone exists in all eukaryotes, ranging from yeast to humans. Ethyl pentyl ketone, also known as 3-oxooctane or EAK, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, ethyl pentyl ketone is considered to be an oxygenated hydrocarbon lipid molecule. A dialkyl ketone that is octane in which the two methylene protons at position 3 have been replaced by an oxo group. Ethyl pentyl ketone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Ethyl pentyl ketone has been detected, but not quantified, in cardamoms and lemons. This could make ethyl pentyl ketone a potential biomarker for the consumption of these foods. Ethyl pentyl ketone, with regard to humans, has been linked to the inborn metabolic disorder celiac disease.

   

Piperitenone

3-Methyl-6-(1-methylethylidene)-2-cyclohexen-1-one, 9ci

C10H14O (150.1045)


Piperitenone is a flavouring agent. It is found in grapefruit juice lemon juice, orange juice, spearmint oil and peppermint oil. It is also found in rosemary, mentha (mint), cornmint, and other herbs and spices. Piperitenone is found in citrus. Piperitenone is a flavouring agent. Piperitenone is present in grapefruit juice lemon juice, orange juice, spearmint oil and peppermint oi

   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.1878)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Schizonepetoside A

Schizonepetoside A

C16H26O7 (330.1678)


   

Schizonepetoside B

Schizonepetoside B

C16H26O7 (330.1678)


   

Schizonepetoside C

Schizonepetoside C

C16H26O7 (330.1678)


   

Schizonepetoside D

Schizonepetoside D

C16H26O7 (330.1678)


   

Schizonepetoside E

Schizonepetoside E

C16H28O8 (348.1784)


   

β-Caryophyllene

Bicyclo[7.2.0]undec-4-ene, 4,11,11-trimethyl-8-methylene-, (1R,4E,9S)-

C15H24 (204.1878)


A sesquiterpene with a [7.2.0]-bicyclic structure comprising fused 9- and 4-membered rings, with a cis-ring junction, a methylidene group at position 9, and methyl groups at positions 3, 11, and 11. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Constituent of clove, cinnamon, mint, eucalyptus, thyme, lemon balm and many other oils. The main source is the clove tree Eugenia caryophyllata. Flavouring agent. beta-Caryophyllene is found in many foods, some of which are hyssop, red bell pepper, pot marjoram, and caraway. β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Menthofuran

(+)-Menthofuran

C10H14O (150.1045)


A menthofuran that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6 (the 6R-enantiomer). (r)-menthofuran, also known as 4,5,6,7-tetrahydro-3,6-dimethylbenzofuran or 3,9-epoxy-P-mentha-3,8-diene, is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring (r)-menthofuran is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (r)-menthofuran is a coffee, earthy, and musty tasting compound found in herbs and spices, mentha (mint), and orange mint, which makes (r)-menthofuran a potential biomarker for the consumption of these food products (r)-menthofuran can be found primarily in saliva.

   

Methylrosmarinic acid

Benzenepropanoic acid, .alpha.-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3,4-dihydroxy-, methyl ester, (.alpha.R)-

C19H18O8 (374.1002)


Methyl rosmarinate is a hydroxycinnamic acid. Methyl rosmarinate is a natural product found in Dimetia scandens, Bourreria pulchra, and other organisms with data available. Methylrosmarinic acid is found in herbs and spices. Methylrosmarinic acid is isolated from Salvia (sage) species. Isolated from Salvia (sage) subspecies Methyl rosmarinate is found in herbs and spices. Methyl rosmarinate is a noncompetitive tyrosinase inhibitor which is isolated from Rabdosia serra, with an IC50 of 0.28 mM for mushroom tyrosinase, and also inhibits a-glucosidase[1]. Methyl rosmarinate is a noncompetitive tyrosinase inhibitor which is isolated from Rabdosia serra, with an IC50 of 0.28 mM for mushroom tyrosinase, and also inhibits a-glucosidase[1].

   

5,7,3'-Trihydroxy-4'-methoxyflavanone

(2S)-5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-chromanone, 3,5,7-Trihydroxy-4-methoxyflavanone

C16H14O6 (302.079)


5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is an ether and a member of flavonoids. 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural product found in Allium caeruleum, Allium caesium, and other organisms with data available. The S-form is It is isolated from Brickellia vernicosa, Persica vulgaris (preferred genus name Prunus), Citrus and Mentha species [CCD (Rac)-Hesperetin is the racemate of Hesperetin. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation. (Rac)-Hesperetin is the racemate of Hesperetin. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.

   

Pulegone

Cyclohexanone, 5-methyl-2-(1-methylethylidene)-, (theta)-

C10H16O (152.1201)


Pulegone belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. It is formally classified as a cyclic ketone although it is biochemically a monoterpenoid as it is synthesized via isoprene units. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plant cell plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Pulegone is a hydrophobic, neutral compound that is insoluble in water. It exists as a clear, colorless oil. There are two isomers of Pulegone (the R and the S isomer), with the R isomer being more common. It is used industrially as a food additive and a perfuming agent. Pulegone has a fresh, minty or peppermint odor and a minty, fruity or green taste. It is found naturally in the essential oils of a variety of plants such as Nepeta cataria (catnip), Hedeoma pulegioides (pennyroyal), and Mentha species. It is also found in a number of plant foods and spices such as blackberryies, black currants, bell peppers, cornmint, rosemary, black tea, thyme, orange mint, peppermint, and spearmint, which makes it a potential biomarker for the consumption of these food products. Pulegone is also one of more than 140 terpenes that are found in cannabis plants (PMID:6991645 ). Pulegone, also known as (+)-(R)-pulegone or (1r)-(+)-P-menth-4(8)-en-3-one, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, pulegone is considered to be an isoprenoid lipid molecule. Pulegone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Pulegone can be found in a number of food items such as globe artichoke, sacred lotus, garden onion, and rubus (blackberry, raspberry), which makes pulegone a potential biomarker for the consumption of these food products. Pulegone can be found primarily in saliva. Pulegone is a naturally occurring organic compound obtained from the essential oils of a variety of plants such as Nepeta cataria (catnip), Mentha piperita, and pennyroyal. It is classified as a monoterpene . (+)-pulegone is the (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone is a natural product found in Hedeoma multiflora, Clinopodium dalmaticum, and other organisms with data available. See also: Agathosma betulina leaf (part of). The (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].

   

Luteolin 7-galactoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O11 (448.1006)


Luteolin 7-galactoside is found in fruits. Luteolin 7-galactoside is isolated from Capsella bursa-pastoris (shepherds purse). Isolated from Capsella bursa-pastoris (shepherds purse). Luteolin 7-galactoside is found in herbs and spices and fruits.

   

Anthemoside

5-hydroxy-2-(4-hydroxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O10 (432.1056)


Constituent of Anthemis nobilis (Roman chamomile). Anthemoside is found in herbs and spices.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.0477)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Diosmetin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-

C16H12O6 (300.0634)


Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell. Diosmetin is a natural flavonoid which inhibits human CYP1A enzyme activity with an IC50 of 40 μM in HepG2 cell.

   

Cirantin

(S) -7- [ [ 6-O- (6-Deoxy-alpha-L-mannopyranosyl) -beta-D-glucopyranosyl ] oxy ] -2,3-dihydro-5-hydroxy-2- (3-hydroxy-4-methoxyphenyl) -4H-1-benzopyran-4-one

C28H34O15 (610.1898)


Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

Limonene

(S)-(−)-Limonene

C10H16 (136.1252)


A monoterpene that is cyclohex-1-ene substituted by a methyl group at position 1 and a prop-1-en-2-yl group at position 4 respectively. Found in over 300 essential oils, the ==(R)==-form is the most widespread, followed by the racemate and then the (S)-form. Extensively used in the flavour industry [DFC] (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1].

   

Menthone

Cyclohexanone, 5-methyl-2-(1-methylethyl)-, (2R,5S)-rel-

C10H18O (154.1358)


P-menthan-3-one is a p-menthane monoterpenoid that is p-menthane substituted by an oxo group at position 3. It has a role as a plant metabolite and a volatile oil component. p-Menthan-3-one is a natural product found in Citrus hystrix, Mentha aquatica, and other organisms with data available. The trans-stereoisomer of p-menthan-3-one. Flavouring compound [Flavornet] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\\% and 94.92\\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\% and 94.92\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\% and 94.92\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\% and 94.92\\\%. [2] Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2]. Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2].

   

Hesperidin

(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C28H34O15 (610.1898)


Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). A disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

Luteolin 7-O-glucoside

2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one mono-beta-D-glucopyranoside

C21H20O11 (448.1006)


   

Campesterol

Campesterol

C28H48O (400.3705)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Hesperetin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-, (S)- (9CI)

C16H14O6 (302.079)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.958 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.957 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.955 (Rac)-Hesperetin is the racemate of Hesperetin. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation. (Rac)-Hesperetin is the racemate of Hesperetin. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin induces apoptosis via p38 MAPK activation. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.

   

Apigetrin

Apigenin-7-O-glucoside

C21H20O10 (432.1056)


Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

(-)-limonene

(S)-(−)-Limonene

C10H16 (136.1252)


(-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1]. (-)-Limonene ((S)-(-)-Limonene) is a monoterpene found in citrus plants like lemon, orange, and grape. (-)-Limonene can induce a mild bronchoconstrictive effect[1].

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

1-OCTEN-3-OL

(3R)-oct-1-en-3-ol

C8H16O (128.1201)


Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

Methyl rosmarinate

3-(3,4-dihydroxyphenyl)-1-methoxy-1-oxopropan-2-yl (2Z)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C19H18O8 (374.1002)


Methyl rosmarinate is a noncompetitive tyrosinase inhibitor which is isolated from Rabdosia serra, with an IC50 of 0.28 mM for mushroom tyrosinase, and also inhibits a-glucosidase[1]. Methyl rosmarinate is a noncompetitive tyrosinase inhibitor which is isolated from Rabdosia serra, with an IC50 of 0.28 mM for mushroom tyrosinase, and also inhibits a-glucosidase[1].

   

FOH 8:1

4S-(E)-6-Methyl-2-hepten-4-ol

C8H16O (128.1201)


Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

3-Octanone

Octan-3-one

C8H16O (128.1201)


A dialkyl ketone that is octane in which the two methylene protons at position 3 have been replaced by an oxo group.

   

Piperitenone

2-CYCLOHEXEN-1-ONE, 3-METHYL-6-(1-METHYLETHYLIDENE)-

C10H14O (150.1045)


   

cosmetin

5-hydroxy-2-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O10 (432.1056)


Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

cinaroside

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Cynaroside (Luteolin 7-glucoside) is a flavonoid compound that exhibits anti-oxidative capabilities. Cynaroside is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 32 nM. Cynaroside also is a promising inhibitor for H2O2-induced apoptosis, has cytoprotection against oxidative stress-induced cardiovascular diseases. Cynaroside also has antibacterial, antifungal and anticancer activities, antioxidant and anti-inflammatory activities[1][3][4][5].

   

α-Pinene

InChI=1\C10H16\c1-7-4-5-8-6-9(7)10(8,2)3\h4,8-9H,5-6H2,1-3H

C10H16 (136.1252)


A pinene that is bicyclo[3.1.1]hept-2-ene substituted by methyl groups at positions 2, 6 and 6 respectively. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   

CHEBI:39932

(3R)-oct-1-en-3-ol

C8H16O (128.1201)


   

118-65-0

(1R-(1R*,4Z,9S*))-4,11,11-Trimethyl-8-methylenebicyclo(7.2.0)undec-4-ene

C15H24 (204.1878)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Ciratin

(2S)-5-hydroxy-2-(3-hydroxy-4-methoxy-phenyl)-7-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxymethyl]tetrahydropyran-2-yl]oxy-chroman-4-one

C28H34O15 (610.1898)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

WLN: 5V2

Ethyl N-pentyl ketone

C8H16O (128.1201)


   

(-)-α-Pinene

(-)-alpha-Pinene

C10H16 (136.1252)


alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   

(R)-1-octen-3-ol

(3R)-oct-1-en-3-ol

C8H16O (128.1201)


   

Oct-1-en-3-ol

Oct-1-en-3-ol

C8H16O (128.1201)


An alkenyl alcohol with a structure based on a C8 unbranched chain with the hydroxy group at C-2 and unsaturation at C-1-C-2. It is a major volatile compound present in many mushrooms and fungi.

   

5-methyl-2-(1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}prop-1-en-2-yl)cyclohexan-1-one

5-methyl-2-(1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}prop-1-en-2-yl)cyclohexan-1-one

C16H26O7 (330.1678)


   

(2e,5s)-5-methyl-2-(1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-ylidene)cyclohexan-1-one

(2e,5s)-5-methyl-2-(1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-ylidene)cyclohexan-1-one

C16H26O7 (330.1678)


   

(+-)-pulegone

(+-)-pulegone

C10H16O (152.1201)


   

apigetrin

CHEMBL487995; SR-05000002285; Galactosyl-7-apigenin; EINECS 209-430-5; 5-Hydroxy-2-(4-hydroxyphenyl)-7-(4,5,6-trihydroxy-3-(hydroxymethyl)(2-oxanyloxy))-4H-chromen-4-one; Cosemetin; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; COSMOSIIN; 4H-1-Benzopyran-4-one, 7-(beta-D-glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)- (9CI); Apigenin, 7-beta-D-glucopyranoside; Apigenin 7-O-beta-D-glucopyranoside; 7-(beta-D-Glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; Cosmosiine; 7-O-(beta-D-Glucosyl)apigenin; Thalictiin; SR-05000002285-3; A831652; Cosmosioside; 23598-21-2; NSC 407303; Apigetrin; NCGC00163513-01; CCG-208379; 62532-75-6; 5-hydroxy-2-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-1-benzopyran-4-one; UNII-7OF2S66PCH; SR-05000002285-2; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; AC1NUZ8G; Apigenin, 7-beta-D-galactopyranoside; 7-[(2S,3R,4S,5R,6R)-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-2-(4-hydroxyphenyl)-5-oxidanyl-chromen-4-one; 7OF2S66PCH; Cosmosiin (8CI)

C21H20O10 (432.1056)


{"Ingredient_id": "HBIN016480","Ingredient_name": "apigetrin","Alias": "CHEMBL487995; SR-05000002285; Galactosyl-7-apigenin; EINECS 209-430-5; 5-Hydroxy-2-(4-hydroxyphenyl)-7-(4,5,6-trihydroxy-3-(hydroxymethyl)(2-oxanyloxy))-4H-chromen-4-one; Cosemetin; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one; COSMOSIIN; 4H-1-Benzopyran-4-one, 7-(beta-D-glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)- (9CI); Apigenin, 7-beta-D-glucopyranoside; Apigenin 7-O-beta-D-glucopyranoside; 7-(beta-D-Glucopyranosyloxy)-5-hydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; Cosmosiine; 7-O-(beta-D-Glucosyl)apigenin; Thalictiin; SR-05000002285-3; A831652; Cosmosioside; 23598-21-2; NSC 407303; Apigetrin; NCGC00163513-01; CCG-208379; 62532-75-6; 5-hydroxy-2-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-oxanyl]oxy]-1-benzopyran-4-one; UNII-7OF2S66PCH; SR-05000002285-2; 5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one; AC1NUZ8G; Apigenin, 7-beta-D-galactopyranoside; 7-[(2S,3R,4S,5R,6R)-6-(hydroxymethyl)-3,4,5-tris(oxidanyl)oxan-2-yl]oxy-2-(4-hydroxyphenyl)-5-oxidanyl-chromen-4-one; 7OF2S66PCH; Cosmosiin (8CI)","Ingredient_formula": "C21H20O10","Ingredient_Smile": "C1=CC(=CC=C1C2=CC(=O)C3=C(C=C(C=C3O2)OC4C(C(C(C(O4)CO)O)O)O)O)O","Ingredient_weight": "432.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "SMIT19095","TCMID_id": "30618","TCMSP_id": "NA","TCM_ID_id": "21625","PubChem_id": "12304093","DrugBank_id": "NA"}

   

(2z,5s)-5-methyl-2-(1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-ylidene)cyclohexan-1-one

(2z,5s)-5-methyl-2-(1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-ylidene)cyclohexan-1-one

C16H26O7 (330.1678)


   

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H48O (400.3705)


   

(2e,5r)-5-methyl-2-(1-{[(3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-ylidene)cyclohexan-1-one

(2e,5r)-5-methyl-2-(1-{[(3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-ylidene)cyclohexan-1-one

C16H26O7 (330.1678)


   

(4s)-4-hydroxy-2-(2-hydroxypropan-2-yl)-5-methylcyclohex-2-en-1-one

(4s)-4-hydroxy-2-(2-hydroxypropan-2-yl)-5-methylcyclohex-2-en-1-one

C10H16O3 (184.1099)


   

(2r,5s)-2-[(2r,4ar,6r,7s,8s,8ar)-7,8-dihydroxy-6-(hydroxymethyl)-2-methyl-hexahydropyrano[2,3-b][1,4]dioxin-2-yl]-5-methylcyclohexan-1-one

(2r,5s)-2-[(2r,4ar,6r,7s,8s,8ar)-7,8-dihydroxy-6-(hydroxymethyl)-2-methyl-hexahydropyrano[2,3-b][1,4]dioxin-2-yl]-5-methylcyclohexan-1-one

C16H26O7 (330.1678)


   

(2s)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C28H34O15 (610.1898)


   

5-methyl-2-(1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-ylidene)cyclohexan-1-one

5-methyl-2-(1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}propan-2-ylidene)cyclohexan-1-one

C16H26O7 (330.1678)


   

(2s,5s)-5-methyl-2-[(1e)-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}prop-1-en-2-yl]cyclohexan-1-one

(2s,5s)-5-methyl-2-[(1e)-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}prop-1-en-2-yl]cyclohexan-1-one

C16H26O7 (330.1678)


   

2-(2-hydroxypropan-2-yl)-5-methylcyclohex-2-en-1-one

2-(2-hydroxypropan-2-yl)-5-methylcyclohex-2-en-1-one

C10H16O2 (168.115)


   

(9z,12z)-octadeca-9,12-dienoyl chloride

(9z,12z)-octadeca-9,12-dienoyl chloride

C18H31ClO (298.2063)


   

(2s,5r)-2-[(2s,4ar,6r,7s,8s,8as)-7,8-dihydroxy-6-(hydroxymethyl)-2-methyl-hexahydropyrano[2,3-b][1,4]dioxin-2-yl]-5-methylcyclohexan-1-one

(2s,5r)-2-[(2s,4ar,6r,7s,8s,8as)-7,8-dihydroxy-6-(hydroxymethyl)-2-methyl-hexahydropyrano[2,3-b][1,4]dioxin-2-yl]-5-methylcyclohexan-1-one

C16H26O7 (330.1678)


   

(2r,5s)-5-methyl-2-[(1e)-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}prop-1-en-2-yl]cyclohexan-1-one

(2r,5s)-5-methyl-2-[(1e)-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}prop-1-en-2-yl]cyclohexan-1-one

C16H26O7 (330.1678)