Vanillin (BioDeep_00000000091)

 

Secondary id: BioDeep_00000269025, BioDeep_00000859823

natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite


代谢物信息卡片


Vanillin melting point standard, Pharmaceutical Secondary Standard; Certified Reference Material

化学式: C8H8O3 (152.0473)
中文名称: 4-羟基-3-甲氧基-13C-苯甲醛, 香草醛, 香兰素
谱图信息: 最多检出来源 Viridiplantae(plant) 15.3%

分子结构信息

SMILES: COC1=C(C=CC(=C1)C=O)O
InChI: InChI=1/C8H8O3/c1-11-8-4-6(5-9)2-3-7(8)10/h2-5,10H,1H3

描述信息

Vanillin, also known as vanillaldehyde or lioxin, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is used by the food industry as well as ethylvanillin. Vanillin exists in all living species, ranging from bacteria to humans. Vanillin is a sweet, chocolate, and creamy tasting compound. Vanillin is found, on average, in the highest concentration within a few different foods, such as corns, ryes, and sherries and in a lower concentration in beers, rums, and oats. Vanillin has also been detected, but not quantified, in several different foods, such as gooseberries, other bread, brazil nuts, shea tree, and ohelo berries. This could make vanillin a potential biomarker for the consumption of these foods. Vanillin is a potentially toxic compound. Synthetic vanillin, instead of natural Vanillin extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. Vanillin is the primary component of the extract of the Vanillin bean. Because of the scarcity and expense of natural Vanillin extract, there has long been interest in the synthetic preparation of its predominant component. Artificial Vanillin flavoring is a solution of pure vanillin, usually of synthetic origin. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol.
Vanillin appears as white or very slightly yellow needles.
Vanillin is a member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, a flavouring agent, an antioxidant and an anticonvulsant. It is a member of phenols, a monomethoxybenzene and a member of benzaldehydes.
Vanillin is a natural product found in Ficus erecta var. beecheyana, Pandanus utilis, and other organisms with data available.
Vanillin is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. It is used by the food industry as well as ethylvanillin.Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. (Wiki).
Vanillin is a metabolite found in or produced by Saccharomyces cerevisiae.
Constituent of vanilla (Vanilla subspecies) and many other plants, e.g. Peru balsam, clove bud oil. Widely used flavouring agent especies in cocoa products. obtained from spent wood-pulp liquors. Vanillin is found in many foods, some of which are pomes, elderberry, common cabbage, and dock.
A member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively.
D002491 - Central Nervous System Agents > D000927 - Anticonvulsants
D020011 - Protective Agents > D016587 - Antimutagenic Agents
D020011 - Protective Agents > D000975 - Antioxidants
CONFIDENCE standard compound; ML_ID 59
Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.
Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

同义名列表

107 个代谢物同义名

Vanillin melting point standard, Pharmaceutical Secondary Standard; Certified Reference Material; Vanillin Melting Point Standard, United States Pharmacopeia (USP) Reference Standard; Vanillin, Pharmaceutical Secondary Standard; Certified Reference Material; Vanillin, United States Pharmacopeia (USP) Reference Standard; Vanillin, European Pharmacopoeia (EP) Reference Standard; InChI=1/C8H8O3/c1-11-8-4-6(5-9)2-3-7(8)10/h2-5,10H,1H; Vanillin, TraceCERT(R), certified reference material; 1-(AMINOMETHYL)-CYCLOPROPANECARBOXYLICACIDETHYLESTER; 4-hydroxy-3-methoxy-Benzaldehyde-5-chlorovanillin; 4-hydroxy-3-methoxybenzaldehyde (ACD/Name 4.0); Vanillin (83 degrees C) Melting Point Standard; vanillin (3-methoxy-4-hydroxy- benzaldehyde); 4-08-00-01763 (Beilstein Handbook Reference); 4-Hydroxy-3-methoxybenzaldehyde(Vanilline); 3-Methoxy-4-hydroxybenzaldehyde (vanillin); 4-hydroxy-3-methoxybenzaldehyde (vanillin); Vanillin, Vetec(TM) reagent grade, 98\\%; Vanillin, tested according to Ph.Eur.; Vanillin, JIS special grade, >=98.0\\%; Protocatechualdehyde 3-methyl ether; trans-2-Ethoxy-5-(1-propenyl)phenol; 4-hydoxy-3-(methyloxy)benz aldehyde; Benzaldehyde, 4-hydroxy-3-methoxy-; Vanillin, natural, >=97\\%, FCC, FG; 4-hydoxy-3-(methyloxy)benzaldehyde; 4-hydroxy-3-(methoxy)benzaldehyde; 3-methoxy-4-hydroxy benzoaldehyde; 4-hydroxy-3-methoxy benzaldehyde; 3-methoxy-4-hydroxy-benzaldehyde; 4-Hydroxy-3-methoxy-benzaldehyde; 3-methoxy-4-hydroxy benzaldehyde; 4-HYDROXY,3-METHOXY-BENZALDEHYDE; 4-hydroxy-3-methoxy-benzyldehyde; p-Hydroxy-m-methoxybenzaldehyde; 4-hydroxy-3-methoxybenzaldehyde; 4-Hydroxy-5-methoxybenzaldehyde; Vanillin Melting Point Standard; Vanilla oleoresin (vanilla SPP); 4-hydroxy 3-methoxybenzaldehyde; 3-Methoxy-4-hydroxybenzaldehyde; m-Methoxy-p-hydroxybenzaldehyde; Vanillin, ReagentPlus(R), 99\\%; Methylprotocatechuic aldehyde; Protocatechualdehyde, methyl-; Methylprotcatechuic aldehyde; methyl-Protocatechualdehyde; m-Anisaldehyde, 4-hydroxy-; METHYLPROTOCATECHUALDEHYDE; Vanillin, puriss., 99.5\\%; Vanillin, >=97\\%, FCC, FG; oleo-Resins vanilla-bean; 2-Methoxy-4-formylphenol; VANILLIN, NATURAL [FHFI]; 4-Formyl-2-methoxyphenol; 4-Hydroxy-m-anisaldehyde; VANILLIN (EP MONOGRAPH); VANILLIN [EP MONOGRAPH]; VANILLIN (METHOXY-13C); vanillin, sodium salt; Vanillin sodium salt; Vanillin (Standard); oleo-Resins vanilla; Vanillin (natural); VANILLIN [USP-RS]; VANILLIN [WHO-DD]; Vanilla oleoresin; Vanillic aldehyde; Oleoresin vanilla; Vanillin, natural; VANILLIN [VANDF]; 5-chlorovanillin; Propenylguaethol; VANILLIN (MART.); VANILLIN [MART.]; 5-bromovanillin; VANILLIN [INCI]; WLN: VHR DQ CO1; VANILLIN [FHFI]; VANILLIN [HSDB]; Vanillin [USAN]; VANILLIN [FCC]; vanillaldehyde; Tox21_113534_1; VANILLIN [II]; Vanillin [NF]; Vanillin (NF); VANILLIN (II); VANILLIN [MI]; Tox21_113534; Tox21_300352; NCI60_001085; Tox21_201925; p-Vanillin; Vanilline; AI3-00093; Vanillin; Rhovanil; vaniline; Vanillum; Vanilin; Vanilla; Lioxin; Zimco; V55; Vanillin; 4-Hydroxy-3-methoxy-benzaldehyde; Vanillin



数据库引用编号

30 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(3)

PlantCyc(1)

代谢反应

15 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(12)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(3)

  • vanillin biosynthesis I: 4-hydroxybenzaldehyde + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 3,4-dihydroxybenzaldehyde + H2O + an oxidized [NADPH-hemoprotein reductase]
  • capsaicin biosynthesis: H+ + NADPH + a malonyl-[acp] + isobutanoyl-CoA ⟶ 8-methyl-6-nonenoate + H2O + NADP+ + a holo-[acyl-carrier protein] + coenzyme A
  • capsaicin biosynthesis: 8-methyl-6-nonenoate + vanillylamine ⟶ H2O + capsaicin

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

775 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 11 AKT1, BCL2, CASP3, CAT, HPGDS, MAPK14, NFE2L2, PTGS2, RELA, TYR, XDH
Peripheral membrane protein 3 ACHE, HSD17B6, PTGS2
Endoplasmic reticulum membrane 2 BCL2, PTGS2
Nucleus 8 ACHE, AKT1, BCL2, CASP3, MAPK14, MPO, NFE2L2, RELA
cytosol 10 AKT1, BCL2, CASP3, CAT, HPGDS, LIPE, MAPK14, NFE2L2, RELA, XDH
centrosome 1 NFE2L2
nucleoplasm 8 AKT1, ATP2B1, CASP3, HPGDS, MAPK14, MPO, NFE2L2, RELA
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 5 ACHE, AKT1, ATP2B1, LIPE, TNF
lamellipodium 1 AKT1
Early endosome membrane 1 HSD17B6
Multi-pass membrane protein 1 ATP2B1
Synapse 2 ACHE, ATP2B1
cell cortex 1 AKT1
cell surface 2 ACHE, TNF
glutamatergic synapse 5 AKT1, ATP2B1, CASP3, MAPK14, RELA
Golgi apparatus 2 ACHE, NFE2L2
Golgi membrane 1 INS
neuromuscular junction 1 ACHE
neuronal cell body 2 CASP3, TNF
postsynapse 1 AKT1
presynaptic membrane 1 ATP2B1
Cytoplasm, cytosol 2 LIPE, NFE2L2
Lysosome 2 MPO, TYR
plasma membrane 5 ACHE, AKT1, ATP2B1, NFE2L2, TNF
synaptic vesicle membrane 1 ATP2B1
Membrane 6 ACHE, AKT1, ATP2B1, BCL2, CAT, LIPE
basolateral plasma membrane 1 ATP2B1
caveola 2 LIPE, PTGS2
extracellular exosome 3 ATP2B1, CAT, MPO
Lumenal side 1 HSD17B6
endoplasmic reticulum 3 BCL2, HSD17B6, PTGS2
extracellular space 7 ACHE, CXCL8, IL6, INS, MPO, TNF, XDH
perinuclear region of cytoplasm 2 ACHE, TYR
mitochondrion 3 BCL2, CAT, MAPK14
protein-containing complex 4 AKT1, BCL2, CAT, PTGS2
intracellular membrane-bounded organelle 6 ATP2B1, CAT, HPGDS, HSD17B6, MPO, TYR
Microsome membrane 2 HSD17B6, PTGS2
postsynaptic density 1 CASP3
Single-pass type I membrane protein 1 TYR
Secreted 4 ACHE, CXCL8, IL6, INS
extracellular region 8 ACHE, CAT, CXCL8, IL6, INS, MAPK14, MPO, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
mitochondrial matrix 1 CAT
Extracellular side 1 ACHE
transcription regulator complex 1 RELA
Cytoplasmic vesicle, secretory vesicle, synaptic vesicle membrane 1 ATP2B1
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 1 BCL2
external side of plasma membrane 1 TNF
microtubule cytoskeleton 1 AKT1
Melanosome membrane 1 TYR
cell-cell junction 1 AKT1
Golgi-associated vesicle 1 TYR
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 1 TNF
pore complex 1 BCL2
focal adhesion 1 CAT
spindle 1 AKT1
Peroxisome 2 CAT, XDH
basement membrane 1 ACHE
sarcoplasmic reticulum 1 XDH
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
secretory granule 1 MPO
lateral plasma membrane 1 ATP2B1
nuclear speck 1 MAPK14
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 2 NFE2L2, RELA
mediator complex 1 NFE2L2
cell projection 1 ATP2B1
phagocytic cup 1 TNF
spindle pole 1 MAPK14
Basolateral cell membrane 1 ATP2B1
Lipid-anchor, GPI-anchor 1 ACHE
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
Melanosome 1 TYR
Presynaptic cell membrane 1 ATP2B1
side of membrane 1 ACHE
myelin sheath 1 BCL2
azurophil granule 1 MPO
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
transport vesicle 1 INS
azurophil granule lumen 1 MPO
Endoplasmic reticulum-Golgi intermediate compartment membrane 1 INS
immunological synapse 1 ATP2B1
phagocytic vesicle lumen 1 MPO
synaptic cleft 1 ACHE
protein-DNA complex 1 NFE2L2
death-inducing signaling complex 1 CASP3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
photoreceptor ribbon synapse 1 ATP2B1
NF-kappaB p50/p65 complex 1 RELA
[Isoform H]: Cell membrane 1 ACHE
NF-kappaB complex 1 RELA
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Abeer S Elsherbiny, Alyaa Galal, Khalid M Ghoneem, Nehal A Salahuddin. Graphene oxide-based nanocomposites for outstanding eco-friendly antifungal potential against tomato phytopathogens. Biomaterials advances. 2024 Jun; 160(?):213863. doi: 10.1016/j.bioadv.2024.213863. [PMID: 38642516]
  • Bijoy Biswas, Manish Sakhakarmy, Tawsif Rahman, Hossein Jahromi, Sushil Adhikari, Bhavya B Krishna, Thallada Bhaskar, Jonas Baltrusaitis, Mohamed Eisa, Seyed Morteza Taghavi Kouzehkanan, Tae-Sik Oh. Selective production of phenolic monomer via catalytic depolymerization of lignin over cobalt-nickel-zirconium dioxide catalyst. Bioresource technology. 2024 Apr; 398(?):130517. doi: 10.1016/j.biortech.2024.130517. [PMID: 38437961]
  • Natalia Saudade de Aguiar, Fabricio Augusto Hansel, Cristiane Aparecida Fioravante Reis, Marcelo Lazzarotto, Ivar Wendling. Optimizing the Vanillin-Acid Sulfuric Method to Total Saponin Content in Leaves of Yerba Mate Clones. Chemistry & biodiversity. 2024 Apr; 21(4):e202301883. doi: 10.1002/cbdv.202301883. [PMID: 38358959]
  • Xiaochong Zhu, Jieyuan Wu, Shizhong Li, La Xiang, Jian-Ming Jin, Chaoning Liang, Shuang-Yan Tang. Artificial Biosynthetic Pathway for Efficient Synthesis of Vanillin, a Feruloyl-CoA-Derived Natural Product from Eugenol. Journal of agricultural and food chemistry. 2024 Mar; 72(12):6463-6470. doi: 10.1021/acs.jafc.3c08723. [PMID: 38501643]
  • Mervt M Almostafa, Maged E Mohamed, Nancy S Younis. Ameliorative effects of vanillin against pentylenetetrazole-induced epilepsy and associated memory loss in mice: The role of Nrf2/HO-1/NQO1 and HMGB1/RAGE/TLR4/NFκB pathways. International immunopharmacology. 2024 Mar; 129(?):111657. doi: 10.1016/j.intimp.2024.111657. [PMID: 38335655]
  • Yang Yang, Justin Flaven-Pouchon, Jerôme Cortot, Jean-François Ferveur, Bernard Moussian. Colorimetric surface lipid quantification in Drosophila. Archives of insect biochemistry and physiology. 2024 Feb; 115(2):e22091. doi: 10.1002/arch.22091. [PMID: 38385805]
  • Yanfei Huang, Yuhua Yang, Jinghua Xue, Yinyin Liao, Xiumin Fu, Chen Zhu, Jianlong Li, Lanting Zeng, Ziyin Yang. Biosynthetic Pathway and Bioactivity of Vanillin, a Highly Abundant Metabolite Distributed in the Root Cortex of Tea Plants (Camellia sinensis). Journal of agricultural and food chemistry. 2024 Jan; 72(3):1660-1673. doi: 10.1021/acs.jafc.3c07206. [PMID: 38193455]
  • Ryota Nakaniwa, Yuki Misawa, Saika Nakasato, Kaori Sano, Yoshiyuki Tanaka, Sachie Nakatani, Kenji Kobata. Biochemical Aspects of Putative Aminotransferase Responsible for Converting Vanillin to Vanillylamine in the Capsaicinoid Biosynthesis Pathway in Capsicum Plants. Journal of agricultural and food chemistry. 2024 Jan; 72(1):559-565. doi: 10.1021/acs.jafc.3c07369. [PMID: 38134368]
  • Yuan Gao, Jiang Liu, Xiaoyan Wang, Qiang Meng. Vanillin attenuates oxidative stress and neurochemical balance in MPTP-induced Parkinson's disease mice by regulating the TLR-4 inflammatory pathway. Folia neuropathologica. 2024 Jan; ?(?):. doi: 10.5114/fn.2023.131191. [PMID: 38174675]
  • Luis Chel-Guerrero, David Betancur-Ancona, Manuel Aguilar-Vega, Wilbert Rodríguez-Canto. Films properties of QPM corn starch with Delonix regia seed galactomannan as an edible coating material. International journal of biological macromolecules. 2024 Jan; 255(?):128408. doi: 10.1016/j.ijbiomac.2023.128408. [PMID: 38016603]
  • Marco A Ramírez-Mosqueda, Marco Vinicio Rodríguez-Deméneghi, Heidi P Medorio-García, Rubén H Andueza-Noh. Large-Scale Micropropagation of Vanilla (Vanilla planifolia Jacks.) in a Temporary Immersion Bioreactor (TIB). Methods in molecular biology (Clifton, N.J.). 2024; 2759(?):45-52. doi: 10.1007/978-1-0716-3654-1_4. [PMID: 38285137]
  • Muhammad Abu Taher, Xiaolin Wang, K M Faridul Hasan, Mohammad Raza Miah, Jin Zhu, Jing Chen. Lignin Modification for Enhanced Performance of Polymer Composites. ACS applied bio materials. 2023 Dec; 6(12):5169-5192. doi: 10.1021/acsabm.3c00783. [PMID: 38036466]
  • Mohamed A El Hamd, Mahmoud El-Maghrabey, Saud Almawash, Rania El-Shaheny, Galal Magdy. Self-ratiometric fluorescence approach based on plant extract-assisted synthesized silver nanoparticles for the determination of vanillin. Mikrochimica acta. 2023 12; 191(1):16. doi: 10.1007/s00604-023-06093-3. [PMID: 38086991]
  • Mahdi Aalikhani, Ensie Taheri, Masoumeh Khalili. Vanillin serves as a potential substitute for chemical chelator desferal in iron-overloaded mice. European journal of pharmacology. 2023 Dec; 960(?):176153. doi: 10.1016/j.ejphar.2023.176153. [PMID: 38059446]
  • Gang Xiang, Wensi Xu, Wenfeng Zhuge, Qing Huang, Cuizhong Zhang, Jinyun Peng. Conductive phthalocyanine-based porous organic polymer as sensing platform for rapid determination of vanillin. The Analyst. 2023 Dec; 148(24):6274-6281. doi: 10.1039/d3an01758c. [PMID: 37969078]
  • Zhi-Qiang Wei, Ji-Xiang Wang, Jin-Meng Guo, Xiao-Long Liu, Qi Yan, Jin Zhang, Shuang-Lin Dong. An odorant receptor tuned to an attractive plant volatile vanillin in Spodoptera litura. Pesticide biochemistry and physiology. 2023 Nov; 196(?):105619. doi: 10.1016/j.pestbp.2023.105619. [PMID: 37945255]
  • Fangyi Mei, Hongling Wang, Yuquan Zhang, Mei Zhang, Shuai Zhou, Haiming Shi, Yuanrong Jiang. Development and Validation of a Stable Isotope Dilution Headspace-SPME-GC/MS Method for the Determination of Vanillin in Fragrant Vegetable Oils. Molecules (Basel, Switzerland). 2023 Oct; 28(21):. doi: 10.3390/molecules28217288. [PMID: 37959708]
  • Evamaria Hofmann, Pierre Degot, Didier Touraud, Burkhard König, Werner Kunz. Novel green production of natural-like vanilla extract from curcuminoids. Food chemistry. 2023 Aug; 417(?):135944. doi: 10.1016/j.foodchem.2023.135944. [PMID: 36934704]
  • Ying Liu, Lichao Sun, Yi-Xin Huo, Shuyuan Guo. Strategies for improving the production of bio-based vanillin. Microbial cell factories. 2023 Aug; 22(1):147. doi: 10.1186/s12934-023-02144-9. [PMID: 37543600]
  • Qiaofang Lu, Kunguang Wang, Zhechao Dou, Lina Zhong, Yuanyuan Yao, Yuanmei Zuo. Vanillin in Resistant Tomato Plant Root Exudate Suppresses Meloidogyne incognita Parasitism. Journal of agricultural and food chemistry. 2023 Jun; ?(?):. doi: 10.1021/acs.jafc.3c00661. [PMID: 37386871]
  • Zarmin Iqbal, Ruhul Quds, Riaz Mahmood. Vanillin attenuates CdCl2-induced cytotoxicity in isolated human erythrocytes. Toxicology in vitro : an international journal published in association with BIBRA. 2023 Jun; ?(?):105633. doi: 10.1016/j.tiv.2023.105633. [PMID: 37336463]
  • Jieren Liao, Veronika Lederer, Alba Bardhi, Zhiwei Zou, Timothy D Hoffmann, Guangxin Sun, Chuankui Song, Thomas Hoffmann, Wilfried Schwab. Acceptors and Effectors Alter Substrate Inhibition Kinetics of a Plant Glucosyltransferase NbUGT72AY1 and Its Mutants. International journal of molecular sciences. 2023 May; 24(11):. doi: 10.3390/ijms24119542. [PMID: 37298492]
  • Camila S Freitas, Samira S Santiago, Daniela P Lage, Luciana M R Antinarelli, Fabrício M Oliveira, Danniele L Vale, Vívian T Martins, Lícia N D Magalhaes, Raquel S Bandeira, Fernanda F Ramos, Isabela A G Pereira, Marcelo M de Jesus, Fernanda Ludolf, Grasiele S V Tavares, Adilson V Costa, Rafaela S Ferreira, Elaine S Coimbra, Róbson R Teixeira, Eduardo A F Coelho. In vitro evaluation of antileishmanial activity, mode of action and cellular response induced by vanillin synthetic derivatives against Leishmania species able to cause cutaneous and visceral leishmaniasis. Experimental parasitology. 2023 May; 251(?):108555. doi: 10.1016/j.exppara.2023.108555. [PMID: 37247802]
  • Nicholas J Day, Juan Wang, Carl J Johnston, So-Young Kim, Heather M Olson, Emma L House, Isaac Kwame Attah, Geremy C Clair, Wei-Jun Qian, Matthew D McGraw. Rat bronchoalveolar lavage proteome changes following e-cigarette aerosol exposures. American journal of physiology. Lung cellular and molecular physiology. 2023 05; 324(5):L571-L583. doi: 10.1152/ajplung.00016.2023. [PMID: 36881561]
  • Kandrakonda Yelamanda Rao, Shaik Jeelan Basha, Kallubai Monika, Navya Naidu Gajula, Irla Sivakumar, Sandeep Kumar, Ramakrishna Vadde, Bindu Madhava Reddy Aramati, Rajagopal Subramanyam, Amooru Gangaiah Damu. Development of quinazolinone and vanillin acrylamide hybrids as multi-target directed ligands against Alzheimer's disease and mechanistic insights into their binding with acetylcholinesterase. Journal of biomolecular structure & dynamics. 2023 Apr; ?(?):1-18. doi: 10.1080/07391102.2023.2203255. [PMID: 37098803]
  • Visessakseth So, Philip Poul, Sokunvary Oeung, Pich Srey, Kimchhay Mao, Huykhim Ung, Poliny Eng, Mengkhim Heim, Marnick Srun, Chantha Chheng, Sin Chea, Tarapong Srisongkram, Natthida Weerapreeyakul. Bioactive Compounds, Antioxidant Activities, and HPLC Analysis of Nine Edible Sprouts in Cambodia. Molecules (Basel, Switzerland). 2023 Mar; 28(6):. doi: 10.3390/molecules28062874. [PMID: 36985845]
  • Xiao Han, Jiayan Huang, Jia Lu, Feng He, Fang Wang, Shuangfeng Li, Hao Zhong, Haiyang Yu, Weiling Pu. Active compounds and potential targets of Shuganning injection in the treatment of hepatocellular carcinoma by network pharmacology and in vitro validation. Naunyn-Schmiedeberg's archives of pharmacology. 2023 Mar; ?(?):. doi: 10.1007/s00210-023-02432-6. [PMID: 36869905]
  • Ronivaldo Rodrigues da Silva, Mohammed Anas Zaiter, Maurício Boscolo, Roberto da Silva, Eleni Gomes. Xylose consumption and ethanol production by Pichia guilliermondii and Candida oleophila in the presence of furans, phenolic compounds, and organic acids commonly produced during the pre-treatment of plant biomass. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 2023 Feb; ?(?):. doi: 10.1007/s42770-023-00937-z. [PMID: 36826705]
  • A Diamond, S Barnabé, I Desgagné-Penix. Is a spice missing from the recipe? The intra-cellular localization of vanillin biosynthesis needs further investigations. Plant biology (Stuttgart, Germany). 2023 Jan; 25(1):3-7. doi: 10.1111/plb.13465. [PMID: 36066305]
  • Sooyeon Choi, Chae Eun Haam, Eun-Yi Oh, Seonhee Byeon, Soo-Kyoung Choi, Young-Ho Lee. Vanillin Induces Relaxation in Rat Mesenteric Resistance Arteries by Inhibiting Extracellular Ca2+ Influx. Molecules (Basel, Switzerland). 2022 Dec; 28(1):. doi: 10.3390/molecules28010288. [PMID: 36615485]
  • Laura S Bailey, Dilip V Prajapati, Kari B Basso. Optimization of the Sulfo-Phospho-Vanillin Assay for Total Lipid Normalization in Untargeted Quantitative Lipidomic LC-MS/MS Applications. Analytical chemistry. 2022 12; 94(51):17810-17818. doi: 10.1021/acs.analchem.2c03488. [PMID: 36520113]
  • David L Avetyan, Andrey Shatskiy, Markus D Kärkäs, Elena V Stepanova. Scalable total synthesis of natural vanillin-derived glucoside ω-esters. Carbohydrate research. 2022 Dec; 522(?):108683. doi: 10.1016/j.carres.2022.108683. [PMID: 36179617]
  • Siyao Shao, Sufen Zhang, Zhiyang Yu, Qingfu Ye. Accumulation and biotransformation of the novel vanillin-derived pesticide, vanisulfane, in laying hens after dietary exposure. Journal of hazardous materials. 2022 10; 439(?):129677. doi: 10.1016/j.jhazmat.2022.129677. [PMID: 36104905]
  • Jingyu Gou, Yuxi Guo, Huan Liu, Yanni Zhao, Rongjing Zhu, Yue Dang, Nannan Liu, Mengyin Chen, Xuefeng Chen. Process optimization of vanillin production by conversion of ferulic acid by Bacillus megaterium. Journal of the science of food and agriculture. 2022 Oct; 102(13):6047-6061. doi: 10.1002/jsfa.11957. [PMID: 35462414]
  • Dengyue Liu, Runjiang Song, Zengxue Wu, Zhifu Xing, Deyu Hu. Pyrido [1,2-a] Pyrimidinone Mesoionic Compounds Containing Vanillin Moiety: Design, Synthesis, Antibacterial Activity, and Mechanism. Journal of agricultural and food chemistry. 2022 Aug; 70(34):10443-10452. doi: 10.1021/acs.jafc.2c01838. [PMID: 35972464]
  • Hong-Wei He, Fei-Yu Wang, Danyang Zhang, Cai-Yun Chen, Dan Xu, Huan Zhou, Xili Liu, Gong Xu. Discovery of Novel α-Methylene-γ-Butyrolactone Derivatives Containing Vanillin Moieties as Antiviral and Antifungal Agents. Journal of agricultural and food chemistry. 2022 Aug; 70(33):10316-10325. doi: 10.1021/acs.jafc.2c03632. [PMID: 35960686]
  • Sagar S Arya, Binod K Mahto, Meenu S Sengar, James E Rookes, David M Cahill, Sangram K Lenka. Metabolic Engineering of Rice Cells with Vanillin Synthase Gene (VpVAN) to Produce Vanillin. Molecular biotechnology. 2022 Aug; 64(8):861-872. doi: 10.1007/s12033-022-00470-8. [PMID: 35192168]
  • Cody Pinger, Louise Copeman, Michelle Stowell, Bryan Cormack, Corey Fugate, Matthew Rogers. Rapid measurement of total lipids in zooplankton using the sulfo-phospho-vanillin reaction. Analytical methods : advancing methods and applications. 2022 07; 14(27):2665-2672. doi: 10.1039/d2ay00665k. [PMID: 35748590]
  • Abeer S Elsherbiny, Alyaa Galal, Khalid M Ghoneem, Nehal A Salahuddin. Novel chitosan-based nanocomposites as ecofriendly pesticide carriers: Synthesis, root rot inhibition and growth management of tomato plants. Carbohydrate polymers. 2022 Apr; 282(?):119111. doi: 10.1016/j.carbpol.2022.119111. [PMID: 35123746]
  • Siyao Shao, Xi Cheng, Ruonan Zheng, Sufen Zhang, Zhiyang Yu, Haiyan Wang, Wei Wang, Qingfu Ye. Sex-related deposition and metabolism of vanisulfane, a novel vanillin-derived pesticide, in rats and its hepatotoxic and gonadal effects. The Science of the total environment. 2022 Mar; 813(?):152545. doi: 10.1016/j.scitotenv.2021.152545. [PMID: 34952065]
  • Heba A Metwaly, Abdulrahman M El-Eraky, Eman E Ibrahim, Khaled K Kandil, Mohamed A El-Sayed, Nayra M El-Tabakh, Amr M Motawea, Helmi A Ali, Maher Z Jabban, Mona E Mahmoud, Walaa H Abdelfattah, Mohammad A Elmorsy, Amal M H Ghanim. Vanillin attenuates thioacetamide-induced renal assault by direct and indirect mediation of the TGFβ, ERK and Smad signalling pathways in rats. Cell biochemistry and function. 2022 Mar; 40(2):175-188. doi: 10.1002/cbf.3686. [PMID: 35092082]
  • Sabeeha Ali, Manzar Alam, Fatima Khatoon, Urooj Fatima, Abdelbaset Mohamed Elasbali, Mohd Adnan, Asimul Islam, Md Imtaiyaz Hassan, Mejdi Snoussi, Vincenzo De Feo. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Mar; 147(?):112658. doi: 10.1016/j.biopha.2022.112658. [PMID: 35066300]
  • Andrej Minich, Zdenko Levarski, Mária Mikulášová, Marek Straka, Adriána Liptáková, Stanislav Stuchlík. Complex Analysis of Vanillin and Syringic Acid as Natural Antimicrobial Agents against Staphylococcus epidermidis Biofilms. International journal of molecular sciences. 2022 Feb; 23(3):. doi: 10.3390/ijms23031816. [PMID: 35163738]
  • Hyungjoo Kim, Seungdo Yang, Yong Hyun Lim, Jeong-Myeong Ha, Do Heui Kim. Upgrading bio-oil model compound over bifunctional Ru/HZSM-5 catalysts in biphasic system: Complete hydrodeoxygenation of vanillin. Journal of hazardous materials. 2022 02; 423(Pt A):126525. doi: 10.1016/j.jhazmat.2021.126525. [PMID: 34246521]
  • Camila Mottin, Mariana Garcia Ornaghi, Venício Macêdo Carvalho, Ana Guerrero, Ana Carolina Pelaes Vital, Tatiane Rogelio Ramos, Edinéia Bonin, Fabiana Lana de Araújo, Ricardo de Araújo Castilho, Ivanor Nunes do Prado. Carcass characteristics and meat evaluation of cattle finished in temperate pasture and supplemented with natural additive containing clove, cashew oil, castor oils, and a microencapsulated blend of eugenol, thymol, and vanillin. Journal of the science of food and agriculture. 2022 Feb; 102(3):1271-1280. doi: 10.1002/jsfa.11465. [PMID: 34358347]
  • Atsushi Mitsumoto, Tohru Yamazaki. [Repellent Activity of Vanillin Derivatives and Monoterpenes to Olive Weevil]. Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan. 2022; 142(9):1005-1014. doi: 10.1248/yakushi.22-00086. [PMID: 36047212]
  • Guzel Ziyatdinova, Anastasiya Zhupanova, Rustam Davletshin. Simultaneous Determination of Ferulic Acid and Vanillin in Vanilla Extracts Using Voltammetric Sensor Based on Electropolymerized Bromocresol Purple. Sensors (Basel, Switzerland). 2021 Dec; 22(1):. doi: 10.3390/s22010288. [PMID: 35009830]
  • Amal M H Ghanim, Nancy S Younis, Heba A Metwaly. Vanillin augments liver regeneration effectively in Thioacetamide induced liver fibrosis rat model. Life sciences. 2021 Dec; 286(?):120036. doi: 10.1016/j.lfs.2021.120036. [PMID: 34637793]
  • Veronica F Salau, Ochuko L Erukainure, Kolawole O Olofinsan, Nontokozo Z Msomi, Omamuyovwi M Ijomone, Md Shahidul Islam. Vanillin improves glucose homeostasis and modulates metabolic activities linked to type 2 diabetes in fructose-streptozotocin induced diabetic rats. Archives of physiology and biochemistry. 2021 Nov; ?(?):1-14. doi: 10.1080/13813455.2021.1988981. [PMID: 34752171]
  • Vanessa E Leyva, Juan M Lopez, Alvaro Zevallos-Ventura, Rodrigo Cabrera, Cristhian Cañari-Chumpitaz, David Toubiana, Helena Maruenda. NMR-based leaf metabolic profiling of V. planifolia and three endemic Vanilla species from the Peruvian Amazon. Food chemistry. 2021 Oct; 358(?):129365. doi: 10.1016/j.foodchem.2021.129365. [PMID: 33930711]
  • Deepa Priya Ramadoss, Nageswaran Sivalingam. Vanillin extracted from proso and barnyard millets induces cell cycle inhibition and apoptotic cell death in MCF-7 cell line. Journal of cancer research and therapeutics. 2021 Oct; 17(6):1425-1433. doi: 10.4103/jcrt.jcrt_1128_19. [PMID: 34916373]
  • Veronica F Salau, Ochuko L Erukainure, Kolawole A Olofinsan, Omamuyovwi M Ijomone, Nontokozo Z Msomi, Md Shahidul Islam. Vanillin modulates activities linked to dysmetabolism in psoas muscle of diabetic rats. Scientific reports. 2021 09; 11(1):18724. doi: 10.1038/s41598-021-98158-7. [PMID: 34548565]
  • Daniel Ribeiro Grijó, José Eduardo Olivo, Oswaldo Curty da Motta Lima. Simple chemical tests to identify Cannabis derivatives: Redefinition of parameters and analysis of concepts. Journal of forensic sciences. 2021 Sep; 66(5):1647-1657. doi: 10.1111/1556-4029.14777. [PMID: 34142715]
  • G E Morlock, M Busso, S Tomeba, A Sighicelli. Effect-directed profiling of 32 vanilla products, characterization of multi-potent compounds and quantification of vanillin and ethylvanillin. Journal of chromatography. A. 2021 Aug; 1652(?):462377. doi: 10.1016/j.chroma.2021.462377. [PMID: 34271255]
  • Chih-Hsin Yeh, Kai-Yi Chen, Chia-Yi Chou, Hsin-Yi Liao, Hsin-Chun Chen. New Insights on Volatile Components of Vanilla planifolia Cultivated in Taiwan. Molecules (Basel, Switzerland). 2021 Jun; 26(12):. doi: 10.3390/molecules26123608. [PMID: 34204654]
  • Guoli Li, Beibei Kong, Qingchao Tong, Yejia Li, Lifen Chen, Jin Zeng, Haitao Yu, Xinyou Xie, Jun Zhang. Vanillin downregulates NNMT and attenuates NNMT‑related resistance to 5‑fluorouracil via ROS‑induced cell apoptosis in colorectal cancer cells. Oncology reports. 2021 Jun; 45(6):. doi: 10.3892/or.2021.8061. [PMID: 33907844]
  • Jing Yang, Yun-Ze Chen, Wu Yu-Xuan, Li Tao, Yun-Di Zhang, Shu-Ren Wang, Guo-Cai Zhang, Jie Zhang. Inhibitory effects and mechanisms of vanillin on gray mold and black rot of cherry tomatoes. Pesticide biochemistry and physiology. 2021 Jun; 175(?):104859. doi: 10.1016/j.pestbp.2021.104859. [PMID: 33993955]
  • Xiaxia Wang, Dinglei Xiang, Ziyi Wang, Zhaoguo Wang, Xue Yang, Shuai Yu, Qiuxia Pang, Sheng Liu, Li Yan. Label-free quantitative proteomics analysis of Humulus scandens (Lour.) Merr. leaves treated by an odor compound of Periploca sepium Bunge. Ecotoxicology and environmental safety. 2021 Jun; 215(?):112131. doi: 10.1016/j.ecoenv.2021.112131. [PMID: 33752163]
  • Veronica F Salau, Ochuko L Erukainure, Kolawole A Olofinsan, Md Shahidul Islam. Vanillin exerts therapeutic effects against hyperglycemia-altered glucose metabolism and purinergic activities in testicular tissues of diabetic rats. Reproductive toxicology (Elmsford, N.Y.). 2021 06; 102(?):24-34. doi: 10.1016/j.reprotox.2021.03.007. [PMID: 33823243]
  • InWha Park, Hee Sun Byun, Gang Min Hur, MinKyun Na. Tulipiferamide A, an Alkamide from Liriodendron tulipifera, Exhibits an Anti-Inflammatory Effect via Targeting IKKβ Phosphorylation. Journal of natural products. 2021 05; 84(5):1598-1606. doi: 10.1021/acs.jnatprod.1c00146. [PMID: 33939429]
  • Sandhya Subash, Nithya J Gogtay, Krishna R Iyer, Prajakta Gandhe, Ritu Budania, Urmila M Thatte. Evaluation of vanillin as a probe drug for aldehyde oxidase and phenotyping for its activity in a Western Indian Cohort. Indian journal of pharmacology. 2021 May; 53(3):213-220. doi: 10.4103/ijp.ijp_463_18. [PMID: 34169906]
  • Mark J Henderson, Kathleen A Trychta, Shyh-Ming Yang, Susanne Bäck, Adam Yasgar, Emily S Wires, Carina Danchik, Xiaokang Yan, Hideaki Yano, Lei Shi, Kuo-Jen Wu, Amy Q Wang, Dingyin Tao, Gergely Zahoránszky-Kőhalmi, Xin Hu, Xin Xu, David Maloney, Alexey V Zakharov, Ganesha Rai, Fumihiko Urano, Mikko Airavaara, Oksana Gavrilova, Ajit Jadhav, Yun Wang, Anton Simeonov, Brandon K Harvey. A target-agnostic screen identifies approved drugs to stabilize the endoplasmic reticulum-resident proteome. Cell reports. 2021 04; 35(4):109040. doi: 10.1016/j.celrep.2021.109040. [PMID: 33910017]
  • Joelma P da Silva, Maria do S Costa, Fabia F Campina, Camila F Bezerra, Thiago S de Freitas, Amanda K Sousa, Celestina E Sobral Souza, Yedda M L S de Matos, Francisco N Pereira-Junior, Irwim R A Menezes, Henrique D M Coutinho, Janaína E Rocha. Evaluation of chelating and cytoprotective activity of vanillin against the toxic action of mercuric chloride as an alternative for phytoremediation. Environmental geochemistry and health. 2021 Apr; 43(4):1609-1616. doi: 10.1007/s10653-020-00538-x. [PMID: 32130595]
  • Vereena Rodrigues, Amit Kumar, Kamasamudra N Prabhu, V S Pragadheesh, Ashutosh K Shukla, Velusamy Sundaresan. Adventitious root cultures of Decalepis salicifolia for the production of 2-hydroxy-4-methoxybenzaldehyde, a vanillin isomer flavor metabolite. Applied microbiology and biotechnology. 2021 Apr; 105(8):3087-3099. doi: 10.1007/s00253-021-11262-6. [PMID: 33829315]
  • Xuanxuan Zhang, Yang He, Zhe Wu, Guoxia Liu, Yong Tao, Jian-Ming Jin, Wei Chen, Shuang-Yan Tang. Whole-Cell Biosensors Aid Exploration of Vanillin Transmembrane Transport. Journal of agricultural and food chemistry. 2021 Mar; 69(10):3114-3123. doi: 10.1021/acs.jafc.0c07886. [PMID: 33666081]
  • Venkata Saibabu, Zeeshan Fatima, Luqman Ahmad Khan, Saif Hameed. Mechanistic Insights into the Anticandidal Action of Vanillin Reveal Disruption of Cell Surface Integrity and Mitochondrial Functioning. Infectious disorders drug targets. 2021; 21(3):405-415. doi: 10.2174/1871526520666200702134110. [PMID: 32614756]
  • Thae Thae San, Yue-Hu Wang, Dong-Bao Hu, Jun Yang, Dong-Dong Zhang, Meng-Yuan Xia, Xue-Fei Yang, Yong-Ping Yang. A new sesquineolignan and four new neolignans isolated from the leaves of Piper betle, a traditional medicinal plant in Myanmar. Bioorganic & medicinal chemistry letters. 2021 01; 31(?):127682. doi: 10.1016/j.bmcl.2020.127682. [PMID: 33207281]
  • B Mazhar, N Jahan, M Chaudhry, I Liaqat, M Dar, S Rehman, S Andleeb, N M Ali. Significant production of vanillin and in vitro amplification of ech gene in local bacterial isolates. Brazilian journal of biology = Revista brasleira de biologia. 2021; 83(?):e250550. doi: 10.1590/1519-6984.250550. [PMID: 34730714]
  • N M Al-Baqami, R Z Hamza. Synergistic antioxidant capacities of vanillin and chitosan nanoparticles against reactive oxygen species, hepatotoxicity, and genotoxicity induced by aging in male Wistar rats. Human & experimental toxicology. 2021 Jan; 40(1):183-202. doi: 10.1177/0960327120943267. [PMID: 32857622]
  • Mohammed Omar Faruque, Muhammad Ilyas, Mohammad Mozahar Hossain, Shaikh Abdur Razzak. Influence of Nitrogen to Phosphorus Ratio and CO2 Concentration on Lipids Accumulation of Scenedesmus dimorphus for Bioenergy Production and CO2 Biofixation. Chemistry, an Asian journal. 2020 Dec; 15(24):4307-4320. doi: 10.1002/asia.202001063. [PMID: 33108039]
  • B Rossi, A Toschi, A Piva, E Grilli. Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutrition research reviews. 2020 12; 33(2):218-234. doi: 10.1017/s0954422420000013. [PMID: 32100670]
  • Nicole Francesca Pelusio, Barbara Rossi, Luca Parma, Enrico Volpe, Sara Ciulli, Andrea Piva, Federica D'Amico, Daniel Scicchitano, Marco Candela, Pier Paolo Gatta, Alessio Bonaldo, Ester Grilli. Effects of increasing dietary level of organic acids and nature-identical compounds on growth, intestinal cytokine gene expression and gut microbiota of rainbow trout (Oncorhynchus mykiss) reared at normal and high temperature. Fish & shellfish immunology. 2020 Dec; 107(Pt A):324-335. doi: 10.1016/j.fsi.2020.10.021. [PMID: 33096247]
  • Woon Yi Law, Mohd Razip Asaruddin, Showkat Ahamd Bhawani, Samsur Mohamad. Pharmacophore modelling of vanillin derivatives, favipiravir, chloroquine, hydroxychloroquine, monolaurin and tetrodotoxin as MPro inhibitors of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). BMC research notes. 2020 Nov; 13(1):527. doi: 10.1186/s13104-020-05379-6. [PMID: 33176880]
  • Nahla N Younis, Nehal M Elsherbiny, Mohamed A Shaheen, Mohamed M Elseweidy. Modulation of NADPH oxidase and Nrf2/HO-1 pathway by vanillin in cisplatin-induced nephrotoxicity in rats. The Journal of pharmacy and pharmacology. 2020 Nov; 72(11):1546-1555. doi: 10.1111/jphp.13340. [PMID: 32746497]
  • Dexia Luo, Shengxin Guo, Feng He, Shunhong Chen, Ali Dai, Renfeng Zhang, Jian Wu. Design, Synthesis, and Bioactivity of α-Ketoamide Derivatives Bearing a Vanillin Skeleton for Crop Diseases. Journal of agricultural and food chemistry. 2020 Jul; 68(27):7226-7234. doi: 10.1021/acs.jafc.0c00724. [PMID: 32530620]
  • Naoki Kitaoka, Taiji Nomura, Shinjiro Ogita, Yasuo Kato. Bioproduction of glucose conjugates of 4-hydroxybenzoic and vanillic acids using bamboo cells transformed to express bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase. Journal of bioscience and bioengineering. 2020 Jul; 130(1):89-97. doi: 10.1016/j.jbiosc.2020.02.010. [PMID: 32192841]
  • Alessandra Moraes Pedrosa, Whocely Victor de Castro, Ana Hortência Fonseca Castro, Joaquim M Duarte-Almeida. Validated spectrophotometric method for quantification of total triterpenes in plant matrices. Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences. 2020 Jun; 28(1):281-286. doi: 10.1007/s40199-020-00342-z. [PMID: 32285314]
  • Qiong Wu, Hui Cai, Ting Yuan, Shaoyuan Li, Xiuhai Gan, Baoan Song. Novel vanillin derivatives containing a 1,3,4-thiadiazole moiety as potential antibacterial agents. Bioorganic & medicinal chemistry letters. 2020 05; 30(10):127113. doi: 10.1016/j.bmcl.2020.127113. [PMID: 32199734]
  • Sharda Sharma, Saif Hameed, Zeeshan Fatima. Lipidomic insights to understand membrane dynamics in response to vanillin in Mycobacterium smegmatis. International microbiology : the official journal of the Spanish Society for Microbiology. 2020 May; 23(2):263-276. doi: 10.1007/s10123-019-00099-9. [PMID: 31624974]
  • Mariana Garcia Ornaghi, Ana Guerrero, Ana Carolina Pelaes Vital, Kennyson Alves de Souza, Rodrigo Augusto Cortez Passetti, Camila Mottin, Ricardo de Araújo Castilho, Carlos Sañudo, Ivanor Nunes do Prado. Improvements in the quality of meat from beef cattle fed natural additives. Meat science. 2020 May; 163(?):108059. doi: 10.1016/j.meatsci.2020.108059. [PMID: 32006811]
  • Jacek Łyczko, Aleksandra Pawlak, Iwo Augustyński, Piotr Okińczyc, Jakub Szperlik, Anna Kulma, Henryk Różański, Bożena Obmińska-Mrukowicz, Antoni Szumny. Chemical profiling and cytotoxic activity of 150-year old original sample of Jerusalem Balsam. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2020 Apr; 138(?):111183. doi: 10.1016/j.fct.2020.111183. [PMID: 32061855]
  • Javier García-Hidalgo, Daniel P Brink, Krithika Ravi, Catherine J Paul, Gunnar Lidén, Marie F Gorwa-Grauslund. Vanillin Production in Pseudomonas: Whole-Genome Sequencing of Pseudomonas sp. Strain 9.1 and Reannotation of Pseudomonas putida CalA as a Vanillin Reductase. Applied and environmental microbiology. 2020 03; 86(6):. doi: 10.1128/aem.02442-19. [PMID: 31924622]
  • Ninad Doctor, Grayson Parker, Katie Vang, Melanie Smith, Berkant Kayan, Yu Yang. Stability and Extraction of Vanillin and Coumarin under Subcritical Water Conditions. Molecules (Basel, Switzerland). 2020 Feb; 25(5):. doi: 10.3390/molecules25051061. [PMID: 32120972]
  • Wen'ge Huang, Yingzhuo Yang, Wen Wen, Yu Luo, Jiasi Wu, Li Xiang, Yinfan Hu, Shijun Xu, Simin Chen, Ping Wang. Vanillin enhances the passive transport rate and absorption of drugs with moderate oral bioavailability in vitro and in vivo by affecting the membrane structure. Food & function. 2020 Jan; 11(1):700-710. doi: 10.1039/c9fo02846c. [PMID: 31909774]
  • Chaoning Liang, Xuanxuan Zhang, Jieyuan Wu, Shanshan Mu, Zhe Wu, Jian-Ming Jin, Shuang-Yan Tang. Dynamic control of toxic natural product biosynthesis by an artificial regulatory circuit. Metabolic engineering. 2020 01; 57(?):239-246. doi: 10.1016/j.ymben.2019.12.002. [PMID: 31837400]
  • Deepa Priya Ramadoss, Nageswaran Sivalingam. Vanillin extracted from Proso and Barnyard millets induce apoptotic cell death in HT-29 human colon cancer cell line. Nutrition and cancer. 2020; 72(8):1422-1437. doi: 10.1080/01635581.2019.1672763. [PMID: 31604383]
  • Imad Eddin M Zabad, Mohamed N Amin, Mamdouh M El-Shishtawy. Protective effect of vanillin on diabetic nephropathy by decreasing advanced glycation end products in rats. Life sciences. 2019 Dec; 239(?):117088. doi: 10.1016/j.lfs.2019.117088. [PMID: 31759039]
  • Ming Li, Meng-Meng Gu, Yue Lang, Jianming Shi, Benjamin P C Chen, Hua Guan, Lan Yu, Ping-Kun Zhou, Zeng-Fu Shang. The vanillin derivative VND3207 protects intestine against radiation injury by modulating p53/NOXA signaling pathway and restoring the balance of gut microbiota. Free radical biology & medicine. 2019 12; 145(?):223-236. doi: 10.1016/j.freeradbiomed.2019.09.035. [PMID: 31580946]
  • Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein. Molecular pharmacology. 2019 11; 96(5):629-640. doi: 10.1124/mol.119.115964. [PMID: 31515284]
  • Gaogao He, Jin Li, Xiaoli Pang, Hui Wang, Hua Jin, Jun He, Shi-Ming Fang, Yan-Xu Chang. A Beta/ZSM-22 Zeolites-Based-Mixed Matrix Solid-Phase Dispersion Method for the Simultaneous Extraction and Determination of Eight Compounds with Different Polarities in Viticis Fructus by High-Performance Liquid Chromatography. Molecules (Basel, Switzerland). 2019 Sep; 24(19):. doi: 10.3390/molecules24193423. [PMID: 31547120]
  • Cebrián-Tarancón Cristina, Sánchez-Gómez Rosario, Carot José Miguel, Zalacain Amaya, Gonzalo L Alonso, Salinas M Rosario. Assessment of vine-shoots in a model wines as enological additives. Food chemistry. 2019 Aug; 288(?):86-95. doi: 10.1016/j.foodchem.2019.02.075. [PMID: 30902319]
  • Simone K Huber, Georg Höfner, Klaus T Wanner. Application of the concept of oxime library screening by mass spectrometry (MS) binding assays to pyrrolidine-3-carboxylic acid derivatives as potential inhibitors of γ-aminobutyric acid transporter 1 (GAT1). Bioorganic & medicinal chemistry. 2019 07; 27(13):2753-2763. doi: 10.1016/j.bmc.2019.05.001. [PMID: 31097402]
  • Elham Hasanvand, Ali Rafe. Development of vanillin/β-cyclodexterin inclusion microcapsules using flax seed gum-rice bran protein complex coacervates. International journal of biological macromolecules. 2019 Jun; 131(?):60-66. doi: 10.1016/j.ijbiomac.2019.03.066. [PMID: 30872048]
  • M Sefi, A Elwej, M Chaâbane, S Bejaoui, R Marrekchi, K Jamoussi, N Gouiaa, T Boudawara-Sellemi, M El Cafsi, N Zeghal, N Soudani. Beneficial role of vanillin, a polyphenolic flavoring agent, on maneb-induced oxidative stress, DNA damage, and liver histological changes in Swiss albino mice. Human & experimental toxicology. 2019 Jun; 38(6):619-631. doi: 10.1177/0960327119831067. [PMID: 30782018]
  • Ellen Moura Lopes, Roberta Gomes Linhares, Lucas de Oliveira Pires, Rosane Nora Castro, Gustavo Henrique Martins Ferreira Souza, Maria Gabriela Bello Koblitz, Luiz Claudio Cameron, Andrea Furtado Macedo. Vanilla bahiana, a contribution from the Atlantic Forest biodiversity for the production of vanilla: A proteomic approach through high-definition nanoLC/MS. Food research international (Ottawa, Ont.). 2019 06; 120(?):148-156. doi: 10.1016/j.foodres.2019.02.038. [PMID: 31000225]
  • Juan Antonio Méndez-Líter, Isabel Tundidor, Manuel Nieto-Domínguez, Beatriz Fernández de Toro, Andrés González Santana, Laura Isabel de Eugenio, Alicia Prieto, Juan Luis Asensio, Francisco Javier Cañada, Cristina Sánchez, María Jesús Martínez. Transglycosylation products generated by Talaromyces amestolkiae GH3 β-glucosidases: effect of hydroxytyrosol, vanillin and its glucosides on breast cancer cells. Microbial cell factories. 2019 May; 18(1):97. doi: 10.1186/s12934-019-1147-4. [PMID: 31151435]
  • Jia-Feng Chen, Xiao-Wei Chen, Jian Guo, Xiao-Quan Yang. Zein-based core-shell microcapsules for the potential delivery of algae oil and lipophilic compounds. Food & function. 2019 Mar; 10(3):1504-1512. doi: 10.1039/c8fo02302f. [PMID: 30785152]
  • Chong Wang, Ting Yu, Tsugumi Fujita, Eiichi Kumamoto. Moieties of plant-derived compounds responsible for outward current production and TRPA1 activation in rat spinal substantia gelatinosa. Pharmacological reports : PR. 2019 Feb; 71(1):67-72. doi: 10.1016/j.pharep.2018.09.003. [PMID: 30471518]
  • Sangiliyandi Gurunathan, Min-Hee Kang, Muniyandi Jeyaraj, Jin-Hoi Kim. Differential Immunomodulatory Effect of Graphene Oxide and Vanillin-Functionalized Graphene Oxide Nanoparticles in Human Acute Monocytic Leukemia Cell Line (THP-1). International journal of molecular sciences. 2019 Jan; 20(2):. doi: 10.3390/ijms20020247. [PMID: 30634552]