NCBI Taxonomy: 34256

Mentha x piperita (ncbi_taxid: 34256)

found 145 associated metabolites at species taxonomy rank level.

Ancestor: Mentha

Child Taxonomies: none taxonomy data.

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.0477)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Narirutin

(S)-5-hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O14 (580.1792)


Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). obtained from Camellia sinensis (tea). Narirutin is found in many foods, some of which are lemon, globe artichoke, grapefruit, and grapefruit/pummelo hybrid. Narirutin is found in globe artichoke. Narirutin is obtained from Camellia sinensis (tea Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0685)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Eriocitrin

(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O15 (596.1741)


Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. Eriocitrin is a flavonoid glycoside that can be found in plants like Citrus grandis, Citrus limon, Mentha longifolia, Mentha piperita, Thymus vulgaris. It shows important antioxidant activities. Isolated from Mentha piperita (peppermint) leaves and from Citrus subspecies Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].

   

Hesperidin

(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C28H34O15 (610.1898)


Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit. Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit due to vitamin C deficiency such as bruising due to capillary fragility were found in early studies to be relieved by crude vitamin C extract but not by purified vitamin C. The bioflavonoids, formerly called "vitamin P", were found to be the essential components in correcting this bruising tendency and improving the permeability and integrity of the capillary lining. These bioflavonoids include hesperidin, citrin, rutin, flavones, flavonols, catechin and quercetin. Of historical importance is the observation that "citrin", a mixture of two flavonoids, eriodictyol and hesperidin, was considered to possess a vitamin-like activity, as early as in 1949. Hesperidin deficiency has since been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. Supplemental hesperidin also helps in reducing oedema or excess swelling in the legs due to fluid accumulation. As with other bioflavonoids, hesperidin works best when administered concomitantly with vitamin C. No signs of toxicity have been observed with normal intake of hesperidin. Hesperidin was first discovered in 1827, by Lebreton, but not in a pure state and has been under continuous investigation since then (PMID:11746857). Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). Found in most citrus fruits and other members of the Rutaceae, also in Mentha longifolia Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.770 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.767 [Raw Data] CB217_Hesperidin_pos_50eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_20eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_30eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_10eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_40eV_CB000076.txt [Raw Data] CB217_Hesperidin_neg_20eV_000038.txt [Raw Data] CB217_Hesperidin_neg_50eV_000038.txt [Raw Data] CB217_Hesperidin_neg_10eV_000038.txt [Raw Data] CB217_Hesperidin_neg_30eV_000038.txt [Raw Data] CB217_Hesperidin_neg_40eV_000038.txt Annotation level-1 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

Diosmin

5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C28H32O15 (608.1741)


Isolated from parsley. Diosmetin 7-rutinoside is found in many foods, some of which are sweet orange, spearmint, rosemary, and peppermint. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids Diosmin is found in green vegetables. Diosmin is isolated from parsle C26170 - Protective Agent > C275 - Antioxidant > C306 - Bioflavonoid Diosmin is a disaccharide derivative that consists of diosmetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and an anti-inflammatory agent. It is a glycosyloxyflavone, a rutinoside, a disaccharide derivative, a monomethoxyflavone and a dihydroxyflavanone. It is functionally related to a diosmetin. Chronic venous insufficiency is a common condition the western population. Compression and pharmacotherapy are frequently used to manage chronic venous insufficiency, improving circulation and symptoms of venous disease. Diosmin is a bioflavonoid isolated from various plants or synthesized from [hesperidin]. It is used for the improvement of capillary fragility or venous insufficiency, including chronic venous insufficiency (CVI) and hemorrhoids. Diosmin is widely available over-the-counter and demonstrates a favourable a favorable safety profile. Diosmin is a natural product found in Asyneuma argutum, Citrus hystrix, and other organisms with data available. A bioflavonoid that strengthens vascular walls. See also: Agathosma betulina leaf (part of). [Raw Data] CBA89_Diosmin_neg_50eV.txt [Raw Data] CBA89_Diosmin_pos_10eV.txt [Raw Data] CBA89_Diosmin_neg_20eV.txt [Raw Data] CBA89_Diosmin_pos_50eV.txt [Raw Data] CBA89_Diosmin_neg_30eV.txt [Raw Data] CBA89_Diosmin_neg_40eV.txt [Raw Data] CBA89_Diosmin_pos_30eV.txt [Raw Data] CBA89_Diosmin_neg_10eV.txt [Raw Data] CBA89_Diosmin_pos_20eV.txt [Raw Data] CBA89_Diosmin_pos_40eV.txt Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR). Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR).

   

beta-Elemene

(1S,2S,4R)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


(-)-beta-elemene is the (-)-enantiomer of beta-elemene that has (1S,2S,4R)-configuration. It has a role as an antineoplastic agent. beta-Elemene is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. Beta-elemene is one of the isomers of elemene, a lipid soluble sesquiterpene and the active component isolated from the Chinese medicinal herb Rhizoma zedoariae with potential antineoplastic and chemopreventive activities. Although the exact mechanism of action through which beta-elemene exerts its effect has yet to be fully elucidated, this agent appears to induce apoptosis through different mechanisms of action and induces cell cycle arrest at different stages based on the tumor cell type involved. Beta-elemene may sensitize cancer cells to other chemotherapeutic agents. See also: Cannabis sativa subsp. indica top (part of). Beta-elemene, also known as B-elemen or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. Beta-elemene is a fresh, herbal, and waxy tasting compound and can be found in a number of food items such as lovage, anise, spearmint, and orange mint, which makes beta-elemene a potential biomarker for the consumption of these food products. Beta-elemene can be found primarily in saliva. beta-Elemene belongs to the class of organic compounds known as elemane sesquiterpenoids. These are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. beta-Elemene can be found in herbs, spices, and root vegetables, which makes beta-elemene a potential biomarker for the consumption of these food products. It is a constituent of sweet flag, juniper oils, and Mentha species. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

Pulegone

(5R)-5-methyl-2-(propan-2-ylidene)cyclohexan-1-one

C10H16O (152.1201)


A p-menthane monoterpenoid that is cyclohexan-1-one substituted by a methyl group at position 5 and a propan-2-ylidene group at position 2. Occurs in oils of Mentha subspecies, Hedeoma pulegioides and many other essential oils. Fragrance and flavour ingredient. (R)-p-Menth-4(8)-en-3-one is found in many foods, some of which are blackcurrant, pepper (c. frutescens), spearmint, and red bell pepper. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].

   

(-)-Menthone

InChI=1/C10H18O/c1-7(2)9-5-4-8(3)6-10(9)11/h7-9H,4-6H2,1-3H3/t8-,9+/m1/s

C10H18O (154.1358)


(-)-menthone, also known as P-menthan-3-one or (2s,5r)-2-isopropyl-5-methylcyclohexanone, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (-)-menthone is considered to be an isoprenoid lipid molecule (-)-menthone is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (-)-menthone is a fresh, green, and minty tasting compound and can be found in a number of food items such as lemon, kai-lan, babassu palm, and linden, which makes (-)-menthone a potential biomarker for the consumption of these food products (-)-menthone exists in all eukaryotes, ranging from yeast to humans. (-)-Menthone, also known as (1R,4S)-menthone or L-menthone, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. (-)-Menthone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (-)-menthone is considered to be an isoprenoid lipid molecule. (-)-menthone is a menthone that is cyclohexanone substituted by a methyl and an isopropyl group at positions 5 and 2 respectively (the 2S,5R-stereoisomer). It is an enantiomer of a (+)-menthone. Menthone is a natural product found in Xylopia aromatica, Hedeoma multiflora, and other organisms with data available. Menthone is a metabolite found in or produced by Saccharomyces cerevisiae. A menthone that is cyclohexanone substituted by a methyl and an isopropyl group at positions 5 and 2 respectively (the 2S,5R-stereoisomer). (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\\% and 94.92\\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\% and 94.92\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\% and 94.92\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\% and 94.92\\\%. [2] Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2]. Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2].

   

Geranyl acetate

Geranyl acetate, food grade (71\\% geranyl acetate, 29\\% citronellyl acetate)

C12H20O2 (196.1463)


Geranyl acetate is a clear colorless liquid with an odor of lavender. (NTP, 1992) Geranyl acetate is a monoterpenoid that is the acetate ester derivative of geraniol. It has a role as a plant metabolite. It is an acetate ester and a monoterpenoid. It is functionally related to a geraniol. Geranyl acetate is a natural product found in Nepeta nepetella, Xylopia sericea, and other organisms with data available. See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Java citronella oil (part of). Neryl acetate is found in cardamom. Neryl acetate is found in citrus, kumquat and pummelo peel oils, ginger, cardamon, clary sage, myrtle leaf and myrtle berries. Neryl acetate is a flavouring agent A monoterpenoid that is the acetate ester derivative of geraniol. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2].

   

beta-Phellandrene

3-methylidene-6-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1252)


beta-Phellandrene is found in allspice. beta-Phellandrene is widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus species). beta-Phellandrene is a flavour ingredient.Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia Beta-phellandrene is one of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). It has a role as a plant metabolite. beta-Phellandrene is a natural product found in Xylopia aromatica, Dacrydium nausoriense, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). One of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). Widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus subspecies). Flavour ingredient β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].

   

(R)-Menthofuran

(6R)-3,6-Dimethyl-4,5,6,7-tetrahydro-1-benzofuran

C10H14O (150.1045)


Menthofuran is a monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6. It has a role as a nematicide and a plant metabolite. It is a member of 1-benzofurans and a monoterpenoid. Menthofuran is a natural product found in Methanobacterium and Mentha pulegium with data available. Constituent of peppermint oil (Mentha piperita) and other Mentha subspecies as minor but essential organoleptic. It is used in peppermint oil formulations. (R)-Menthofuran is found in mentha (mint), orange mint, and herbs and spices. (R)-Menthofuran is found in herbs and spices. (R)-Menthofuran is a constituent of peppermint oil (Mentha piperita) and other Mentha species as minor but essential organoleptic. (R)-Menthofuran is used in peppermint oil formulations A monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6.

   

Nevadensin

5,7-Dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

C18H16O7 (344.0896)


Nevadensin, also known as pedunculin or 5,7-hydroxy-4,6,8-trimethoxyflavone, is a member of the class of compounds known as 8-o-methylated flavonoids. 8-o-methylated flavonoids are flavonoids with methoxy groups attached to the C8 atom of the flavonoid backbone. Thus, nevadensin is considered to be a flavonoid lipid molecule. Nevadensin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Nevadensin can be found in peppermint and sweet basil, which makes nevadensin a potential biomarker for the consumption of these food products. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2]. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2].

   

Camphene

3,3-Dimethyl-2-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1252)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .

   

(-)-trans-Carveol

(1S-trans)-2-Methyl-5-(1-methylvinyl)cyclohex-2-en-1-ol

C10H16O (152.1201)


Carveol is a natural terpenoid alcohol that is a constituent of spearmint oil. It has an odor and flavor that resemble those of spearmint and caraway. Consequently, it is used as a fragrance in cosmetics and as a flavor additive in the food industry. Constituent of Valencia orange essence oil. Flavouring ingredient Carveol is an endogenous metabolite. Carveol is an endogenous metabolite.

   

Eucalyptol

(1s,4s)-1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane

C10H18O (154.1358)


Eucalyptol is an organic compound that is a colourless liquid. It is a cyclic ether and a monoterpene. Eucalyptol is a natural constituent of a number of aromatic plants and their essential oil fraction. Eucalyptol was given GRAS (Generally Recognized As Safe) status by the Flavor and Extract Manufacturers Association FEMA, 1965 and is approved by the Food and Drug Administration for food use. 1,8-Dihydroxy-10-carboxy-p-menthane, 2-hydroxy-cineole, and 3-hydroxy-cineole are the main metabolites of eucalyptol. Toxicological data available on eucalyptol are rather limited. Following accidental exposure, death was reported in two cases after ingestion of 3.5-5 mL of essential eucalyptus oil, but a number of recoveries have also been described for much higher amounts of oil. In a 1994 report released by five top cigarette companies, eucalyptol was listed as one of the 599 additives to cigarettes. It is usually added to improve the flavour (PMID:12048025). R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78273 - Agent Affecting Respiratory System > C74536 - Mucolytic Agent D019141 - Respiratory System Agents > D000996 - Antitussive Agents D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D010575 - Pesticides > D007302 - Insect Repellents D003358 - Cosmetics > D009067 - Mouthwashes D001697 - Biomedical and Dental Materials D002491 - Central Nervous System Agents D000890 - Anti-Infective Agents D020011 - Protective Agents D016573 - Agrochemicals D012997 - Solvents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Terpinolene

1-methyl-4-(propan-2-ylidene)cyclohexene p-mentha-1,4(8)-diene

C10H16 (136.1252)


Terpinolene (TPO), also known as alpha-terpinolene or isoterpinene, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, terpinolene is considered to be an isoprenoid lipid molecule. Terpinolene is a very hydrophobic monoterpenoid, practically insoluble in water, and relatively neutral. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes in plants is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Terpinolene is one of the constituents of turpentine and an isomer of terpinene. It appears colourless to pale yellow liquid. Alpha-terpinolene has been identified as an abundant monoterpene in the essential oil of Cannabis sativa plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Although common in cannabis cultivars, terpinolene is typically found in relatively low amounts. On the other hand, the concentration of terpinolene can be has high as 30\\% of the essential oil. It is thought that terpinolene offers a mildly sedative effect and can reduce anxiety (PMID:28826544 ). In particular, terpinolene is a central nervous system depressant that has been shown to induce drowsiness (PMID:23339024 ). Terpinolene has been demonstrated to prevent LDL oxidation and is of potential interest in the treatment of atherogenesis and coronary artery disease (PMID:28826544 ). Terpinolene exhibits antifungal and larvicidal properties (PMID:28826544 ). Terpinolene is also an effective anti-microbial agent, particularly against E coli and Staphylococcus bacteria (PMID:16402540 ). Terpinolene is also employed as a fragrence ingredient in lotions, insect repellents (similar to other terpenes), perfumes, and soaps. Terpinolene is also a constituent of many other essential oils e. g. Citrus, Mentha, Juniperus, Myristica species. Parsnip oil (Pastinaca sativa) in particular, is a major source (40-70\\%). Terpinolene is a sweet, citrus, and fresh tasting compound. It produces a floral, woody or herbal aroma reminiscent of pine needles. In addition to being found in various plant essential oils, terpinolene is found in a few different foods and spices, such as allspice, apples, sage, rosemary, parsnips, nutmegs, and wild carrots and in a lower concentration in sweet bay, star anises, turmerics, apricots, cumins, evergreen blackberries, red bell peppers, and caraway. Constituent of many essential oils e.g. Citrus, Mentha, Juniperus, Myristica subspecies Parsnip oil (Pastinaca sativa) is a major source (40-70\\%). Flavouring ingredient. Terpinolene is found in many foods, some of which are coriander, ceylon cinnamon, pine nut, and caraway.

   

Germacrene

(1E,5E)-1,5-Dimethyl-8-(1-methylethylidene)-1,5-cyclodecadiene

C15H24 (204.1878)


Germacrene, also known as (e,e)-germacra-1(10),4,7(11)-triene, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Thus, germacrene is considered to be an isoprenoid lipid molecule. Germacrene can be found in turmeric, which makes germacrene a potential biomarker for the consumption of this food product. Germacrenes are a class of volatile organic hydrocarbons, specifically, sesquiterpenes. Germacrenes are typically produced in a number of plant species for their antimicrobial and insecticidal properties, though they also play a role as insect pheromones. Two prominent molecules are germacrene A and germacrene D .

   

Xanthomicrol

4H-1-Benzopyran-4-one,5-hydroxy-2-(4-hydroxyphenyl)-6,7,8-trimethoxy-

C18H16O7 (344.0896)


Isolated from Citrus sudachi, Mentha piperita, Sideritis subspecies and Thymus subspecies Xanthomicrol is found in many foods, some of which are citrus, herbs and spices, sweet basil, and winter savory. low.

   

Gardenin B

5-Hydroxy-6,7,8-trimethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C19H18O7 (358.1052)


Gardenin b, also known as demethyltangeretin or 5-hydroxy-4,6,7,8-tetramethoxyflavone, is a member of the class of compounds known as 8-o-methylated flavonoids. 8-o-methylated flavonoids are flavonoids with methoxy groups attached to the C8 atom of the flavonoid backbone. Thus, gardenin b is considered to be a flavonoid lipid molecule. Gardenin b is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Gardenin b can be found in mandarin orange (clementine, tangerine), peppermint, sweet basil, and winter savory, which makes gardenin b a potential biomarker for the consumption of these food products. Gardenin B is a flavonoid isolated from Gardenia jasminoides. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1]. Gardenin B is a flavonoid isolated from Gardenia jasminoides. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1].

   

germacradienol

2-[(1R,2E,4S,7E)-4,8-dimethylcyclodeca-2,7-dien-1-yl]propan-2-ol

C15H26O (222.1984)


   

(+)-Limonene

(4R)-1-Methyl-4-(prop-1-en-2-yl)cyclohex-1-ene

C10H16 (136.1252)


(+)-Limonene, also known as d-limonene, is a naturally occurring monoterpene which is the major component in orange oil. Currently, (+)-limonene is widely used as a flavour and fragrance and is listed to be generally recognized as safe in food by the Food and Drug Administration (21 CFR 182.60 in the Code of Federal Regulations, U.S.A.). Recently, however, (+)-limonene has been shown to cause a male rat-specific kidney toxicity referred to as hyaline droplet nephropathy. Furthermore, chronic exposure to (+)-limonene causes a significant incidence of renal tubular tumours exclusively in male rats. Although (+)-limonene is not carcinogenic in female rats or male and female mice given much higher dosages, the male rat-specific nephrocarcinogenicity of (+)-limonene may raise some concern regarding the safety of (+)-limonene for human consumption. A considerable body of scientific data has indicated that the renal toxicity of (+)-limonene results from the accumulation of a protein, alpha 2u-globulin, in male rat kidney proximal tubule lysosomes. This protein is synthesized exclusively by adult male rats. Other species, including humans, synthesize proteins that share significant homology with alpha 2u-globulin. However, none of these proteins, including the mouse equivalent of alpha 2u-globulin, can produce this toxicity, indicating a unique specificity for alpha 2u-globulin. With chronic exposure to (+)-limonene, the hyaline droplet nephropathy progresses and the kidney shows tubular cell necrosis, granular cast formation at the corticomedullary junction, and compensatory cell proliferation. Both (+)-limonene and cis-d-limonene-1,2-oxide (the major metabolite involved in this toxicity) are negative in vitro mutagenicity screens. Therefore, the toxicity-related renal cell proliferation is believed to be integrally involved in the carcinogenicity of (+)-limonene as persistent elevations in renal cell proliferation may increase fixation of spontaneously altered DNA or serve to promote spontaneously initiated cells. The scientific data demonstrates that the tumorigenic activity of (+)-limonene in male rats is not relevant to humans. The three major lines of evidence supporting the human safety of (+)-limonene are (1) the male rat specificity of the nephrotoxicity and carcinogenicity; (2) the pivotal role that alpha 2u-globulin plays in the toxicity, as evidenced by the complete lack of toxicity in other species despite the presence of structurally similar proteins; and (3) the lack of genotoxicity of both (+)-limonene and d-limonene-1,2-oxide, supporting the concept of a nongenotoxic mechanism, namely, sustained renal cell proliferation (PMID:2024047). (4r)-limonene, also known as (+)-4-isopropenyl-1-methylcyclohexene or (R)-1-methyl-4-(1-methylethenyl)cyclohexene, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (4r)-limonene is considered to be an isoprenoid lipid molecule (4r)-limonene can be found in sweet marjoram, which makes (4r)-limonene a potential biomarker for the consumption of this food product (4r)-limonene can be found primarily in saliva.

   

(+)-Neomenthol

(1S,2S,5R)-5-Methyl-2-(propan-2-yl)cyclohexan-1-ol

C10H20O (156.1514)


Constituent of Japanese peppermint oil. Flavouring ingredient. (+)-Neomenthol is found in many foods, some of which are yellow bell pepper, broccoli, spearmint, and sweet orange. (+)-Neomenthol is found in cabbage. (+)-Neomenthol is a constituent of Japanese peppermint oil. (+)-Neomenthol is a flavouring ingredient (+)-Neomenthol is a potent miticide. (+)-Neomenthol shows acaricidal activitie with LD50 values of 0.32, 0.256 μg/mL for Dermatophagoides farinae and Dermatophagoides pteronyssinus, respectively[1]. (+)-Neomenthol is a potent miticide. (+)-Neomenthol shows acaricidal activitie with LD50 values of 0.32, 0.256 μg/mL for Dermatophagoides farinae and Dermatophagoides pteronyssinus, respectively[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1].

   

(+)-Menthone

(2R,5S)-5-methyl-2-(propan-2-yl)cyclohexan-1-one

C10H18O (154.1358)


(+)-Menthone is found in herbs and spices. (+)-Menthone is found in some essential oils, e.g. those of Barosma pulchellum, Mentha sachalinensi Found in some essential oils, e.g. those of Barosma pulchellum, Mentha sachalinensis

   

(+)-Camphene

(1R,4S)-2,2-dimethyl-3-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1252)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-eritritol-phosphate (MEP) pathway in plastids (PMID: 7640522). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. (+)-camphene is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphene is considered to be an isoprenoid lipid molecule (+)-camphene is a camphor, fir, and fresh tasting compound found in common sage and turmeric, which makes (+)-camphene a potential biomarker for the consumption of these food products.

   

Pinene

(1R,5R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene

C10H16 (136.1252)


Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1252)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

Menthofuran

(+)-Menthofuran

C10H14O (150.1045)


A menthofuran that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6 (the 6R-enantiomer). (r)-menthofuran, also known as 4,5,6,7-tetrahydro-3,6-dimethylbenzofuran or 3,9-epoxy-P-mentha-3,8-diene, is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring (r)-menthofuran is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (r)-menthofuran is a coffee, earthy, and musty tasting compound found in herbs and spices, mentha (mint), and orange mint, which makes (r)-menthofuran a potential biomarker for the consumption of these food products (r)-menthofuran can be found primarily in saliva.

   

Demethylnobiletin

4H-1-Benzopyran-4-one, 2-(3,4-dimethoxyphenyl)-5-hydroxy-6,7,8-trimethoxy-

C20H20O8 (388.1158)


Demethylnobiletin is an ether and a member of flavonoids. Demethylnobiletin is a natural product found in Clinopodium dalmaticum, Stachys aegyptiaca, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from Citrus subspecies, Mentha piperita and Thymus species Demethylnobiletin is found in many foods, some of which are herbs and spices, winter savory, sweet orange, and peppermint. Demethylnobiletin is found in citrus. Demethylnobiletin is isolated from Citrus species, Mentha piperita and Thymus sp. 5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1]. 5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1]. 5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1].

   

Salvigenin

4H-1-Bbenzopyran-4-one, 5-hydroxy-6,7-dimethoxy-2-(4-methoxyphenyl)-

C18H16O6 (328.0947)


Salvigenin, also known as psathyrotin or 7-O-methylpectolinarigenin, is a member of the class of compounds known as 7-O-methylated flavonoids. 7-O-Methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, salvigenin is considered to be a flavonoid lipid molecule. Salvigenin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Salvigenin has been detected, but not quantified in, several different foods, such as rosemaries, mandarin orange (clementine, tangerine), common sages, sweet basils, and peppermints. This could make salvigenin a potential biomarker for the consumption of these foods. BioTransformer predicts that salvigenin is a product of tetramethylscutellarein metabolism via an O-dealkylation reaction catalyzed by CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 enzymes (PMID: 30612223). Salvigenin, also known as 5-hydroxy-6,7,4-trimethoxyflavone or 7-O-methylpectolinarigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, salvigenin is considered to be a flavonoid lipid molecule. Salvigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Salvigenin can be found in a number of food items such as sweet basil, mandarin orange (clementine, tangerine), common sage, and peppermint, which makes salvigenin a potential biomarker for the consumption of these food products. Salvigenin is a trimethoxyflavone that is scutellarein in which the hydroxy groups at positions 4, 6, and 7 are replaced by methoxy groups. It has a role as an autophagy inducer, an apoptosis inhibitor, an antilipemic drug, an immunomodulator, an antineoplastic agent, a neuroprotective agent, a hypoglycemic agent and a plant metabolite. It is a trimethoxyflavone and a monohydroxyflavone. It is functionally related to a scutellarein. Salvigenin is a natural product found in Liatris elegans, Achillea santolina, and other organisms with data available. See also: Tangerine peel (part of). A trimethoxyflavone that is scutellarein in which the hydroxy groups at positions 4, 6, and 7 are replaced by methoxy groups. Salvigenin is a natural polyphenolic compound, with neuroprotective effect. Salvigenin has antitumor cytotoxic and immunomodulatory properties. Salvigenin inhibits H2O2-induced cell apoptosis[1][2]. Salvigenin is a natural polyphenolic compound, with neuroprotective effect. Salvigenin has antitumor cytotoxic and immunomodulatory properties. Salvigenin inhibits H2O2-induced cell apoptosis[1][2].

   

Isorhoifolin

5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C27H30O14 (578.1635)


Isorhoifolin is a natural product found in Astragalus onobrychis, Phillyrea latifolia, and other organisms with data available. Isorhoifolin is found in citrus. Isorhoifolin is isolated from leaves of Citrus paradisi (grapefruit) and other plant species. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2]. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2].

   

Piperitone

2-Cyclohexen-1-one, 3-methyl-6-(1-methylethyl)-, (S)-

C10H16O (152.1201)


Piperitone is found in ceylan cinnamon. Piperitone is a flavouring ingredient.Piperitone is a natural monoterpene ketone which is a component of some essential oils. Both stereoisomers, the D-form and the L-form, are known. The D-form has a peppermint-like aroma and has been isolated from the oils of plants from the genera Cymbopogon, Andropogon, and Mentha. The L-form has been isolated from Sitka spruce. (Wikipedia Piperitone is a p-menthane monoterpenoid that is cyclohex-2-en-1-one substituted by a methyl group at position 3 and an isopropyl group at position 6. It has a role as a volatile oil component and a plant metabolite. It is a p-menthane monoterpenoid and a cyclic terpene ketone. Piperitone is a natural product found in Clinopodium dalmaticum, Eucalyptus fasciculosa, and other organisms with data available. A p-menthane monoterpenoid that is cyclohex-2-en-1-one substituted by a methyl group at position 3 and an isopropyl group at position 6. Flavouring ingredient Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1]. Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1].

   

delta-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]

   

Sudachitin

5,7-Dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6,8-dimethoxy-4H-1-benzopyran-4-one

C18H16O8 (360.0845)


Isolated from Citrus subspecies and peppermint Mentha piperita. Sudachitin is found in peppermint and citrus. Sudachitin is found in citrus. Sudachitin is isolated from Citrus species and peppermint Mentha piperita.

   

p-Menth-1-en-9-ol

beta,4-Dimethyl-(R-(r*,r*))-3-cyclohexene-1-ethanol

C10H18O (154.1358)


Constituent of Vaccinium myrtillus (bilberry) and tangerine oil. p-Menth-1-en-9-ol is found in many foods, some of which are bilberry, citrus, lemon, and fruits. p-Menth-1-en-9-ol is found in bilberry. p-Menth-1-en-9-ol is a constituent of Vaccinium myrtillus (bilberry) and tangerine oil.

   

omega-Cadinene

4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,8,8a-hexahydronaphthalene

C15H24 (204.1878)


omega-Cadinene is found in herbs and spices. omega-Cadinene is a constituent of Mentha piperita. Constituent of Mentha piperita. omega-Cadinene is found in herbs and spices.

   

5-Ethyl-2-methylpyridine

2-Methyl-5-ethylpyridine

C8H11N (121.0891)


Present in dry red beans, cocoa, tea and whisky. Flavouring agent. 5-Ethyl-2-methylpyridine is found in many foods, some of which are tea, pulses, cocoa and cocoa products, and peppermint. 5-Ethyl-2-methylpyridine is found in alcoholic beverages. 5-Ethyl-2-methylpyridine is present in dry red beans, cocoa, tea and whisky. 5-Ethyl-2-methylpyridine is a flavouring agent

   

alpha-Bourbonene

3,7-dimethyl-10-(propan-2-yl)tricyclo[5.3.0.0²,⁶]dec-3-ene

C15H24 (204.1878)


alpha-Bourbonene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.

   

Sideritiflavone

2-(3,4-Dihydroxyphenyl)-5-hydroxy-6,7,8-trimethoxy-4H-1-benzopyran-4-one

C18H16O8 (360.0845)


Isolated from Mentha piperita. Sideritiflavone is found in spearmint, peppermint, and herbs and spices. Sideritiflavone is found in herbs and spices. Sideritiflavone is isolated from Mentha piperita.

   

1-Octen-3-yl acetate

Pentyl vinyl carbinol acetate

C10H18O2 (170.1307)


1-Octen-3-yl acetate is found in fruits. 1-Octen-3-yl acetate is present in Mentha species oils, lavender oil, anise hyssop, mushrooms and melon. 1-Octen-3-yl acetate is a flavouring ingredient. [CCD Present in Mentha subspecies oils, lavender oil, anise hyssop, mushrooms and melon. Flavouring ingredient. [CCD]. 1-Octen-3-yl acetate is found in mushrooms, herbs and spices, and fruits.

   

Pebrellin

2-(3,4-Dimethoxyphenyl)-5,6-dihydroxy-7,8-dimethoxy-4H-1-benzopyran-4-one

C19H18O8 (374.1002)


Constituent of Mentha piperita and Thymus piperella. Pebrellin is found in many foods, some of which are spearmint, peppermint, pot marjoram, and herbs and spices. Pebrellin is found in herbs and spices. Pebrellin is a constituent of Mentha piperita and Thymus piperella

   

Hymenoxin

2-(3,4-Dimethoxyphenyl)-5,7-dihydroxy-6,8-dimethoxy-4H-1-benzopyran-4-one, 9ci

C19H18O8 (374.1002)


Isolated from Mentha piperita (peppermint). Hymenoxin is found in sunflower, peppermint, and herbs and spices. Hymenoxin is found in herbs and spices. Hymenoxin is isolated from Mentha piperita (peppermint).

   

Pectin

(2S,3R,4S,5R,6R)-3,4,5,6-tetrahydroxyoxane-2-carboxylic acid

C6H10O7 (194.0427)


Pectin, also known as galacturonate or D-lyxose, is a structural acidic heteropolysaccharide contained in the primary and middle lamella and cell walls of terrestrial plants. Its main component is galacturonic acid, a sugar acid derived from galactose. It was first isolated and described in 1825 by Henri Braconnot. It is produced commercially as a white to light brown powder, mainly extracted from citrus fruits, and is used in food as a gelling agent, particularly in jams and jellies. It is also used in dessert fillings, medicines, sweets, as a stabiliser in fruit juices and milk drinks, and as a source of dietary fibre. In plant biology, pectin consists of a complex set of polysaccharides (see below) that are present in most primary cell walls and are particularly abundant in the non-woody parts of terrestrial plants. Pectin is a major component of the middle lamella, where it helps to bind cells together, but is also found in primary cell walls. Pectin is deposited by exocytosis into the cell wall via vesicles produced in the golgi. Pectin is a natural part of the human diet, but does not contribute significantly to nutrition. The daily intake of pectin from fruits and vegetables can be estimated to be around 5g if approximately 500g of fruits and vegetables are consumed per day. Pectin is a heterosaccharide derived from the cell wall of plants. Pectins vary in their chain lengths, complexity and the order of each of the monosaccharide units. The characteristic structure of pectin is a linear chain of alpha(1-4)linked D-galacturonic acid that forms the pectin-backbone, a homogalacturonan. [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Eupatorin

5-Hydroxy-2-(3-hydroxy-4-methoxyphenyl)-6,7-dimethoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0896)


Eupatorin, also known as 3,5-dihydroxy-4,6,7-trimethoxyflavone, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, eupatorin is considered to be a flavonoid lipid molecule. Eupatorin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eupatorin can be found in lemon verbena, mandarin orange (clementine, tangerine), and peppermint, which makes eupatorin a potential biomarker for the consumption of these food products. Eupatorin, a naturally occurring flavone, arrests cells at the G2-M phase of the cell cycle and induces apoptotic cell death involving activation of multiple caspases, mitochondrial release of cytochrome c and poly(ADP-ribose) polymerase cleavage[1]. Eupatorin, a naturally occurring flavone, arrests cells at the G2-M phase of the cell cycle and induces apoptotic cell death involving activation of multiple caspases, mitochondrial release of cytochrome c and poly(ADP-ribose) polymerase cleavage[1].

   

Rosmarinate

3-(3,4-dihydroxyphenyl)-2-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}propanoic acid

C18H16O8 (360.0845)


   

(+)-trans-Sabinene hydrate

(1S,2S,5R)-2-methyl-5-(propan-2-yl)bicyclo[3.1.0]hexan-2-ol

C10H18O (154.1358)


Trans-Sabinene hydrate, also known as trans-4-thujanol, belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plant cell plastids (PMID: 7640522). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Trans-Sabinene hydrate is a neutral, hydrophobic molecule that is practically insoluble in water. It has a woody, balsamic odor. It occurs naturally in a wide number of plants and plant oils including lemon, lime, grapefruit, blood orange, mandarin orange, orange peel, rosemary, nutmeg, pot marjoram, common oregano, and mentha (mint), which makes (+)-trans-sabinene hydrate a potential biomarker for the consumption of these food products. (+)-trans-sabinene hydrate is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other (+)-trans-sabinene hydrate is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). (+)-trans-sabinene hydrate can be found in a number of food items such as nutmeg, pot marjoram, common oregano, and mentha (mint), which makes (+)-trans-sabinene hydrate a potential biomarker for the consumption of these food products.

   

3-Phenylpyridine

3-Phenyl-pyridine

C11H9N (155.0735)


3-phenylpyridine is a member of the class of compounds known as phenylpyridines. Phenylpyridines are polycyclic aromatic compounds containing a benzene ring linked to a pyridine ring through a CC or CN bond. 3-phenylpyridine is slightly soluble (in water) and a strong basic compound (based on its pKa). 3-phenylpyridine can be found in peppermint, sweet orange, and tea, which makes 3-phenylpyridine a potential biomarker for the consumption of these food products. The compound is prepared by the reaction of phenyl lithium with pyridine: C6H5Li + C5H5N ‚Üí C6H5-C5H4N + LiH The reaction of iridium trichloride with 2-phenylpyridine proceeds via cyclometallation to give the chloride-bridged complex: 4 C6H5-C5H4N + 2 IrCl3(H2O)3 ‚Üí Ir2Cl2(C6H4-C5H4N)4 + 4 HCl This complex can be converted to the pictured tris(cyclometallated) derivative . 3-phenylpyridine is a member of the class of compounds known as phenylpyridines. Phenylpyridines are polycyclic aromatic compounds containing a benzene ring linked to a pyridine ring through a CC or CN bond. 3-phenylpyridine is slightly soluble (in water) and a strong basic compound (based on its pKa). 3-phenylpyridine can be found in peppermint, sweet orange, and tea, which makes 3-phenylpyridine a potential biomarker for the consumption of these food products. The compound is prepared by the reaction of phenyl lithium with pyridine: C6H5Li + C5H5N → C6H5-C5H4N + LiH The reaction of iridium trichloride with 2-phenylpyridine proceeds via cyclometallation to give the chloride-bridged complex: 4 C6H5-C5H4N + 2 IrCl3(H2O)3 → Ir2Cl2(C6H4-C5H4N)4 + 4 HCl This complex can be converted to the pictured tris(cyclometallated) derivative .

   

3-Phenyl-4-propylpyridine

3-Phenyl-4-propylpyridine

C14H15N (197.1204)


3-phenyl-4-propylpyridine is a member of the class of compounds known as phenylpyridines. Phenylpyridines are polycyclic aromatic compounds containing a benzene ring linked to a pyridine ring through a CC or CN bond. 3-phenyl-4-propylpyridine is practically insoluble (in water) and a very strong basic compound (based on its pKa). 3-phenyl-4-propylpyridine can be found in peppermint, which makes 3-phenyl-4-propylpyridine a potential biomarker for the consumption of this food product.

   

Germacrene A

(1Z,5Z,8S)-1,5-dimethyl-8-(prop-1-en-2-yl)cyclodeca-1,5-diene

C15H24 (204.1878)


Germacrene a is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene a can be found in sweet basil, which makes germacrene a a potential biomarker for the consumption of this food product.

   

6-Hydroxyluteolin 7,3',4'-trimethyl ether

2-(3,4-dimethoxyphenyl)-5,6-dihydroxy-7-methoxy-4H-chromen-4-one

C18H16O7 (344.0896)


6-hydroxyluteolin 7,3,4-trimethyl ether is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 6-hydroxyluteolin 7,3,4-trimethyl ether is considered to be a flavonoid lipid molecule. 6-hydroxyluteolin 7,3,4-trimethyl ether is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-hydroxyluteolin 7,3,4-trimethyl ether can be found in peppermint and pot marjoram, which makes 6-hydroxyluteolin 7,3,4-trimethyl ether a potential biomarker for the consumption of these food products.

   

(±)-Isomenthol

(1R,2S,5S)-5-methyl-2-(propan-2-yl)cyclohexan-1-ol

C10H20O (156.1514)


(±)-isomenthol is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes (±)-isomenthol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). (±)-isomenthol can be found in a number of food items such as cabbage, peppermint, sunflower, and white cabbage, which makes (±)-isomenthol a potential biomarker for the consumption of these food products.

   

Eupatorin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-6,7-dimethoxy- (9CI)

C18H16O7 (344.0896)


Eupatorin is a trimethoxyflavone that is 6-hydroxyluteolin in which the phenolic hydogens at positions 4, 6 and 7 have been replaced by methyl groups. It has a role as a Brassica napus metabolite, an apoptosis inducer, a vasodilator agent, a calcium channel blocker, an anti-inflammatory agent, a P450 inhibitor and an antineoplastic agent. It is a dihydroxyflavone, a trimethoxyflavone and a polyphenol. It is functionally related to a 6-hydroxyluteolin. Eupatorin is a natural product found in Eupatorium album, Eupatorium altissimum, and other organisms with data available. A trimethoxyflavone that is 6-hydroxyluteolin in which the phenolic hydogens at positions 4, 6 and 7 have been replaced by methyl groups. Eupatorin, a naturally occurring flavone, arrests cells at the G2-M phase of the cell cycle and induces apoptotic cell death involving activation of multiple caspases, mitochondrial release of cytochrome c and poly(ADP-ribose) polymerase cleavage[1]. Eupatorin, a naturally occurring flavone, arrests cells at the G2-M phase of the cell cycle and induces apoptotic cell death involving activation of multiple caspases, mitochondrial release of cytochrome c and poly(ADP-ribose) polymerase cleavage[1].

   

Menthyl acetate

​Menthyl acetate

C12H22O2 (198.162)


?Menthyl acetate (L-Menthyl acetate) is a derivative of L-menthol. ?Menthyl acetate is effective to enhance 5-aminolevulinic acid (ALA) skin permeation[1]. ?Menthyl acetate (L-Menthyl acetate) is a derivative of L-menthol. ?Menthyl acetate is effective to enhance 5-aminolevulinic acid (ALA) skin permeation[1].

   

Thymusin

5,6-Dihydroxy-2- (4-hydroxyphenyl) -7,8-dimethoxy-4H-1-benzopyran-4-one

C17H14O7 (330.0739)


   

Gardenin D

5-Hydroxy-2- (3-hydroxy-4-methoxyphenyl) -6,7,8-trimethoxy-4H-1-benzopyran-4-one

C19H18O8 (374.1002)


   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0685)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. A monomethoxyflavone that is the 4-methyl ether derivative of apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one, also known as 4-methoxy-5,7-dihydroxyflavone or acacetin, is a member of the class of compounds known as 4-o-methylated flavonoids. 4-o-methylated flavonoids are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be synthesized from apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, acacetin-7-O-beta-D-galactopyranoside, acacetin-8-C-neohesperidoside, and isoginkgetin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be found in ginkgo nuts, orange mint, and winter savory, which makes 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.223 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.225 Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Ladanein

4H-1-Benzopyran-4-one, 5,6-dihydroxy-7-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.079)


Ladanein is a dimethoxyflavone that is scutellarein in which the hydroxy groups at positions 4 and 7 are replaced by methoxy groups. It is an effective anti-HCV agent. It has a role as a plant metabolite, an antiviral agent and a radical scavenger. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Ladanein is a natural product found in Marrubium friwaldskyanum, Teucrium polium, and other organisms with data available. A dimethoxyflavone that is scutellarein in which the hydroxy groups at positions 4 and 7 are replaced by methoxy groups. It is an effective anti-HCV agent.

   

Sorbifolin

4H-1-Benzopyran-4-one, 5,6-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O6 (300.0634)


Scutellarein 7-methyl ether is a monomethoxyflavone and a trihydroxyflavone. It is functionally related to a scutellarein. Sorbifolin is a natural product found in Galeopsis ladanum, Sorbaria sorbifolia var. stellipila, and other organisms with data available.

   

Demethylnobiletin

2- (3,4-Dimethoxyphenyl) -5-hydroxy-6,7,8-trimethoxy-4H-1-benzopyran-4-one

C20H20O8 (388.1158)


5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1]. 5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1]. 5-O-Demethylnobiletin (5-Demethylnobiletin), a polymethoxyflavone isolated from Citrus jambhiri Lush., is a direct inhibition of 5-LOX (IC50=0.1 μM), without affecting the expression of COX-2. 5-O-Demethylnobiletin (5-Demethylnobiletin) has anti-inflammatory activity, inhibits leukotriene B (4)(LTB4) formation in rat neutrophils and elastase release in human neutrophils with an IC50 of 0.35 μM[1].

   

Gardenin B

5-Hydroxy-6,7,8-trimethoxy-2- (4-methoxyphenyl) -4H-1-benzopyran-4-one

C19H18O7 (358.1052)


Gardenin B is a flavonoid isolated from Gardenia jasminoides. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1]. Gardenin B is a flavonoid isolated from Gardenia jasminoides. Gardenin B induces cell death in human leukemia cells involves multiple caspases[1].

   

Desmethoxysudachitin

5,7-Dihydroxy-2- (4-hydroxyphenyl) -6,8-dimethoxy-4H-1-benzopyran-4-one

C17H14O7 (330.0739)


   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.0477)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Hymenoxin

2- (3,4-Dimethoxyphenyl) -5,7-dihydroxy-6,8-dimethoxy-4H-1-benzopyran-4-one

C19H18O8 (374.1002)


   

Pebrellin

2- (3,4-Dimethoxyphenyl) -5,6-dihydroxy-7,8-dimethoxy-4H-1-benzopyran-4-one

C19H18O8 (374.1002)


   

Salvigenin

4H-1-Benzopyran-4-one, 5-hydroxy-6,7-dimethoxy-2-(4-methoxyphenyl)-

C18H16O6 (328.0947)


Salvigenin is a natural polyphenolic compound, with neuroprotective effect. Salvigenin has antitumor cytotoxic and immunomodulatory properties. Salvigenin inhibits H2O2-induced cell apoptosis[1][2]. Salvigenin is a natural polyphenolic compound, with neuroprotective effect. Salvigenin has antitumor cytotoxic and immunomodulatory properties. Salvigenin inhibits H2O2-induced cell apoptosis[1][2].

   

Eriocitrin

(S)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O15 (596.1741)


Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. A disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].

   

Lonicerin

7-[[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-2-tetrahydropyranyl]oxy]-2-(3,4-dihydroxyphenyl)-5-hydroxy-4-chromenone

C27H30O15 (594.1585)


Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2]. Lonicerin is an anti-algE (alginate secretion protein) flavonoid with inhibitory activity for P. aeruginosa. Lonicerin prevents inflammation and apoptosis in LPS-induced acute lung injury[1][2].

   

Diosmin

5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C28H32O15 (608.1741)


Diosmin is a disaccharide derivative that consists of diosmetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and an anti-inflammatory agent. It is a glycosyloxyflavone, a rutinoside, a disaccharide derivative, a monomethoxyflavone and a dihydroxyflavanone. It is functionally related to a diosmetin. Chronic venous insufficiency is a common condition the western population. Compression and pharmacotherapy are frequently used to manage chronic venous insufficiency, improving circulation and symptoms of venous disease. Diosmin is a bioflavonoid isolated from various plants or synthesized from [hesperidin]. It is used for the improvement of capillary fragility or venous insufficiency, including chronic venous insufficiency (CVI) and hemorrhoids. Diosmin is widely available over-the-counter and demonstrates a favourable a favorable safety profile. Diosmin is a natural product found in Asyneuma argutum, Citrus hystrix, and other organisms with data available. A bioflavonoid that strengthens vascular walls. See also: Agathosma betulina leaf (part of). C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids C26170 - Protective Agent > C275 - Antioxidant > C306 - Bioflavonoid Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR). Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR).

   

Thymonin

5,6-Dihydroxy-2- (4-hydroxy-3-methoxyphenyl) -7,8-dimethoxy-4H-1-benzopyran-4-one

C18H16O8 (360.0845)


A trimethoxyflavone that is flavone substituted by methoxy groups at positions 7, 8 and 3 and hydroxy groups at positions 5, 6 and 4.

   

Narirutin

(S)-5-hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C27H32O14 (580.1792)


Narirutin is a disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an anti-inflammatory agent, an antioxidant and a metabolite. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a rutinoside. It is functionally related to a (S)-naringenin. Narirutin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. See also: Tangerine peel (part of). A disaccharide derivative that is (S)-naringenin substituted by a 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2]. Narirutin, one of the active constituents isolated from citrus fruits, has antioxidant and anti-inflammatory activities. Narirutin is a shikimate kinase inhibitor with anti-tubercular potency[1][2].

   

Nevadensin

2- (4-Methoxyphenyl) -5,7-dihydroxy-6,8-dimethoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0896)


Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2]. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2].

   

Sideritiflavone

2- (3,4-Dihydroxyphenyl) -5-hydroxy-6,7,8-trimethoxy-4H-1-benzopyran-4-one

C18H16O8 (360.0845)


   

Menthone

Cyclohexanone, 5-methyl-2-(1-methylethyl)-, (2R,5S)-rel-

C10H18O (154.1358)


P-menthan-3-one is a p-menthane monoterpenoid that is p-menthane substituted by an oxo group at position 3. It has a role as a plant metabolite and a volatile oil component. p-Menthan-3-one is a natural product found in Citrus hystrix, Mentha aquatica, and other organisms with data available. The trans-stereoisomer of p-menthan-3-one. Flavouring compound [Flavornet] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\\% and 94.92\\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\\% and 94.92\\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\\% and 94.92\\\\%. [2] (-)-Menthone is a monoterpene component of the essential oil of maturing peppermint. (+)-Neomenthyl-β-d-glucoside is a metabolite of (-)-Menthone[1].Mortality of two biological forms of Anopheles stephensi(larvae) exposed to about 45 ppm (-)-Menthone is 27.67\\\% and 94.92\\\%. [2] Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2]. Menthone, a monoterpene extracted from plants and Mentha oil with strong antioxidant properties. Menthone is a main volatile component of the essential oil, and has anti-Inflammatory properties in Schistosoma mansoni Infection[1][2].

   

Hesperidin

(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C28H34O15 (610.1898)


Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). A disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

3-PHENYLPYRIDINE

3-PHENYLPYRIDINE

C11H9N (155.0735)


   

(+)-Neomenthol

(1S,2S,5R)-5-methyl-2-propan-2-ylcyclohexan-1-ol

C10H20O (156.1514)


D,l-menthol is a white crystalline solid with a peppermint odor and taste. (NTP, 1992) (+)-menthol is a p-menthan-3-ol which has (1S,2R,5S)-stereochemistry. In contrast to (-)-menthol, the (+)-enantiomer occurs only rarely in nature. It is an enantiomer of a (-)-menthol. (+)-Menthol is a natural product found in Diaporthe amygdali with data available. A p-menthan-3-ol which has (1S,2R,5S)-stereochemistry. In contrast to (-)-menthol, the (+)-enantiomer occurs only rarely in nature. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D003879 - Dermatologic Agents > D000982 - Antipruritics (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (-)-Menthol is a key component of peppermint oil that binds and activates transient receptor potential melastatin 8 (TRPM8), a Ca2+-permeable nonselective cation channel, to increase [Ca2+]i[1]. Antitumor activity[1]. (+)-Neomenthol is a potent miticide. (+)-Neomenthol shows acaricidal activitie with LD50 values of 0.32, 0.256 μg/mL for Dermatophagoides farinae and Dermatophagoides pteronyssinus, respectively[1]. (+)-Neomenthol is a potent miticide. (+)-Neomenthol shows acaricidal activitie with LD50 values of 0.32, 0.256 μg/mL for Dermatophagoides farinae and Dermatophagoides pteronyssinus, respectively[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. DL-Menthol is a relative configuration of (-)-Menthol. DL-Menthol relates to the activation of GABAA receptor[1]. Menthol is a natural analgesic compound. Menthol could cause a feeling of coolness due to stimulation of ‘cold’ receptors by inhibiting Ca++ currents of neuronal membranes[1]. Menthol is a natural analgesic compound. Menthol could cause a feeling of coolness due to stimulation of ‘cold’ receptors by inhibiting Ca++ currents of neuronal membranes[1].

   

Sabinene

Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)-

C10H16 (136.1252)


Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. A thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. 4(10)-thujene, also known as sabinen or 1-isopropyl-4-methylenebicyclo[3.1.0]hexane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. 4(10)-thujene is a citrus, pepper, and pine tasting compound and can be found in a number of food items such as sweet orange, green bell pepper, pot marjoram, and parsley, which makes 4(10)-thujene a potential biomarker for the consumption of these food products. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].

   

Isorhoifolin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O14 (578.1635)


Isolated from leaves of Citrus paradisi (grapefruit) and other plant subspecies Isorhoifolin is found in many foods, some of which are sweet orange, citrus, dill, and lemon. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2]. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2].

   

nerol

(2Z)-3,7-Dimethyl-2,6-octadien-1-ol

C10H18O (154.1358)


Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

3-OCTANOL

(±)-octan-3-ol

C8H18O (130.1358)


Present in Japanese peppermint oil and many other essential oils. (S)-3-Octanol is found in herbs and spices.

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

1-OCTEN-3-OL

(3R)-oct-1-en-3-ol

C8H16O (128.1201)


Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

neoisomenthol

(1alpha,2alpha,5alpha)-5-methyl-2-(1-methylethyl)cyclohexanol

C10H20O (156.1514)


   

D-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

Piperitone

3-methyl-6-(1-methylethyl)-2-cyclohexen-1-one

C10H16O (152.1201)


Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1]. Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1].

   

p-Menthone

(2R,5S)-5-methyl-2-(propan-2-yl)cyclohexan-1-one

C10H18O (154.1358)


A menthone that is cyclohexanone substituted by a methyl and an isopropyl group at positions 5 and 2 respectively (the 2R,5S-stereoisomer).

   

Beta-Elemene

1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.

   

β-Phellandrene

3-methylidene-6-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1252)


β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].

   

Sabinene hydrate

(1R,2S,5R)-2-methyl-5-(propan-2-yl)bicyclo[3.1.0]hexan-2-ol

C10H18O (154.1358)


   

W-Cadinene

4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,8,8a-hexahydronaphthalene

C15H24 (204.1878)


   

g-Muurolene

7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.1878)


   

D-piperitone

(6S)-3-methyl-6-(propan-2-yl)cyclohex-2-en-1-one

C10H16O (152.1201)


   

Viridiflorol

Viridiflorol

C15H26O (222.1984)


A carbotricyclic compound that is (1aS,4aR,7aR,7bR)-decahydro-1H-cyclopropa[e]azulene carrying four methyl substituents at positions 1, 1, 4 and 7 as well as a hydroxy substituent at position 4. It is a sesquiterpenoid isolated from several plant species and is a strong feeding deterrent for the melaleuca weevil that retards larval development. D006133 - Growth Substances > D006131 - Growth Inhibitors

   

3-Phenyl-4-propylpyridine

3-Phenyl-4-propylpyridine

C14H15N (197.1204)


   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

Xanthomicrol

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-6,7,8-trimethoxy-

C18H16O7 (344.0896)


A trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 7 and 8 and hydroxy groups at positions 5 and 4.

   

Isorhoifolin

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O14 (578.1635)


Apigenin 8-c-rhamnosyl-glucoside, also known as isorhoifoline or apigenin-7-O-rutinoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apigenin 8-c-rhamnosyl-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 8-c-rhamnosyl-glucoside can be found in oat, which makes apigenin 8-c-rhamnosyl-glucoside a potential biomarker for the consumption of this food product. Isorhoifolin is found in citrus. Isorhoifolin is isolated from leaves of Citrus paradisi (grapefruit) and other plant species. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2]. Isorhoifolin is a flavonoid glycoside from Hemistepta lyrata. Isorhoifolin displays an anti-leakage effect[1][2].

   

(±)-Isomenthol

(1R,2S,5S)-5-methyl-2-(propan-2-yl)cyclohexan-1-ol

C10H20O (156.1514)


(¬±)-isomenthol is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes (¬±)-isomenthol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). (¬±)-isomenthol can be found in a number of food items such as cabbage, peppermint, sunflower, and white cabbage, which makes (¬±)-isomenthol a potential biomarker for the consumption of these food products. (±)-isomenthol is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes (±)-isomenthol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). (±)-isomenthol can be found in a number of food items such as cabbage, peppermint, sunflower, and white cabbage, which makes (±)-isomenthol a potential biomarker for the consumption of these food products.

   

(-)-Germacrene A

(-)-Germacrene A

C15H24 (204.1878)


   

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.1878)


   

(+)-Camphene

(+)-Camphene

C10H16 (136.1252)


A monoterpene with a bicyclic skeleton that is bicyclo[2.2.1]heptane substituted by geminal methyl groups at position 2 and a methylidene group at position 3. It is a widespread natural product found in many essential oils.

   

TERPINOLENE

TERPINOLENE

C10H16 (136.1252)


A p-menthadiene with double bonds at positions 1 and 4(8).

   

(+)-Camphene

(+)-Camphene

C10H16 (136.1252)


A camphene (2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane) that has R configuration at position 1 and S configuration at position 4.

   

(+)-gamma-cadinene

(+)-gamma-cadinene

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the isopropyl group is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,4aR,8aR enantiomer).

   

5-Ethyl-2-methylpyridine

5-Ethyl-2-methylpyridine

C8H11N (121.0891)


   

1-Octen-3-yl acetate

1-Octen-3-yl acetate

C10H18O2 (170.1307)


   
   

Neomenthyl acetate

Cyclohexanol,5-methyl-2-(1-methylethyl)-, 1-acetate, (1S,2S,5R)-

C12H22O2 (198.162)


   

delta-Cadinene

delta-Cadinene

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

1,8-Cineole

1,8-Cineole

C10H18O (154.1358)


   

octan-3-ol

octan-3-ol

C8H18O (130.1358)


A secondary alcohol that is octane substituted by a hydroxy group at position 3.

   

Oct-1-en-3-ol

Oct-1-en-3-ol

C8H16O (128.1201)


An alkenyl alcohol with a structure based on a C8 unbranched chain with the hydroxy group at C-2 and unsaturation at C-1-C-2. It is a major volatile compound present in many mushrooms and fungi.

   

5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C21H26O13 (486.1373)


   

(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.1878)


   

(+-)-pulegone

(+-)-pulegone

C10H16O (152.1201)


   

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.1827)


   

(4s,4as)-4-isopropyl-1,6-dimethyl-2,3,4,4a,5,8-hexahydronaphthalene

(4s,4as)-4-isopropyl-1,6-dimethyl-2,3,4,4a,5,8-hexahydronaphthalene

C15H24 (204.1878)


   

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,5s)-3,4,5-trihydroxy-6-({[(2r,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

5-hydroxy-2-(4-hydroxyphenyl)-7-{[(2s,5s)-3,4,5-trihydroxy-6-({[(2r,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O14 (578.1635)


   

(1s,2r,6s,7r,10r)-10-isopropyl-3,7-dimethyltricyclo[5.3.0.0²,⁶]dec-3-ene

(1s,2r,6s,7r,10r)-10-isopropyl-3,7-dimethyltricyclo[5.3.0.0²,⁶]dec-3-ene

C15H24 (204.1878)


   

(1r,3r,6s)-3-isopropyl-6-methyl-7-oxabicyclo[4.1.0]heptan-2-one

(1r,3r,6s)-3-isopropyl-6-methyl-7-oxabicyclo[4.1.0]heptan-2-one

C10H16O2 (168.115)


   

(3s,3as,6r,7ar)-3,6-dimethyl-hexahydro-3h-1-benzofuran-2-one

(3s,3as,6r,7ar)-3,6-dimethyl-hexahydro-3h-1-benzofuran-2-one

C10H16O2 (168.115)


   

(3r,3as,6r,7ar)-3,6-dimethyl-hexahydro-3h-1-benzofuran-2-one

(3r,3as,6r,7ar)-3,6-dimethyl-hexahydro-3h-1-benzofuran-2-one

C10H16O2 (168.115)


   

5-phenyl-2-propylpyridine

5-phenyl-2-propylpyridine

C14H15N (197.1204)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-2,3-dihydro-1-benzopyran-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-2,3-dihydro-1-benzopyran-4-one

C27H32O15 (596.1741)


   

4-isopropyl-1,6-dimethylidene-octahydronaphthalene

4-isopropyl-1,6-dimethylidene-octahydronaphthalene

C15H24 (204.1878)


   

(4s,4as,8as)-4-isopropyl-1,6-dimethylidene-octahydronaphthalene

(4s,4as,8as)-4-isopropyl-1,6-dimethylidene-octahydronaphthalene

C15H24 (204.1878)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}chromen-4-one

C27H30O15 (594.1585)


   

(4s,4ar,8as)-4-isopropyl-1,6-dimethylidene-octahydronaphthalene

(4s,4ar,8as)-4-isopropyl-1,6-dimethylidene-octahydronaphthalene

C15H24 (204.1878)


   

(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

C15H24 (204.1878)


   

(1r,2s,6r,7s,8r)-8-isopropyl-1-methyl-5-methylidenetricyclo[5.3.0.0²,⁶]decane

(1r,2s,6r,7s,8r)-8-isopropyl-1-methyl-5-methylidenetricyclo[5.3.0.0²,⁶]decane

C15H24 (204.1878)


   

(2s)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C28H34O15 (610.1898)


   

(1ar,3as,7as,7br)-1,1,3a,7-tetramethyl-1ah,2h,3h,4h,5h,7ah,7bh-cyclopropa[a]naphthalene

(1ar,3as,7as,7br)-1,1,3a,7-tetramethyl-1ah,2h,3h,4h,5h,7ah,7bh-cyclopropa[a]naphthalene

C15H24 (204.1878)


   

(1r,2r,4s)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

(1r,2r,4s)-1-ethenyl-1-methyl-2,4-bis(prop-1-en-2-yl)cyclohexane

C15H24 (204.1878)


   
   

(2r)-2-[(1r)-4-methylcyclohex-3-en-1-yl]propan-1-ol

(2r)-2-[(1r)-4-methylcyclohex-3-en-1-yl]propan-1-ol

C10H18O (154.1358)


   

5-hydroxy-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

5-hydroxy-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

C21H26O13 (486.1373)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

C27H30O15 (594.1585)


   

1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

1,1,3a,7-tetramethyl-1ah,2h,3h,4h,5h,7ah,7bh-cyclopropa[a]naphthalene

1,1,3a,7-tetramethyl-1ah,2h,3h,4h,5h,7ah,7bh-cyclopropa[a]naphthalene

C15H24 (204.1878)


   

(2s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C27H32O15 (596.1741)


   

(1ar,4ar,7r,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

(1ar,4ar,7r,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

(1as,4as,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(1as,4as,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.1827)


   

(3r,3ar,6r,7as)-3,6-dimethyl-hexahydro-3h-1-benzofuran-2-one

(3r,3ar,6r,7as)-3,6-dimethyl-hexahydro-3h-1-benzofuran-2-one

C10H16O2 (168.115)


   

(1s,2r,4r,6s)-1,7,7-trimethyltricyclo[2.2.1.0²,⁶]heptane

(1s,2r,4r,6s)-1,7,7-trimethyltricyclo[2.2.1.0²,⁶]heptane

C10H16 (136.1252)


   

4-isopropyl-1,6-dimethyl-1,2,3,7,8,8a-hexahydronaphthalene

4-isopropyl-1,6-dimethyl-1,2,3,7,8,8a-hexahydronaphthalene

C15H24 (204.1878)