NCBI Taxonomy: 1130873

Zanthoxylum caribaeum (ncbi_taxid: 1130873)

found 35 associated metabolites at species taxonomy rank level.

Ancestor: Zanthoxylum

Child Taxonomies: Zanthoxylum caribaeum subsp. caribaeum

Hesperidin

(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C28H34O15 (610.1898)


Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit. Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit due to vitamin C deficiency such as bruising due to capillary fragility were found in early studies to be relieved by crude vitamin C extract but not by purified vitamin C. The bioflavonoids, formerly called "vitamin P", were found to be the essential components in correcting this bruising tendency and improving the permeability and integrity of the capillary lining. These bioflavonoids include hesperidin, citrin, rutin, flavones, flavonols, catechin and quercetin. Of historical importance is the observation that "citrin", a mixture of two flavonoids, eriodictyol and hesperidin, was considered to possess a vitamin-like activity, as early as in 1949. Hesperidin deficiency has since been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. Supplemental hesperidin also helps in reducing oedema or excess swelling in the legs due to fluid accumulation. As with other bioflavonoids, hesperidin works best when administered concomitantly with vitamin C. No signs of toxicity have been observed with normal intake of hesperidin. Hesperidin was first discovered in 1827, by Lebreton, but not in a pure state and has been under continuous investigation since then (PMID:11746857). Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). Found in most citrus fruits and other members of the Rutaceae, also in Mentha longifolia Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.770 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.767 [Raw Data] CB217_Hesperidin_pos_50eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_20eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_30eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_10eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_40eV_CB000076.txt [Raw Data] CB217_Hesperidin_neg_20eV_000038.txt [Raw Data] CB217_Hesperidin_neg_50eV_000038.txt [Raw Data] CB217_Hesperidin_neg_10eV_000038.txt [Raw Data] CB217_Hesperidin_neg_30eV_000038.txt [Raw Data] CB217_Hesperidin_neg_40eV_000038.txt Annotation level-1 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

Canthin-6-one

1,6-diazatetracyclo[7.6.1.0⁵,¹⁶.0¹⁰,¹⁵]hexadeca-3,5,7,9(16),10(15),11,13-heptaen-2-one

C14H8N2O (220.0637)


Canthin-6-one is an indole alkaloid that is 6H-indolo[3,2,1-de][1,5]naphthyridine substituted by an oxo group at position 6. It has a role as a metabolite and an antimycobacterial drug. It is an indole alkaloid, an organic heterotetracyclic compound and an enone. Canthin-6-one is a natural product found in Zanthoxylum mayu, Zanthoxylum ovalifolium, and other organisms with data available. D016573 - Agrochemicals D010575 - Pesticides Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1]. Canthin-6-one displays a wide range of biological activities, such as antimycobacterial activity[1].

   

Skimmianine

4,7,8-trimethoxy-furo(2,3-b)quinoline

C14H13NO4 (259.0845)


Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   

Chelerythrine

17,18-dimethoxy-21-methyl-5,7-dioxa-21-azapentacyclo[11.8.0.0^{2,10}.0^{4,8}.0^{14,19}]henicosa-1(13),2,4(8),9,11,14(19),15,17,20-nonaen-21-ium

C21H18NO4+ (348.1236)


Chelerythrine is a benzophenanthridine alkaloid isolated from the root of Zanthoxylum simulans, Chelidonium majus L., and other Papaveraceae. It has a role as an EC 2.7.11.13 (protein kinase C) inhibitor, an antibacterial agent and an antineoplastic agent. It is a benzophenanthridine alkaloid and an organic cation. A benzophenanthridine alkaloid evaluated as a kinase-inhibitor. Chelerythrine is a natural product found in Zanthoxylum fagara, Zanthoxylum mayu, and other organisms with data available. Chelerythrine is a benzophenanthridine alkaloid extracted from the plant Greater celandine (Chelidonium majus). It is a potent, selective, and cell-permeable protein kinase C inhibitor. See also: Sanguinaria canadensis root (part of); Chelidonium majus flowering top (part of). A benzophenanthridine alkaloid isolated from the root of Zanthoxylum simulans, Chelidonium majus L., and other Papaveraceae. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents

   
   

Skimmianine

InChI=1/C14H13NO4/c1-16-10-5-4-8-11(13(10)18-3)15-14-9(6-7-19-14)12(8)17-2/h4-7H,1-3H

C14H13NO4 (259.0845)


Skimmianine is an organonitrogen heterocyclic compound, an organic heterotricyclic compound, an oxacycle and an alkaloid antibiotic. Skimmianine is a natural product found in Haplophyllum bucharicum, Haplophyllum cappadocicum, and other organisms with data available. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   

Xanthoxyletin

7-HYDROXY-5-METHOXY-2,2-DIMETHYL-2H-1-BENZOPYRAN-6-ACRYLIC ACID .DELTA.-LACTONE

C15H14O4 (258.0892)


Xanthoxyletin is a member of coumarins. It has a role as a metabolite. Xanthoxyletin is a natural product found in Zanthoxylum dipetalum, Murraya siamensis, and other organisms with data available. Isolated from Zanthoxylum americanum (prickly ash). Xanthoxyletin is found in lemon, sweet orange, and herbs and spices. Xanthoxyletin is found in herbs and spices. Xanthoxyletin is isolated from Zanthoxylum americanum (prickly ash). A natural product found in Clausena harmandiana.

   

5-Methoxycanthin-6-one

3-methoxy-1,6-diazatetracyclo[7.6.1.0^{5,16}.0^{10,15}]hexadeca-3,5(16),6,8,10,12,14-heptaen-2-one

C15H10N2O2 (250.0742)


5-Methoxycanthin-6-one is an alkaloid and an organic heterotetracyclic compound. 5-Methoxycanthin-6-one is a natural product found in Zanthoxylum caribaeum, Fagaropsis angolensis, and other organisms with data available. 5-Methoxycanthin-6-one is an alkaloid from the wood of Picrasma excelsa (Jamaican quassiawood

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Hesperidin

(S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C28H34O15 (610.1898)


Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). A disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].

   

3,4-Dimethoxycinnamic acid

3,4-Dimethoxycinnamic acid

C11H12O4 (208.0736)


Annotation level-1 Acquisition and generation of the data is financially supported in part by CREST/JST. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. (E)-3,4-Dimethoxycinnamic acid is the less active isomer of 3,4-Dimethoxycinnamic acid. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1]. 3,4-Dimethoxycinnamic acid (O-Methylferulic acid) is a monomer extracted and purified from Securidaca inappendiculata Hassk. 3,4-Dimethoxycinnamic acid exerts anti-apoptotic effects on L-02 cells via the ROS-mediated signaling pathway[1]. Anti-apoptotic effects[1].

   

Skimmianine

Skimmianine

C14H13NO4 (259.0845)


Origin: Plant; SubCategory_DNP: Alkaloids derived from anthranilic acid, Quinoline alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.048 Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1]. Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family, with antispastic, anti-inflammatory activities and antiplatelet aggregation effect. Skimmianine exhibits cytotoxicity against a variety of cancer cell lines and genotoxicity[1].

   

Chelerythrine

Chelerythrine

C21H18NO4 (348.1236)


   

Chelerythrine

Chelerythrine

[C21H18NO4]+ (348.1236)


Annotation level-1

   

5-Methoxycanthin-6-one

3-methoxy-1,6-diazatetracyclo[7.6.1.0^{5,16}.0^{10,15}]hexadeca-3,5(16),6,8,10,12,14-heptaen-2-one

C15H10N2O2 (250.0742)


   

6,6,10,10-tetramethyl-1,5,9-trioxatriphenylen-2-one

6,6,10,10-tetramethyl-1,5,9-trioxatriphenylen-2-one

C19H18O4 (310.1205)


   

(+/-)-lunacrine

(+/-)-lunacrine

C16H19NO3 (273.1365)


   

(2e,4e)-n-(2-methylpropyl)tetradeca-2,4-dienimidic acid

(2e,4e)-n-(2-methylpropyl)tetradeca-2,4-dienimidic acid

C18H33NO (279.2562)


   

trans-avicennol

trans-avicennol

C20H22O5 (342.1467)


   

3-(2-hydroxy-3-methylbut-3-en-1-yl)-4,8-dimethoxy-1-methylquinolin-2-one

3-(2-hydroxy-3-methylbut-3-en-1-yl)-4,8-dimethoxy-1-methylquinolin-2-one

C17H21NO4 (303.1471)


   

n-(2-methylpropyl)deca-2,4-dienimidic acid

n-(2-methylpropyl)deca-2,4-dienimidic acid

C14H25NO (223.1936)


   

4,8-dimethoxy-3-[(2s)-2-methoxy-3-methylbut-3-en-1-yl]-1-methylquinolin-2-one

4,8-dimethoxy-3-[(2s)-2-methoxy-3-methylbut-3-en-1-yl]-1-methylquinolin-2-one

C18H23NO4 (317.1627)


   

(2s)-1-(4,8-dimethoxy-1-methyl-2-oxoquinolin-3-yl)-3-methylbut-3-en-2-yl hexadecanoate

(2s)-1-(4,8-dimethoxy-1-methyl-2-oxoquinolin-3-yl)-3-methylbut-3-en-2-yl hexadecanoate

C33H51NO5 (541.3767)


   

(2s)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C28H34O15 (610.1898)


   

1-(4,8-dimethoxy-1-methyl-2-oxoquinolin-3-yl)-3-methylbut-3-en-2-yl hexadecanoate

1-(4,8-dimethoxy-1-methyl-2-oxoquinolin-3-yl)-3-methylbut-3-en-2-yl hexadecanoate

C33H51NO5 (541.3767)


   

(2e,4e)-n-(2-methylpropyl)deca-2,4-dienimidic acid

(2e,4e)-n-(2-methylpropyl)deca-2,4-dienimidic acid

C14H25NO (223.1936)


   

3-[(2r)-2-hydroxy-3-methylbut-3-en-1-yl]-4,8-dimethoxyquinolin-2-ol

3-[(2r)-2-hydroxy-3-methylbut-3-en-1-yl]-4,8-dimethoxyquinolin-2-ol

C16H19NO4 (289.1314)


   

3-(2-hydroxy-3-methylbut-3-en-1-yl)-4,8-dimethoxyquinolin-2-ol

3-(2-hydroxy-3-methylbut-3-en-1-yl)-4,8-dimethoxyquinolin-2-ol

C16H19NO4 (289.1314)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

8-methoxy-9-methyl-2-(prop-1-en-2-yl)-2h,3h-furo[2,3-b]quinolin-4-one

8-methoxy-9-methyl-2-(prop-1-en-2-yl)-2h,3h-furo[2,3-b]quinolin-4-one

C16H17NO3 (271.1208)


   

4,8-dimethoxy-3-(2-methoxy-3-methylbut-3-en-1-yl)-1-methylquinolin-2-one

4,8-dimethoxy-3-(2-methoxy-3-methylbut-3-en-1-yl)-1-methylquinolin-2-one

C18H23NO4 (317.1627)


   

3-[(2r)-2-hydroxy-3-methylbut-3-en-1-yl]-4,8-dimethoxy-1-methylquinolin-2-one

3-[(2r)-2-hydroxy-3-methylbut-3-en-1-yl]-4,8-dimethoxy-1-methylquinolin-2-one

C17H21NO4 (303.1471)


   

(2r)-8-methoxy-9-methyl-2-(prop-1-en-2-yl)-2h,3h-furo[2,3-b]quinolin-4-one

(2r)-8-methoxy-9-methyl-2-(prop-1-en-2-yl)-2h,3h-furo[2,3-b]quinolin-4-one

C16H17NO3 (271.1208)


   

n-(2-methylpropyl)tetradeca-2,4-dienimidic acid

n-(2-methylpropyl)tetradeca-2,4-dienimidic acid

C18H33NO (279.2562)


   

6-(3-hydroxy-3-methylbut-1-en-1-yl)-5-methoxy-2,2-dimethylpyrano[2,3-h]chromen-8-one

6-(3-hydroxy-3-methylbut-1-en-1-yl)-5-methoxy-2,2-dimethylpyrano[2,3-h]chromen-8-one

C20H22O5 (342.1467)