Classification Term: 3240

Methoxyphenols (ontology term: CHEMONTID:0000190)

Compounds containing a methoxy group attached to the benzene ring of a phenol moiety." []

found 113 associated metabolites at sub_class metabolite taxonomy ontology rank level.

Ancestor: Phenols

Child Taxonomies: Gingerols, Gingerdiols, Gingerdiones, Shogaols, Paradols

Vanillin

Vanillin melting point standard, Pharmaceutical Secondary Standard; Certified Reference Material

C8H8O3 (152.0473418)


Vanillin, also known as vanillaldehyde or lioxin, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is used by the food industry as well as ethylvanillin. Vanillin exists in all living species, ranging from bacteria to humans. Vanillin is a sweet, chocolate, and creamy tasting compound. Vanillin is found, on average, in the highest concentration within a few different foods, such as corns, ryes, and sherries and in a lower concentration in beers, rums, and oats. Vanillin has also been detected, but not quantified, in several different foods, such as gooseberries, other bread, brazil nuts, shea tree, and ohelo berries. This could make vanillin a potential biomarker for the consumption of these foods. Vanillin is a potentially toxic compound. Synthetic vanillin, instead of natural Vanillin extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. Vanillin is the primary component of the extract of the Vanillin bean. Because of the scarcity and expense of natural Vanillin extract, there has long been interest in the synthetic preparation of its predominant component. Artificial Vanillin flavoring is a solution of pure vanillin, usually of synthetic origin. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Vanillin appears as white or very slightly yellow needles. Vanillin is a member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, a flavouring agent, an antioxidant and an anticonvulsant. It is a member of phenols, a monomethoxybenzene and a member of benzaldehydes. Vanillin is a natural product found in Ficus erecta var. beecheyana, Pandanus utilis, and other organisms with data available. Vanillin is the primary component of the extract of the vanilla bean. Synthetic vanillin, instead of natural vanilla extract, is sometimes used as a flavouring agent in foods, beverages, and pharmaceuticals. It is used by the food industry as well as ethylvanillin.Artificial vanilla flavoring is a solution of pure vanillin, usually of synthetic origin. Because of the scarcity and expense of natural vanilla extract, there has long been interest in the synthetic preparation of its predominant component. The first commercial synthesis of vanillin began with the more readily available natural compound eugenol. Today, artificial vanillin is made from either guaiacol or from lignin, a constituent of wood which is a byproduct of the paper industry. (Wiki). Vanillin is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of vanilla (Vanilla subspecies) and many other plants, e.g. Peru balsam, clove bud oil. Widely used flavouring agent especies in cocoa products. obtained from spent wood-pulp liquors. Vanillin is found in many foods, some of which are pomes, elderberry, common cabbage, and dock. A member of the class of benzaldehydes carrying methoxy and hydroxy substituents at positions 3 and 4 respectively. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; ML_ID 59 Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine. Vanillin (p-Vanillin) is a single molecule extracted from vanilla beans and also a popular odor used widely in perfume, food and medicine.

   

Capsaicin

(E)-N-[(4-hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide

C18H27NO3 (305.1990832)


Capsaicin is a capsaicinoid. It has a role as a non-narcotic analgesic, a voltage-gated sodium channel blocker and a TRPV1 agonist. Capsaicin is most often used as a topical analgesic and exists in many formulations of cream, liquid, and patch preparations of various strengths; however, it may also be found in some dietary supplements. Capsaicin is a naturally-occurring botanical irritant in chili peppers, synthetically derived for pharmaceutical formulations. The most recent capsaicin FDA approval was Qutenza, an 8\\\\\\% capsaicin patch dermal-delivery system, indicated for neuropathic pain associated with post-herpetic neuralgia. Capsaicin is a natural product found in Capsicum pubescens, Capsicum, and Capsicum annuum with data available. Capsaicin is a chili pepper extract with analgesic properties. Capsaicin is a neuropeptide releasing agent selective for primary sensory peripheral neurons. Used topically, capsaicin aids in controlling peripheral nerve pain. This agent has been used experimentally to manipulate substance P and other tachykinins. In addition, capsaicin may be useful in controlling chemotherapy- and radiotherapy-induced mucositis. Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (A7835). An alkylamide found in CAPSICUM that acts at TRPV CATION CHANNELS. See also: Capsicum (part of); Capsicum Oleoresin (active moiety of); Paprika (part of) ... View More ... Capsaicin is identified as the primary pungent principle in Capsicum fruits. Hot chili peppers that belong to the plant genus Capsicum (family Solanaceae) are among the most heavily consumed spices throughout the world. The capsaicin content of green and red peppers ranges from 0.1 to 1\\\\\\%. Capsaicin evokes numerous biological effects and thus has been the target of extensive., investigations since its initial identification in 1919. One of the most recognized physiological properties of capsaicin is its selective effects on the peripheral part of the sensory nervous system, particularly on the primary afferent neurons. The compound is known to deplete the neurotransmitter of painful impulses known as substance P from the sensory nerve terminals, which provides a rationale for its use as a versatile experimental tool for studying pain mechanisms and also for pharmacotherapy to treat some peripheral painful states, such as rheumatoid arthritis, post-herpetic neuralgia, post-mastectomy pain syndrome and diabetic neuropathy. Considering the frequent consumption of capsaicin as a food additive and its current therapeutic application, correct assessment of any harmful effects of this compound is important from the public health standpoint. Ingestion of large amounts of capsaicin has been reported to cause histopathological and biochemical changes, including erosion of gastric mucosa and hepatic necrosis. However, there are contradictory data on the mutagenicity of capsaicin. A recent epidemiological study conducted in Mexico revealed that consumers of chili pepper were at higher risk for gastric cancer than non-consumers. However, it remains unclear whether capsaicin present in hot chili pepper is a major causative factor in the aetiology of gastric cancer in humans. A growing number of recent studies have focused on anticarcinogenic or antimutagenic phytochemicals, particularly those included in human diet. In summary, capsaicin has dual effects on chemically induced carcinogenesis and mutagenesis. Although a minute amount of capsaicin displays few or no deleterious effects, heavy ingestion of the compound has been associated with necrosis, ulceration and even carcinogenesis. Capsaicin is considered to be metabolized by cytochrome P-450-dependent mixed-function oxidases to reactive species. (PMID: 8621114). M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AB - Capsaicin and similar agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic Flavouring ingredient. Pungent principle of various Capsicum subspecies (Solanaceae) D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local D003879 - Dermatologic Agents > D000982 - Antipruritics Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.208 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.207 Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicin ((E)-Capsaicin), an active component of chili peppers, is a TRPV1 agonist. Capsaicin has pain relief, antioxidant, anti-inflammatory, neuroprotection and anti-cancer effects[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2]. Capsaicinoid is a mixture of Capsaicin and Dihydrocapsaicin. Capsaicinoid is an capsaicin receptor (TRPV1) agonist[1][2].

   

Coniferaldehyde

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enal

C10H10O3 (178.062991)


Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Dihydrocapsaicin

Dihydrocapsaicin, Nonanamide, 8-methyl-N-vanillyl- (7CI,8CI); 6,7-Dihydrocapsaicin; Capsaicin, dihydro-; Dihydrocapsaicin

C18H29NO3 (307.2147324)


Dihydrocapsaicin is found in pepper (C. annuum). It is a potential nutriceutical. Dihydrocapsaicin is a capsaicinoid and analog and congener of capsaicin in chili peppers (Capsicum). Like capsaicin it is an irritant. Dihydrocapsaicin accounts for about 22\\\\\% of the total capsaicinoids mixture and has about the same pungency as capsaicin. Pure dihydrocapsaicin is a lipophilic colorless odorless crystalline to waxy compound. It is soluble in dimethyl sulfoxide and 100 \\\\\% ethanol. Dihydrocapsaicin is a capsaicinoid. Dihydrocapsaicin is a natural product found in Capsicum pubescens, Capsicum annuum, and Ganoderma lucidum with data available. See also: Capsicum (part of); Paprika (part of); Habanero (part of) ... View More ... Potential nutriceutical Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3]. Dihydrocapsaicin, a capsaicin, is a potent and selective TRPV1 (transient receptor potential vanilloid channel 1) agonist. Dihydrocapsaicin reduces AIF, Bax, and Caspase-3 expressions, and increased Bcl-2, Bcl-xL and p-Akt levels. Dihydrocapsaicin enhances the hypothermia-induced neuroprotection following ischemic stroke via PI3K/Akt regulation in rat[1][2][3].

   

Coniferyl alcohol

2-PROPEN-1-OL, 3-(4-HYDROXY-3-METHOXYPHENYL)-, (E)-

C10H12O3 (180.0786402)


Coniferyl alcohol (CAS: 458-35-5), also known as coniferol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl alcohol is an organic compound. When copolymerized with related aromatic compounds, coniferyl alcohol forms lignin or lignans. Coniferyl alcohol is an intermediate in the biosynthesis of eugenol, stilbenoids, and coumarin. Outside of the human body, coniferyl alcohol has been detected, but not quantified in, several different foods, such as common sages, chestnuts, cereals and cereal products, gingers, and cashew nuts. This could make coniferyl alcohol a potential biomarker for the consumption of these foods. Gum benzoin contains a significant amount of coniferyl alcohol and its esters. Coniferyl alcohol is an organic compound. This colourless crystalline solid is a phytochemical, one of the monolignols. It is synthesized via the phenylpropanoid biochemical pathway. Coniferol is a phenylpropanoid that is one of the main monolignols, produced by the reduction of the carboxy functional group in cinnamic acid and the addition of a hydroxy and a methoxy substituent to the aromatic ring. It has a role as a monolignol, a mouse metabolite, a pheromone, an animal metabolite, a plant metabolite and a volatile oil component. It is a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamyl alcohol. Coniferyl alcohol is a natural product found in Asparagus cochinchinensis, Xanthium spinosum, and other organisms with data available. See also: Polignate Sodium (monomer of); Ammonium lignosulfonate (monomer of); Calcium lignosulfonate (50000 MW) (monomer of) ... View More ... Coniferyl alcohol is an intermediate in biosynthesis of eugenol and of stilbene and coumarin. Gum benzoin contains significant amount of coniferyl alcohol and its esters.; Coniferyl alcohol is an organic compound. This colourless crystalline solid is a phytochemical, one of the monolignols. It is synthetized via the phenylpropanoid biochemical pathway. When copolymerized with related aromatic compounds, coniferyl alcohol forms lignin or lignans. [HMDB]. Coniferyl alcohol is found in many foods, some of which are canada blueberry, eggplant, winged bean, and flaxseed. A phenylpropanoid that is one of the main monolignols, produced by the reduction of the carboxy functional group in cinnamic acid and the addition of a hydroxy and a methoxy substituent to the aromatic ring. Coniferyl alcohol is an intermediate in biosynthesis of eugenol and of stilbenoids and coumarin[1]. Coniferyl alcohol specifically inhibits fungal growth[1]. Coniferyl alcohol is an intermediate in biosynthesis of eugenol and of stilbenoids and coumarin[1]. Coniferyl alcohol specifically inhibits fungal growth[1].

   

Zingerone

InChI=1/C11H14O3/c1-8(12)3-4-9-5-6-10(13)11(7-9)14-2/h5-7,13H,3-4H2,1-2H

C11H14O3 (194.0942894)


Zingerone is a methyl ketone that is 4-phenylbutan-2-one in which the phenyl ring is substituted at positions 3 and 4 by methoxy and hydroxy groups respectively. The major pungent component in ginger. It has a role as an antioxidant, an anti-inflammatory agent, a radiation protective agent, an antiemetic, a flavouring agent, a fragrance and a plant metabolite. It is a member of phenols, a monomethoxybenzene and a methyl ketone. Zingerone is a pungent component of ginger. Zingerone is a natural product found in Alpinia officinarum, Vitis vinifera, and other organisms with data available. Zingerone is a metabolite found in or produced by Saccharomyces cerevisiae. Reputed pungent principle of ginger (Zingiber officinale). Flavour material used in imitation fruit flavours, ginger beer, ginger ale etcand is also present in cranberry, raspberry and mango. Zingerone is found in many foods, some of which are pot marjoram, fruits, ginger, and herbs and spices. Zingerone is found in fruits. Reputed pungent principle of ginger (Zingiber officinale). Flavour material used in imitation fruit flavours, ginger beer, ginger ale etc. Also present in cranberry, raspberry and mang A methyl ketone that is 4-phenylbutan-2-one in which the phenyl ring is substituted at positions 3 and 4 by methoxy and hydroxy groups respectively. The major pungent component in ginger. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3]. Zingerone (Vanillylacetone) is a nontoxic methoxyphenol isolated from Zingiber officinale, with potent anti-inflammatory, antidiabetic, antilipolytic, antidiarrhoeic, antispasmodic and anti-tumor[3] properties[1]. Zingerone alleviates oxidative stress and inflammation, down-regulates NF-κB mediated signaling pathways[2]. Zingerone acts as an anti-mitotic agent, and inhibits the growth of neuroblastoma cells[3].

   

Nordihydrocapsaicin

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-7-methyl-octanamide;7-Methyl-N-vanillyl-octanamide; Norhydrocapsaicin

C17H27NO3 (293.1990832)


Nordihydrocapsaicin is a member of methoxybenzenes and a member of phenols. Nordihydrocapsaicin is a natural product found in Capsicum pubescens and Capsicum annuum with data available. See also: Capsicum (part of); Paprika (part of); Habanero (part of) ... View More ... Isolated from the pungent principle of red pepper (Capsicum annuum). Nordihydrocapsaicin is found in many foods, some of which are herbs and spices, pepper (c. annuum), italian sweet red pepper, and green bell pepper. Nordihydrocapsaicin is found in herbs and spices. Nordihydrocapsaicin is isolated from the pungent principle of red pepper (Capsicum annuum Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1]. Nordihydrocapsaicin is a capsaicinoid analog and congener of capsaicin in chili peppers[1].

   

Moupinamide

(Z,2E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C18H19NO4 (313.1314014)


N-feruloyltyramine is a member of tyramines. It has a role as a metabolite. Moupinamide is a natural product found in Zanthoxylum beecheyanum, Polyalthia suberosa, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Alkaloid from Piper nigrum. Moupinamide is found in many foods, some of which are nutmeg, amaranth, sapodilla, and orange bell pepper. Moupinamide is found in eggplant. Moupinamide is an alkaloid from Piper nigru CASMI2013 Challenge_1 MS2 data; [MS1] MSJ00001 CASMI2013 Challenge_1 MS1 data; [MS2] MSJ00002 N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1]. N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].

   

Folic acid

FOLVITE(Thomson.Micromedex. Drug Information for the Health Care Professional. 24th ed. Volume 1. Plus Updates. Content Reviewed by the United States Pharmacopeial Convention, Inc. Greenwood Village, CO. 2004., p. 1422)

C19H19N7O6 (441.1396754)


Folic acid appears as odorless orange-yellow needles or platelets. Darkens and chars from approximately 482 °F. Folic acid is an N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. It has a role as a human metabolite, a nutrient and a mouse metabolite. It is a member of folic acids and a N-acyl-amino acid. It is functionally related to a pteroic acid. It is a conjugate acid of a folate(2-). Folic acid, also known as folate or Vitamin B9, is a member of the B vitamin family and an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. For example, folic acid is present in green vegetables, beans, avocado, and some fruits. In order to function within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as [DB00563] as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF. When used in high doses such as for cancer therapy, or in low doses such as for Rheumatoid Arthritis or psoriasis, [DB00563] impedes the bodys ability to create folic acid. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects. As a result, supplementation with 1-5mg of folic acid is recommended to prevent deficiency and a number of side effects associated with MTX therapy including mouth ulcers and gastrointestinal irritation. [DB00650] (also known as folinic acid) supplementation is typically used for high-dose MTX regimens for the treatment of cancer. Levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF) and are able to bypass DHFR reduction to act as a cellular replacement for the co-factor THF. There are also several antiepileptic drugs (AEDs) that are associated with reduced serum and red blood cell folate, including [DB00564] (CBZ), [DB00252] (PHT), or barbiturates. Folic acid is therefore often provided as supplementation to individuals using these medications, particularly to women of child-bearing age. Inadequate folate levels can result in a number of health concerns including cardiovascular disease, megaloblastic anemias, cognitive deficiencies, and neural tube defects (NTDs). Folic acid is typically supplemented during pregnancy to prevent the development of NTDs and in individuals with alcoholism to prevent the development of neurological disorders, for example. Folic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). CID 6037 is a natural product found in Beta vulgaris, Angelica sinensis, and other organisms with data available. Folic Acid is a collective term for pteroylglutamic acids and their oligoglutamic acid conjugates. As a natural water-soluble substance, folic acid is involved in carbon transfer reactions of amino acid metabolism, in addition to purine and pyrimidine synthesis, and is essential for hematopoiesis and red blood cell production. (NCI05) A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treat... Folic acid or folate, is a vitamin that belongs to the class of compounds known as pterins. Chemically, folate consists of three distinct chemical moieties linked together. A pterin (2-amino-4-hydroxy-pteridine) linked by a methylene bridge to a p-aminobenzoyl group that in turn is linked through an amide linkage to glutamic acid. It is a member of the vitamin B family and is primarily known as vitamin B9. Folate is required for the body to make DNA and RNA and metabolize amino acids necessary for cell division for the hematopoietic system. As humans cannot make folate, it is required in the diet, making it an essential nutrient (i.e. a vitamin). Folate occurs naturally in many foods including mushrooms, spinach, yeast, green leaves, and grasses (poaceae). Folic acid, being biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by the enzyme known as dihydrofolate reductase. Tetrahydrofolate and methyltetrahydrofolate are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids and generate formic acid. Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Folic acid is also used as a supplement by women during pregnancy to reduce the risk of neural tube defects (NTDs) in babies. Low levels in early pregnancy are believed to be the cause of more than half of babies born with NTDs (PMID: 28097362). Folic acid is also a microbial metabolite produced by Bifidobacterium and Lactobacillus (PMID: 22254078). An N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BB - Folic acid and derivatives COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D006397 - Hematinics D018977 - Micronutrients > D014815 - Vitamins V - Various > V04 - Diagnostic agents Dietary supplement Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C19H19N7O6; Bottle Name:Folic acid ,approx; PRIME Parent Name:Folic acid; PRIME in-house No.:V0080; SubCategory_DNP: Pteridines and analogues, Pteridine alkaloids Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543 CONFIDENCE standard compound; INTERNAL_ID 134 Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4]. Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4].

   

Guaiacol

Guaiacol, Pharmaceutical Secondary Standard; Certified Reference Material

C7H8O2 (124.05242679999999)


O-methoxyphenol appears as colorless to amber crystals or liquid. Density (of solid) 1.129 g / cm3. Solidifies at 28 °C (82.4 °F), but may remain liquid for a long time even at a much lower temperature. Slightly water soluble. Soluble in aqueous sodium hydroxide. Used medicinally as an expectorant. Used, because of its anti-oxidant properties, as an anti-skinning agent for paints. Guaiacol is a monomethoxybenzene that consists of phenol with a methoxy substituent at the ortho position. It has a role as an expectorant, a disinfectant, a plant metabolite and an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor. It is functionally related to a catechol. Guaiacol is an agent thought to have disinfectant properties and used as an expectorant. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. Guaiacol is a natural product found in Verbascum lychnitis, Castanopsis cuspidata, and other organisms with data available. Guaiacol is a phenolic compound with a methoxy group and is the monomethyl ether of catechol. Guaiacol is readily oxidized by the heme iron of peroxidases including the peroxidase of cyclooxygenase (COX) enzymes. It therefore serves as a reducing co-substrate for COX reactions. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. It is a yellowish aromatic oil that is now commonly derived from guaiacum or wood creosote. It is used medicinally as an expectorant, antiseptic, and local anesthetic. Guaiacol is used in traditional dental pulp sedation, and has the property of inducing cell proliferation; guaiacol is a potent scavenger of reactive oxygen radicals and its radical scavenging activity may be associated with its effect on cell proliferation. Guaiacol is also used in the preparation of synthetic vanillin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. (A3556, A3559). 2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. An agent thought to have disinfectant properties and used as an expectorant. (From Martindale, The Extra Pharmacopoeia, 30th ed, p747) See also: Wood Creosote (part of); Tolu balsam (USP) (part of). Guaiacol is a phenolic compound with a methoxy group and is the monomethyl ether of catechol. Guaiacol is readily oxidized by the heme iron of peroxidases including the peroxidase of cyclooxygenase (COX) enzymes. It therefore serves as a reducing co-substrate for COX reactions. Guaiacol is a phenolic natural product first isolated from Guaiac resin and the oxidation of lignin. It is a yellowish aromatic oil that is now commonly derived from guaiacum or wood creosote. It is used medicinally as an expectorant, antiseptic, and local anesthetic. Guaiacol is used in traditional dental pulp sedation, and has the property of inducing cell proliferation; guaiacol is a potent scavenger of reactive oxygen radicals and its radical scavenging activity may be associated with its effect on cell proliferation. Guaiacol is also used in the preparation of synthetic vanillin. Guaiacol is also present in wood smoke, as a product of pyrolysis of lignin. Guaiacol has been found in the urine of patients with neuroblastoma and pheochromocytoma. (PMID 4344880, 16152729). Present in Parmesan cheese, tea and soybean. Flavouring ingredient. 2-Methoxyphenol is found in many foods, some of which are milk and milk products, asparagus, pepper (c. annuum), and wild celery. R - Respiratory system > R05 - Cough and cold preparations > R05C - Expectorants, excl. combinations with cough suppressants > R05CA - Expectorants A monomethoxybenzene that consists of phenol with a methoxy substituent at the ortho position. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C78273 - Agent Affecting Respiratory System > C29767 - Expectorant Guaiacol, a phenolic compound, inhibits LPS-stimulated COX-2 expression and NF-κB activation[1]. Anti-inflammatory activity[1]. Guaiacol, a phenolic compound, inhibits LPS-stimulated COX-2 expression and NF-κB activation[1]. Anti-inflammatory activity[1].

   

4-Hydroxy-3-methoxybenzenemethanol

2-Pyridinecarboxylicacid, 6-amino-3-bromo-, methyl ester

C8H10O3 (154.062991)


4-Hydroxy-3-methoxybenzenemethanol, also known as 4-hydroxy-3-methoxybenzyl alcohol or 3-methoxy-4-hydroxybenzyl alcohol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 4-Hydroxy-3-methoxybenzenemethanol is a drug. 4-Hydroxy-3-methoxybenzenemethanol is a sweet, anise, and balsam tasting compound. 4-hydroxy-3-methoxybenzenemethanol has been detected, but not quantified, in fruits and herbs and spices. This could make 4-hydroxy-3-methoxybenzenemethanol a potential biomarker for the consumption of these foods. Vanillyl alcohol is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols. Vanillyl alcohol has been used in trials studying the treatment of Smoking. Vanillyl alcohol is a natural product found in Artemisia rutifolia, Euglena gracilis, and other organisms with data available. Constituent of Capsicum subspecies; flavouring ingredient. 4-Hydroxy-3-methoxybenzenemethanol is found in herbs and spices and fruits. A monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1]. Vanillyl alcohol (p-(Hydroxymethyl)guaiacol), derived from vanillin, is a phenolic alcohol and is used as a flavoring agent in foods and beverages[1].

   

Capsiate

6-nonenoic acid, 8-methyl-, (4-hydroxy-3-methoxyphenyl)methyl ester, (6E)-

C18H26O4 (306.1830996)


Capsiate is a carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. It has a role as a plant metabolite, a hypoglycemic agent, an anti-allergic agent, an antioxidant, an angiogenesis inhibitor, an anti-inflammatory agent and a capsaicin receptor agonist. It is a carboxylic ester, a monomethoxybenzene and a member of phenols. It is functionally related to a vanillyl alcohol. Capsiate is a natural product found in Apis cerana with data available. A carboxylic ester obtained by formal condensation of the carboxy group of (6E)-8-methylnon-6-enoic acid with the benzylic hydroxy group of vanillyl alcohol. A non-pungent analogue of capsaicin with a similar biological profile. Constituent of fruits of Capsicum annuum. Capsiate is found in many foods, some of which are orange bell pepper, herbs and spices, yellow bell pepper, and italian sweet red pepper. Capsiate is found in fruits. Capsiate is a constituent of fruits of Capsicum annuum Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1]. Capsiate, as a capsaicin analogue extracted from a non-pungent cultivar of CH-19 sweet red pepper, is an orally active agonist of TRPV1[1].

   

2-Methoxy-4-vinylphenol

2-METHOXY-4-VINYLPHENOL (STABILIZED WITH TBC)

C9H10O2 (150.06807600000002)


2-methoxy-4-vinylphenol is a member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. It has a role as a pheromone, a flavouring agent and a plant metabolite. 2-Methoxy-4-vinylphenol is a natural product found in Coffea, Coffea arabica, and other organisms with data available. 4-Vinylguaiacol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Moringa oleifera leaf oil (part of). 2-Methoxy-4-vinylphenol is an aromatic substance used as a flavoring agent. It is one of the compounds responsible for the natural aroma of buckwheat. A member of the class of phenols that is guaiacol in which the hydrogen para- to the hydroxy group is replaced by a vinyl group. Responsible for off-flavour of old fruit in stored orange juice 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2]. 2-Methoxy-4-vinylphenol (2M4VP), a naturally Germination inhibitor, exerts potent anti-inflammatory effects[1][2].

   

Metanephrine

4-[1-hydroxy-2-(methylamino)ethyl]-2-methoxyphenol

C10H15NO3 (197.105188)


Metanephrine is a metabolite of epinephrine created by action of catechol O-methyltransferase on epinephrine. Technically it is a product of epinephrine O-methylation. It is a commonly occurring, pharmacologically and physiologically inactive metabolite of epinephrine. The measurement of plasma free metanephrines is considered to be the best tool in the diagnosis of pheochromocytoma, a rare kind of adrenal medullary neoplasm. In adrenal chromaffin cells, leakage of norepinephrine and epinephrine from storage granules leads to substantial intracellular production of the O-methylated metabolite metanephrine. In fact, the adrenals constitute the single largest source out of any organ system including the liver for circulating metanephrine. In humans, about 93 percent of circulating metanephrine is derived from catecholamines metabolized within adrenal chromaffin cells. (PMID 15317907). Metanephrine is a metabolite of epinephrine created by action of catechol O-methyltransferase on epinephrine. Technically it is a product of epinephrine O-methylation. It is a commonly occurring, pharmacologically and physiologically inactive metabolite of epinephrine. The measurement of plasma free metanephrines is considered to be the best tool in the diagnosis of pheochromocytoma, a rare kind of adrenal medullary neoplasm.

   

3-Methoxytyramine

4-(2-aminoethyl)-2-methoxyphenol

C9H13NO2 (167.0946238)


3-methoxytyramine, also known as 4-(2-amino-Ethyl)-2-methoxy-phenol or 3-O-Methyldopamine, is classified as a member of the Methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 3-methoxytyramine is considered to be slightly soluble (in water) and acidic. 3-methoxytyramine can be found primarily in human brain and most tissues tissues; and in blood, cerebrospinal fluid (csf) or urine. Within a cell, 3-methoxytyramine is primarily located in the cytoplasm The O-methylated derivative of dopamine. Dopamine is methylated by catechol-O-methyltransferase (COMT) to make 3-Methoxytyramine. This compound can be broken down to homovanillic acid by monoamine oxidase and aldehyde dehydrogenase. Elevated concentrations of this compound are indicated for a variety of brain and carcinoid tumors as well as certain mental disorders. [HMDB] COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3-Methoxytyramine, a well known extracellular metabolite of 3-hydroxytyramine/dopamine, is a neuromodulator.

   

Eugenol

Eugenol, Pharmaceutical Secondary Standard; Certified Reference Material

C10H12O2 (164.0837252)


Eugenol appears as clear colorless pale yellow or amber-colored liquid. Odor of cloves. Spicy pungent taste. (NTP, 1992) Eugenol is a phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. It has a role as an allergen, a human blood serum metabolite, a sensitiser, a volatile oil component, a flavouring agent, an EC 1.4.3.4 (monoamine oxidase) inhibitor, a radical scavenger, an antibacterial agent, an antineoplastic agent, an apoptosis inducer, an anaesthetic, an analgesic, a voltage-gated sodium channel blocker, a NF-kappaB inhibitor and an anti-inflammatory agent. It is a phenylpropanoid, a monomethoxybenzene, a member of phenols and an alkenylbenzene. It is functionally related to a guaiacol. Eugenol is a naturally occurring phenolic molecule found in several plants such as cinnamon, clove, and bay leaves. It has been used as a topical antiseptic as a counter-irritant and in dental preparations with zinc oxide for root canal sealing and pain control. Although not currently available in any FDA-approved products (including OTC), eugenol has been found to have anti-inflammatory, neuroprotective, antipyretic, antioxidant, antifungal and analgesic properties. Its exact mechanism of action is unknown, however, it has been shown to interfere with action potential conduction. There are a number of unapproved OTC products available containing eugenol that advertise its use for the treatment of toothache. Eugenol is a Standardized Chemical Allergen. The physiologic effect of eugenol is by means of Increased Histamine Release, and Cell-mediated Immunity. Eugenol, also called clove oil, is an aromatic oil extracted from cloves that is used widely as a flavoring for foods and teas and as an herbal oil used topically to treat toothache and more rarely to be taken orally to treat gastrointestinal and respiratory complaints. Eugenol in therapeutic doses has not been implicated in causing serum enzyme elevations or clinically apparent liver injury, but ingestions of high doses, as with an overdose, can cause severe liver injury. Eugenol is a natural product found in Dahlia sherffii, Elettaria cardamomum, and other organisms with data available. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. Eugenol is a member of the allylbenzene class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like odor. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). 4-Allyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. A cinnamate derivative of the shikimate pathway found in CLOVE OIL and other PLANTS. See also: Cinnamon (part of); Clove Oil (part of); Cinnamon Leaf Oil (part of) ... View More ... Eugenol is an allyl chain-substituted guaiacol. Eugenol is a member of the phenylpropanoids class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like aroma. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. It is a key ingredient in Indonesian kretek (clove) cigarettes. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from phenol or from lignin. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Eugenol has a very widespread occurrence in essential oils. Major component of clove oil. Also found in citrus and thyme oils. It is found in foods such as apple, apricot, banana and cherry fruits. Eugenol or 4-allyl-2-methoxyphenol is classified as a phenylpropanoid, formally derived from guaiacol, with an allyl chain positioned para to the hydroxy group. It is soluble in water, alcohol, chloroform, ether and oils. Eugenol is a neutral compound. It is biosynthesized from tyrosine. Eugenol is widely distributed in plants. It is a clear to pale yellow oily liquid extracted from clove oil, nutmeg, cinnamon, basil and bay leaf. It has a pleasant, spicy, clove-like odor with a spicy pungent taste. Eugenol is found in highest concentrations in cloves, allspices, and carrots and in lower concentrations in walnuts, ceylon cinnamons, and wild carrots. Eugenol has also been detected in shea tree, passion fruits, winged beans, fireweeds, and gingers, making it a potential biomarker for the consumption of these foods. Eugenol is used in perfumeries, flavorings and essential oils. It was first used for the manufacture of vanillin (https://doi.org/10.1021/ed054p776), though most vanillin is now produced from petrochemicals or from by-products of paper manufacture. Eugenol is hepatotoxic, meaning it may cause damage to the liver, if consumed in high doses. Eugenol has local antiseptic and anaesthetic properties (PMID:15089054 ; PMID:935250 ) and acts as positive allosteric modulators of the GABA-A receptor. It has high antioxidant, anti-proliferative, and anti-inflammatory activities with potential roles in alleviating and preventing cancer and inflammatory reactions (PMID:27771920 ). A phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents [Raw Data] CB226_Eugenol_pos_10eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_20eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_40eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_50eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_30eV_CB000079.txt Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

2,6-Dimethoxyphenol

2,6-Dimethoxyphenol (syringol)

C8H10O3 (154.062991)


2,6-Dimethoxyphenol, also known as syringol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 2,6-Dimethoxyphenol is a bacon, balsamic, and medicine tasting compound. Isolated from maople syrup. Flavouring ingredient.

   

Vanillylmandelic acid (VMA)

(2S)-2-Hydroxy-2-(4-hydroxy-3-methoxyphenyl)acetic acid

C9H10O5 (198.052821)


Vanillylmandelic acid, also known as vanillylmandelate or VMA, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Vanillylmandelic acid is a sweet and vanilla tasting compound. Vanillylmandelic acid (VMA) is a chemical intermediate in the synthesis of artificial vanilla flavorings and is an end-stage metabolite of the catecholamines (dopamine, epinephrine, and norepinephrine). Vanillylmandelic acid exists in all living organisms, ranging from bacteria to plants to humans. Within humans, vanillylmandelic acid participates in a number of enzymatic reactions. In particular, vanillylmandelic acid can be biosynthesized from 3-methoxy-4-hydroxyphenylglycolaldehyde through its interaction with the enzyme aldehyde dehydrogenase. In addition, vanillylmandelic acid and pyrocatechol can be biosynthesized from 3,4-dihydroxymandelic acid and guaiacol through the action of the enzyme catechol O-methyltransferase. Urinary VMA is elevated in patients with tumors that secrete catecholamines. Urinary VMA tests may also be used to diagnose neuroblastomas, and to monitor treatment of these conditions. VMA urinalysis tests can be used to diagnose an adrenal gland tumor called pheochromocytoma, a tumor of catecholamine-secreting chromaffin cells. Vanillylmandelic acid (VMA) is produced in the liver and is a major product of norepinephrine and epinephrine metabolism excreted in the urine. Vanillylmandelic acid is one of the products of the catabolism of catecholamines (epinephrine, norepinephrine and dopamine). High levels of vanillylmandelic acid can indicate an adrenal gland tumor (pheochromocytoma) or another type of tumor that produces catecholamines. (WebMD) [HMDB] D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H056 Vanillylmandelic acid is the endproduct of epinephrine and norepinephrine metabolism. Vanillylmandelic acid can be used as an indication of the disorder in neurotransmitter metabolism as well. Vanillylmandelic acid has antioxidant activity towards DPPH radical with an IC50 value of 33 μM[1].

   

Sinapyl alcohol

4-[(1E)-3-hydroxyprop-1-en-1-yl]-2,6-dimethoxyphenol

C11H14O4 (210.0892044)


Sinapyl alcohol is an organic compound derived from cinnamic acid. This phytochemical is one of the monolignols. It is biosynthetized via the phenylpropanoid biochemical pathway, its immediate precursor being sinapaldehyde. Sinapyl alcohol is a precursor to lignin or lignans. It is also a biosynthetic precursor to various stilbenes and coumarins.[From Wiki].

   

Normetanephrine

(+/-)-alpha-(aminomethyl)-4-hydroxy-3-methoxy-benzenemethanol

C9H13NO3 (183.0895388)


Normetanephrine, also known as normetadrenaline or N111, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Normetanephrine is a solid that is soluble in water. Normetanephrine is a metabolite of norepinephrine created by action of catechol-O-methyl transferase on norepinephrine. Within humans, normetanephrine participates in a number of enzymatic reactions. In particular, normetanephrine can be converted into 3-methoxy-4-hydroxyphenylglycolaldehyde through its interaction with the enzyme amine oxidase [flavin-containing] A. It is also involved in the metabolic disorder called transient tyrosinemia of the newborn. This compound is excreted in the urine and is found in certain tissues. It is a marker for catecholamine-secreting tumors such as pheochromocytoma (PMID: 30538672). A methylated metabolite of norepinephrine that is excreted in the urine and found in certain tissues. It is a marker for tumors. [HMDB]

   

Homovanillin

2-(4-HYDROXY-3-METHOXYPHENYL)ACETALDEHYDE

C9H10O3 (166.062991)


3 -Methoxy-4-hydroxyphenylacetaldehyde is an intermediary aldehyde of dopamine metabolism, metabolized by the class I human liver alcohol dehydrogenases (ADHs) . ADH catalyzes both ethanol and acetaldehyde, and the dopamine intermediates compete for the same site of ADH, a basis for the ethanol-induced in vivo alterations of dopamine metabolism. (PMID 2432930) [HMDB] 3 -Methoxy-4-hydroxyphenylacetaldehyde is an intermediary aldehyde of dopamine metabolism, metabolized by the class I human liver alcohol dehydrogenases (ADHs). ADH catalyzes both ethanol and acetaldehyde, and the dopamine intermediates compete for the same site of ADH, a basis for the ethanol-induced in vivo alterations of dopamine metabolism. (PMID 2432930). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-Methoxy-4-hydroxyphenylglycolaldehyde

2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)acetaldehyde

C9H10O4 (182.057906)


3-Methoxy-4-hydroxyphenylglycolaldehyde is the monoamine oxidase (MAO) aldehyde metabolite of metanephrine. Metanephrine is an O-methylated metabolite formed by catechol-O-methyltransferase (COMT) from epinephrine. Catecholamines play an important role in platelet activation and aggregation, epinephrine being the most potent one. Catecholamines are substantially increased during stress, exercise or smoking and could result in clinically important platelet activation if their action was not rapidly regulated. The inhibitory effects of methoxy phenolic derivatives on epinephrine-induced platelet aggregation may possibly be attributed to their free radical scavenging properties. There is substantial evidence to conclude that an internal rapid autoregulation of epinephrine-induced platelet aggregation, caused by its metabolic degradation products, takes place in vivo. (PMID: 11958479, 9706478) [HMDB]. 3-Methoxy-4-hydroxyphenylglycolaldehyde is found in many foods, some of which are nutmeg, peach (variety), common oregano, and olive. 3-Methoxy-4-hydroxyphenylglycolaldehyde is the monoamine oxidase (MAO) aldehyde metabolite of metanephrine. Metanephrine is an O-methylated metabolite formed by catechol-O-methyltransferase (COMT) from epinephrine. Catecholamines play an important role in platelet activation and aggregation, epinephrine being the most potent one. Catecholamines are substantially increased during stress, exercise or smoking and could result in clinically important platelet activation if their action was not rapidly regulated. The inhibitory effects of methoxy phenolic derivatives on epinephrine-induced platelet aggregation may possibly be attributed to their free radical scavenging properties. There is substantial evidence to conclude that an internal rapid autoregulation of epinephrine-induced platelet aggregation, caused by its metabolic degradation products, takes place in vivo. (PMID: 11958479, 9706478).

   

Vanylglycol

1-(4-hydroxy-3-methoxyphenyl)ethane-1,2-diol

C9H12O4 (184.0735552)


Vanylglycol, also known as 3-Methoxy-4-hydroxyphenylethyleneglycol (MHPG), belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. It is synthesized from endogenous epinephrine and norepinephrine in vivo. It is found in brain, blood, CSF, and urine, where its concentrations are used to measure catecholamine turnover. Catecholamines play an important role in platelet activation and aggregation, epinephrine being the most potent one. Vanylglycol and pyrocatechol can be biosynthesized from 3,4-dihydroxyphenylglycol and guaiacol; which is catalyzed by the enzyme catechol O-methyltransferase. Vanylglycol is a O-methylated metabolite of normetanephrine. In humans, vanylglycol is involved in the metabolic disorder called tyrosinemia in newborns. Alcohol consumption increases the level of vanylglycol in urine and CSF. Vanylglycol is found normally in urine, in plasma and cerebrospinal fluid. Outside of the human body, vanylglycol has been detected, but not quantified in several different foods, such as blackcurrants, chinese bayberries, elderberries, oriental wheats, and poppies.

   

3,4-Dihydro-8-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-1H-2-benzopyran-1-one

3,4-Dihydro-8-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-1H-2-benzopyran-1-one

C16H14O5 (286.0841194)


Natural sweetener approximately 600-800 times sweeter than sucros Natural sweetener approx. 600-800 times sweeter than sucrose

   

Dihydroconiferyl alcohol

3-(4-hydroxy-3-methoxyphenyl)-propan-1-ol

C10H14O3 (182.0942894)


Dihydroconiferyl alcohol, also known as 3-(4-guaiacyl)propanol or 3-(4-hydroxy-3-methoxyphenyl)-propan-1-ol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Dihydroconiferyl alcohol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydroconiferyl alcohol can be found in lettuce and romaine lettuce, which makes dihydroconiferyl alcohol a potential biomarker for the consumption of these food products. Dihydroconiferyl alcohol is a cell division factor that can be found in pring sap of Acer pseudoplatanus L. Dihydroconiferyl alcohol can stimulate growth of soybean callus[1].

   

Isoeugenol

Isoeugenol, predominantly trans, analytical standard

C10H12O2 (164.0837252)


Isoeugenol is a pale yellow oily liquid with a spice-clove odor. Freezes at 14 °F. Density 1.08 g / cm3. Occurs in ylang-ylang oil and other essential oils. Isoeugenol is a phenylpropanoid that is an isomer of eugenol in which the allyl substituent is replaced by a prop-1-enyl group. It has a role as an allergen and a sensitiser. It is a phenylpropanoid and an alkenylbenzene. It is functionally related to a guaiacol. Isoeugenol is a commonly used fragrance added to many commercially available products, and occurs naturally in the essential oils of plants such as ylang-ylang. It is also a significant dermatologic sensitizer and allergen, and as a result has been restricted to 200 p.p.m. since 1998 according to guidelines issued by the fragrance industry. Allergic reactivity to Isoeugenol may be identified with a patch test. Isoeugenol is a natural product found in Chaerophyllum macrospermum, Origanum sipyleum, and other organisms with data available. Isoeugenol is is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil and cinnamon. It is very slightly soluble in water and soluble in organic solvents. It has a spicy odor and taste of clove. Isoeugenol is prepared from eugenol by heating. Eugenol is used in perfumeries, flavorings, essential oils and in medicine (local antiseptic and analgesic). It is used in the production of isoeugenol for the manufacture of vanillin. Eugenol derivatives or methoxyphenol derivatives in wider classification are used in perfumery and flavoring. They are used in formulating insect attractants and UV absorbers, analgesics, biocides and antiseptics. They are also used in manufacturing stabilizers and antioxidants for plastics and rubbers. Isoeugenol is used in manufacturing perfumeries, flavorings, essential oils (odor description: Clove, spicy, sweet, woody) and in medicine (local antiseptic and analgesic) as well as vanillin. (A7915). E-4-Propenyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. Isoeugenol is an isomer of eugenol, wherein the double bond on the alkyl chain is shifted by one carbon. It also known as propenylgualacol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Isoeugenol is also classified as a phenylpropene, a propenyl-substituted guaiacol. Isoeugenol may occur as either the cis (Z) or trans (E) isomer. Trans (E) isoeugenol is crystalline while cis (Z) isoeugenol is a pale, yellow liquid. Isoeugenol is very slightly soluble in water and soluble in organic solvents. It has a spicy, sweet, carnation-like odour and tastes of sweet spice and clove. Isoeugenol is a widely used food flavoring agent and a perfuming agent. As a food flavoring agent, it is responsible for the flavor of nutmeg (in pumpkin pies), As a fragrance, it is extensively used as a scent agent in consumer products such as soaps, shampoos, perfumes, detergents and bath tissues (often labeled as ‚ÄúFragrance‚Äù rather than isoeugenol). However, some individuals can develop allergies to isoeugenol as it appears to be a strong contact allergen (PMID:10554062 ). Isoeugenol can be prepared from eugenol by heating. In addition to its industrial production via eugenol, isoeugenol can also be extracted from certain essential oils especially from clove oil and cinnamon. It is found naturally in a wide number of foods, spices and plants including allspice, basil, blueberries, cinnamon, cloves, coffee, dill, ginber, nutmeg, thyme and turmeric. Isoeugenol is also a component of wood smoke and liquid smoke. It is one of several phenolic compounds responsible for the mold-inhibiting effect of smoke on meats and cheeses. Isoeugenol (specifically the acetate ester) has also been used in the production of vanillin. Isoeugenol is one of several non-cannabinoid phenols found in cannabis plants (PMID:6991645 ). (e)-isoeugenol, also known as 2-methoxy-4-propenylphenol or propenylgualacol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety (e)-isoeugenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (e)-isoeugenol is a sweet, carnation, and clove tasting compound and can be found in a number of food items such as corn salad, coconut, flaxseed, and winter squash, which makes (e)-isoeugenol a potential biomarker for the consumption of these food products (e)-isoeugenol can be found primarily in saliva (e)-isoeugenol exists in all eukaryotes, ranging from yeast to humans (e)-isoeugenol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Isoeugenol is an essential oil constituent of nutmeg, clove, and cinnamon. Isoeugenol inhibits growth of Escherichia coli and Listeria innocua with MICs of 0.6 mg/mL and 1 mg/mL, respectively[1]. Isoeugenol is an essential oil constituent of nutmeg, clove, and cinnamon. Isoeugenol inhibits growth of Escherichia coli and Listeria innocua with MICs of 0.6 mg/mL and 1 mg/mL, respectively[1].

   

Sesamolinol

4-{[4-(2H-1,3-benzodioxol-5-yl)-hexahydrofuro[3,4-c]furan-1-yl]oxy}-2-methoxyphenol

C20H20O7 (372.120897)


Sesamolinol is found in cereals and cereal products. Sesamolinol is isolated from sesame seeds (Sesamum indicum). Isolated from sesame seeds (Sesamum indicum). Sesamolinol is found in cereals and cereal products and sesame.

   

5-Hydroxyconiferyl alcohol

5-[(1E)-3-hydroxyprop-1-en-1-yl]-3-methoxybenzene-1,2-diol

C10H12O4 (196.0735552)


5-hydroxyconiferyl alcohol is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 5-hydroxyconiferyl alcohol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-hydroxyconiferyl alcohol can be found in a number of food items such as tree fern, narrowleaf cattail, asparagus, and garland chrysanthemum, which makes 5-hydroxyconiferyl alcohol a potential biomarker for the consumption of these food products. This compound belongs to the family of Methoxyphenols and Derivatives. These are compounds containing a methoxy group attached to the benzene ring of a phenol moiety.

   

Vanillylamine

4-(Aminomethyl)-2-methoxyphenol, AldrichCPR

C8H11NO2 (153.0789746)


Vanillylamine is prepared by reacting vanillin with hydroxylamine or the salts thereof in the presence of an organic salt, which may optionally be produced in situ, wherein the reaction is carried out in an inorganic or organic acid as diluent, and subsequently hydrogenating the resulting vanillyloxime with hydrogen in the presence of a suitable catalyst and an organic and/or inorganic acid.It inhibits microsomal enzyme function; RN given refers to parent cpd. Vanillylamine is a component of capsaicin.In Pseudomonas fluorescens B56 under growing conditions, the cells metabolized vanillylamine to vanillin, and vanillin to vanillic acid and a small amount of vanillyl alcohol. Under non-growing conditions, the cells produced vanillin, vanillic acid and protocatechuic acid from vanillylamine, and vanillic acid supplied to the medium was converted to protocatechuic acid. It is thus suggested that vanillylamine is metabolized to vanillic acid through vanillin by Pseudomonas fluorescens B56 in a rich medium, however, in a starving medium, the bacterial strain further metabolizes vanillic acid to protocatechuic acid. The vanillylamine metabolic activity was slowly induced by the substrate. Vanillylamine is prepared by reacting vanillin with hydroxylamine or the salts thereof in the presence of an organic salt, which may optionally be produced in situ, wherein the reaction is carried out in an inorganic or organic acid as diluent, and subsequently hydrogenating the resulting vanillyloxime with hydrogen in the presence of a suitable catalyst and an organic and/or inorganic acid.It inhibits microsomal enzyme function; RN given refers to parent cpd Vanillylamine is an aralkylamino compound. It is functionally related to a vanillyl alcohol. It is a conjugate base of a vanillylamine(1+). Vanillylamine is a natural product found in Capsicum annuum with data available. Vanillylamine is a derivative of vanillin is synthesized through a transaminase reaction in the phenylpropanoid pathway of capsaicinoid synthesis[1].

   

Nonivamide

NonivamideAnemarsaponin EAnhydrosecoisolariciresinolConessineQuercetin-3-O-β-D-glucose-7-O-β-D-gentiobiosidenCornuside4-AllylcatecholZingibereneConiferinSchisantherin EVomifoliol5-MethylfurfuralWithanoneMauritianinGardenin B

C17H27NO3 (293.1990832)


Nonivamide, also known as pseudocapsaicin or hansaplast, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Nonivamide is odorless and a bland tasting compound. Nonivamide is found, on average, in the highest concentration within a few different foods, such as yellow bell peppers, red bell peppers, and pepper (C. frutescens) and in a lower concentration in pepper (C. annuum), orange bell peppers, and green bell peppers. Nonivamide has also been detected, but not quantified, in herbs and spices. This could make nonivamide a potential biomarker for the consumption of these foods. Limited information is available on pharmacokinetics and metabolism of nonivamide. Agonism of the VR1 (TRPV1) (vanilloid) receptor by Nonivamide was demonstrated to induce the release of Ca2+ from the endoplasmic reticulum (ER) of human lung cells, producing ER stress and cell death . The cardiovascular effects are partly explained by substance P release. Administered intraperitoneally, the LD50 in rats was measured to be about 90 mg/kg. Nonivamide has been shown to stimulate afferent neurons with about half the potency of Capsaicin (PMID:6202305). Nonivamide is a capsaicinoid that is the carboxamide resulting from the formal condensation of the amino group of 4-hydroxy-3-methoxybenzylamine with the carboxy group of nonanoic acid. It is the active ingredient in many pepper sprays. It has a role as a lachrymator. It is a capsaicinoid and a member of phenols. Nonivamide is found in herbs and spices. It is an alkaloid from the Capsicum species. The structures of [DB06774] and nonivamide differ only slightly with respect to the fatty acid moiety of the side chain (8-methyl nonenoic acid versus nonanoic acid). Nonivamide is a flavoring ingredient. Nonivamide is an organic compound and a capsaicinoid. It is an amide of pelargonic acid and vanillylamine. It is naturally found in chili peppers but manufactured to produce a synthetic form for various pharmacologic preparations. This drug has been studied in combination with Nicarboxil in the treatment of lower back pain. Nonivamide has also been studied for its anti-inflammatory properties, as well as in fat loss therapies and has demonstrated promising results,,,. Nonivamide is a natural product found in Capsicum annuum with data available. See also: Paprika (part of); Methyl salicylate; nonivamide (component of) ... View More ... A capsaicinoid that is the carboxamide resulting from the formal condensation of the amino group of 4-hydroxy-3-methoxybenzylamine with the carboxy group of nonanoic acid. It is the active ingredient in many pepper sprays. Alkaloid from Capsicum subspecies Flavouring ingredient Nonivamide is a

   

Homovanillic acid (HVA)

4-Hydroxy-3-methoxyphenylacetic acid;Vanillacetic acid;2-(4-Hydroxy-3-methoxyphenyl)acetic acid

C9H10O4 (182.057906)


Homovanillic acid (HVA), also known as homovanillate, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. HVA is also classified as a catechol. HVA is a major catecholamine metabolite that is produced by a consecutive action of monoamine oxidase and catechol-O-methyltransferase on dopamine. HVA is typically elevated in patients with catecholamine-secreting tumors (such as neuroblastoma, pheochromocytoma, and other neural crest tumors). HVA levels are also used in monitoring patients who have been treated for these kinds tumors. HVA levels may also be altered in disorders of catecholamine metabolism such as monoamine oxidase-A (MOA) deficiency. MOA deficiency can cause decreased urinary HVA values, while a deficiency of dopamine beta-hydrolase (the enzyme that converts dopamine to norepinephrine) can cause elevated urinary HVA values. Within humans, HVA participates in a number of enzymatic reactions. In particular, HVA and pyrocatechol can be biosynthesized from 3,4-dihydroxybenzeneacetic acid and guaiacol. This reaction is catalyzed by the enzyme known as catechol O-methyltransferase. In addition, HVA can be biosynthesized from homovanillin through the action of the enzyme known aldehyde dehydrogenase. HVA has recently been found in a number of beers and appears to arise from the fermentation process (https://doi.org/10.1006/fstl.1999.0593). HVA is also a metabolite of Bifidobacterium (PMID: 24958563) and the bacterial breakdown of dietary flavonoids. Dietary flavonols commonly found in tomatoes, onions, and tea, can lead to significantly elevated levels of urinary HVA (PMID: 20933512). Likewise, the microbial digestion of hydroxytyrosol (found in olive oil) can also lead to elevated levels of HVA in humans (PMID: 11929304). Homovanillic acid is a monocarboxylic acid that is the 3-O-methyl ether of (3,4-dihydroxyphenyl)acetic acid. It is a catecholamine metabolite. It has a role as a human metabolite and a mouse metabolite. It is a member of guaiacols and a monocarboxylic acid. It is functionally related to a (3,4-dihydroxyphenyl)acetic acid. It is a conjugate acid of a homovanillate. Homovanillic acid is a natural product found in Aloe africana, Ginkgo biloba, and other organisms with data available. Homovanillic Acid is a monocarboxylic acid that is a catecholamine metabolite. Homovanillic acid may be used a marker for metabolic stress, tobacco usage or the presence of a catecholamine secreting tumor, such as neuroblastoma or pheochromocytoma. Homovanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A 3-O-methyl ETHER of (3,4-dihydroxyphenyl)acetic acid. See also: Ipomoea aquatica leaf (part of). Homovanillic acid is a major catecholamine metabolite. 3-Methoxy-4-hydroxyphenylacetic acid is found in beer, olive, and avocado. A monocarboxylic acid that is the 3-O-methyl ether of (3,4-dihydroxyphenyl)acetic acid. It is a catecholamine metabolite. Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency. Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency.

   

Dihydrocapsiate

nonanoic acid, 8-methyl-, (4-hydroxy-3-methoxyphenyl)methyl ester

C18H28O4 (308.19874880000003)


Dihydrocapsiate is a member of methoxybenzenes and a member of phenols. Dihydrocapsiate is under investigation in clinical trial NCT00999297 (Effect of 4-week Dihydrocapsiate Ingestion on Resting Metabolic Rate). Constituent of fruits of Capsicum annuum. Dihydrocapsiate is found in many foods, some of which are orange bell pepper, herbs and spices, fruits, and italian sweet red pepper. Dihydrocapsiate is found in fruits. Dihydrocapsiate is a constituent of fruits of Capsicum annuum Dihydrocapsiate, as a compound of capsinoid family, is an orally active TRPV1 agonist. Dihydrocapsiate can be used for the research of metabolism disease[1].

   

Mequinol

4-Methoxybenzyl S-(4,6-dimethylpyrimidin-2-yl)thiocarbonate

C7H8O2 (124.05242679999999)


Hydroquinone monomethyl ether appears as pink crystals or white waxy solid. (NTP, 1992) P-methoxyphenol is a member of phenols and a member of methoxybenzenes. It has a role as a metabolite. Mequinol is a phenol used in various applications. It is used as an inhibitor for acrylic monomers and acrylonitirles, as a stabilizer for chlorinated hydrocarbons and ethyl cellulose, as an ultraviolet inhibitor, as a chemical intermediate in the manufacture of antioxidants, pharmaceuticals, plasticizers, and dyestuffs. It is found as an active ingredient in topical drugs used for skin depigmentation indicated for the treatment of solar lentigines. Mequinol is a Skin Lightening Agent. The mechanism of action of mequinol is as a Melanin Synthesis Inhibitor. The physiologic effect of mequinol is by means of Depigmenting Activity. 4-Methoxyphenol is a natural product found in Origanum majorana, Ascia monuste, and other organisms with data available. Mequinol is a synthetic derivate of hydroquinone and depigmenting agent. Although the exact mechanism of the depigmenting effects of mequinol remains unclear, it may exert its effect by oxidation of tyrosinase to cytotoxic products in melanocytes. Mequinol may also act by competitively inhibiting the formation of melanin precursors. See also: Anoxomer (monomer of). Mequinol is a drug used in combination with the drug tretinoin in the treatment of liver spots. Mequinol used alone and in higher doses is used as a topical drug for medical depigmentation. Mequinol is found in sweet marjoram and anise. Mequinol is found in anise. Mequinol is a drug used in combination with the drug tretinoin in the treatment of liver spots. Mequinol used alone and in higher doses is used as a topical drug for medical depigmentation. (Wikipedia D020011 - Protective Agents > D000975 - Antioxidants A natural product found in Cordyceps sinensis. C78284 - Agent Affecting Integumentary System D000970 - Antineoplastic Agents D - Dermatologicals Mequinol (4-Methoxyphenol) is one of bioactive components in Mercurialis. Mequinol is used for skin depigmentation[1] Mequinol (4-Methoxyphenol) is one of bioactive components in Mercurialis. Mequinol is used for skin depigmentation[1]

   

Homodihydrocapsaicin

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-9-methyldecanamide, 9CI

C19H31NO3 (321.2303816)


Homodihydrocapsaicin is a member of methoxybenzenes and a member of phenols. Homodihydrocapsaicin is a natural product found in Capsicum annuum var. annuum, Capsicum annuum, and Phylica pubescens with data available. See also: Capsicum (part of); Paprika (part of); Habanero (part of) ... View More ... Isolated from the pungent principle of red pepper (Capsicum annuum). Homodihydrocapsaicin is found in many foods, some of which are pepper (c. annuum), yellow bell pepper, pepper (c. frutescens), and green bell pepper. Homodihydrocapsaicin is found in herbs and spices. Homodihydrocapsaicin is isolated from the pungent principle of red pepper (Capsicum annuum Homodihydrocapsaicin I is a kind of capsaicinoid from the fruits of?Capsicum annuum[1]. Homodihydrocapsaicin I is a kind of capsaicinoid from the fruits of?Capsicum annuum[1].

   

(4-Hydroxy-3-methoxyphenyl)ethanol

4-Hydroxy-3-methoxyphenethanol pound>>4-(2-Hydroxyethyl)-2-methoxyphenol

C9H12O3 (168.0786402)


(4-Hydroxy-3-methoxyphenyl)ethanol is a member of methoxybenzenes and a member of phenols. Homovanillyl alcohol is a natural product found in Saussurea medusa, Urtica dioica, and other organisms with data available. Homovanillyl alcohol is a metabolite found in or produced by Saccharomyces cerevisiae. Metabolite of serotonin and norepinephrine. (4-Hydroxy-3-methoxyphenyl)ethanol is isolated from various plant species (4-Hydroxy-3-methoxyphenyl)ethanol is a constituent of mandibular secretion of honeybees [CCD]. Isolated from various plant subspecies Constituent of mandibular secretion of honeybees [CCD] Homovanillyl alcohol is a biological metabolite of Hydroxytyrosol. Hydroxytyrosol is a phenolic compound that is present in virgin olive oil (VOO) and wine. Homovanillyl alcohol protects red blood cells (RBCs) from oxidative injury and has protective effect on cardiovascular disease[1][2]. Homovanillyl alcohol is a biological metabolite of Hydroxytyrosol. Hydroxytyrosol is a phenolic compound that is present in virgin olive oil (VOO) and wine. Homovanillyl alcohol protects red blood cells (RBCs) from oxidative injury and has protective effect on cardiovascular disease[1][2].

   

3,5-Dimethoxyphenol

InChI=1/C8H10O3/c1-10-7-3-6(9)4-8(5-7)11-2/h3-5,9H,1-2H

C8H10O3 (154.062991)


3,5-dimethoxyphenol, also known as phloroglucinol dimethyl ether or taxicatigenin, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 3,5-dimethoxyphenol is soluble (in water) and a very weakly acidic compound (based on its pKa). 3,5-dimethoxyphenol can be found in a number of food items such as half-highbush blueberry, pot marjoram, chestnut, and chervil, which makes 3,5-dimethoxyphenol a potential biomarker for the consumption of these food products. 3,5-dimethoxyphenol can be found primarily in urine. 3,5-Dimethoxyphenol is a toxin metabolite that can be found in human consuming yew (Taxus baccata) leaves. Autopsy findings of fatal intoxication with yew are nonspecific. A presence of plant residues in the digestive tract can signalize yew intoxication. If yew decoction is consumed, plant residues are not found. In such a case, the intoxication can be signalized by the presence of 3,5-dimethoxyphenol in biological material (PMID: 20942244). 3,5-Dimethoxyphenol is a member of methoxybenzenes and a member of phenols. 3,5-Dimethoxyphenol is a natural product found in Streptomyces antioxidans and Taxus baccata with data available. 3,5-Dimethoxyphenol is a toxin metabolite, found in human consuming yew leaves[1]. 3,5-Dimethoxyphenol is a toxin metabolite, found in human consuming yew leaves[1].

   

4-(Butoxymethyl)-2-methoxyphenol

4-butoxy-2-methoxy-phenol;4-(Butoxymethyl)-2-methoxyphenol

C12H18O3 (210.1255878)


Vanillyl butyl ether is an ether of monohydroxybenzoic acid. It is added to food products as a flavoring agent. It is also present in cosmetics and personal care products as a fragrance ingredient, oral care agent, hair conditioning agent, and warming or cooling agent. 4-(Butoxymethyl)-2-methoxyphenol is a cooling agent used in confectionery etc. Cooling agent used in confectionery etc. Vanillyl butyl ether is a major contributor to the characteristic flavor and fragrance of vanilla. Vanillyl butyl ether is one of the eco-friendly and nontoxic substances. Vanillyl butyl ether has been proposed as a mild warming agent providing a warming sensation and enhancing the blood circulation[1].

   

2,6-Dimethoxy-4-methylphenol

InChI=1/C9H12O3/c1-6-4-7(11-2)9(10)8(5-6)12-3/h4-5,10H,1-3H

C9H12O3 (168.0786402)


2,6-Dimethoxy-4-methylphenol is found in animal foods. 2,6-Dimethoxy-4-methylphenol is present in smoked fish and pork. 2,6-Dimethoxy-4-methylphenol is a flavouring ingredien Present in smoked fish and pork. Flavouring ingredient. 2,6-Dimethoxy-4-methylphenol is found in fishes and animal foods. 2,6-Dimethoxy-4-methylphenol is a member of methoxybenzenes and a member of phenols. 4-Methylsyringol is a natural product that can be isolated from hardwood[1]. 4-Methylsyringol is a natural product that can be isolated from hardwood[1].

   

Isohomovanillic acid

2-(3-hydroxy-4-methoxyphenyl)acetic acid

C9H10O4 (182.057906)


Isohomovanillic acid is a deaminated metabolite of catecholamines formed by the enzyme catechol-O-methyltransferase (COMT; EC 2.1.1.6) which catalyzes the transfer of a methyl group from S-adenosylmethionine to catecholamines, including the neurotransmitters dopamine, epinephrine, and norepinephrine. This O-methylation results in one of the major degradative pathways of the catecholamine transmitters. (OMIM 116790) [HMDB] Isohomovanillic acid is a deaminated metabolite of catecholamines formed by the enzyme catechol-O-methyltransferase (COMT; EC 2.1.1.6) which catalyzes the transfer of a methyl group from S-adenosylmethionine to catecholamines, including the neurotransmitters dopamine, epinephrine, and norepinephrine. This O-methylation results in one of the major degradative pathways of the catecholamine transmitters. (OMIM 116790). Isohomovanillic acid (3-Hydroxy-4-methoxyphenylacetic acid) is extracted from urine at pH 2 by ethyl acetate. Isohomovanillic acid is not found in appreciable values in many normal human urines[1].

   

3-tert-Butyl-4-hydroxyanisole

3-(1,1-Dimethylethyl)-4-hydroxyanisole

C11H16O2 (180.1150236)


3-tert-Butyl-4-hydroxyanisole (3-BHA), also known as BHA or 4-methoxy-2-tert-butylphenol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. BHA is an extremely weak basic (essentially neutral) compound (based on its pKa). BHA is a waxy solid used as a food additive with the E number E320. BHA is a synthetic phenolic antioxidant (SPA). SPAs are a family of chemicals used widely in foods, polymers, and cosmetics as radical trapping agents to slow down degradation due to oxidation. Given their widespread use, human exposure is unavoidable and there is public concern regarding environmental contamination by these chemicals. BHA was detected in human urine (PMID: 31265952).

   

3-Methoxy-4-Hydroxyphenylglycol sulfate

[2-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)ethoxy]sulphonic acid

C9H12O7S (264.0303722)


3-Methoxy-4-Hydroxyphenylglycol sulfate, also known as (3-methoxy-4-sulfonyloxyphenyl)glycol or MHPG-sulfate, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 3-Methoxy-4-Hydroxyphenylglycol sulfate is a member of phenols and an alcohol. A sulfated metabolite of brain norepinephrine. It is formed by phenolsulphotransferase acting on 3-methoxy-4-hydroxphenylglycol (MHPG). [HMDB]

   

2-Methoxy-1,3-benzenediol

1,3-Dihydroxy-2-methoxybenzene

C7H8O3 (140.0473418)


2-Methoxy-1,3-benzenediol, also known as 2-methoxyresorcinol or 2-O-methylpyrogallol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 2-Methoxy-1,3-benzenediol is an extremely weak basic (essentially neutral) compound (based on its pKa). BioTransformer predicts that 2-methoxy-1,3-benzenediol is a product of 1-(2,4-dihydroxy-3-methoxyphenyl)-2-(3-hydroxy-4-methoxyphenyl)propan-1-one metabolism via a keto-hydrolysis-pattern5 reaction occurring in human gut microbiota and catalyzed by an unspecified-gutmicro enzyme (PMID: 30612223).

   

3-methoxybenzene-1,2-diol

1,2-Dihydroxy-3-methoxybenzene

C7H8O3 (140.0473418)


3-methoxybenzene-1,2-diol is a predicted metabolite generated by BioTransformer¹ that is produced by the metabolism of 3-methoxyphenol. It is generated by cyp1a2 enzyme via a hydroxylation-of-benzene-ortho-to-edg reaction. This hydroxylation-of-benzene-ortho-to-edg occurs in humans.

   

4-Ethyl-2-methoxyphenol

4-Ethyl-2-methoxyphenol (4-ethylguaiacol)

C9H12O2 (152.0837252)


Constituent of numerous plant subspecies and cooked foods. Flavouring agent. 4-Ethyl-2-methoxyphenol is found in many foods, some of which are red bell pepper, green bell pepper, beer, and arabica coffee. 4-Ethyl-2-methoxyphenol is found in arabica coffee. 4-Ethyl-2-methoxyphenol is a constituent of numerous plant species and cooked foods. 4-Ethyl-2-methoxyphenol is a flavouring agent.

   

Feruperine

(2E,4Z)-5-(4-hydroxy-3-methoxyphenyl)-1-(piperidin-1-yl)penta-2,4-dien-1-one

C17H21NO3 (287.1521356)


Alkaloid from pepper (Piper nigrum) (Piperaceae). Feruperine is found in herbs and spices and pepper (spice). Feruperine is found in herbs and spices. Feruperine is an alkaloid from pepper (Piper nigrum) (Piperaceae).

   

[4]-Gingerdiol 3,5-diacetate

5-(Acetyloxy)-1-(4-hydroxy-3-methoxyphenyl)octan-3-yl acetic acid

C19H28O6 (352.1885788)


[4]-Gingerdiol 3,5-diacetate is found in herbs and spices. [4]-Gingerdiol 3,5-diacetate is a constituent of ginger (Zingiber officinale).

   

Dinorcapsaicin

(4E)-N-[(4-Hydroxy-3-methoxyphenyl)methyl]-6-methylhept-4-enimidate

C16H23NO3 (277.1677848)


Constituent of red pepper (Capsicum annuum). Dinorcapsaicin is found in many foods, some of which are italian sweet red pepper, red bell pepper, green bell pepper, and orange bell pepper. Dinorcapsaicin is found in herbs and spices. Dinorcapsaicin is a constituent of red pepper (Capsicum annuum)

   

Citreovirenone

6-[(3-hydroxy-5-methoxyphenyl)methyl]-2-methyl-3,4-dihydro-2H-pyran-4-one

C14H16O4 (248.10485359999998)


Citreovirenone is a mycotoxin produced by the rice storage mould Penicillium citreo-viride B. Mycotoxin production by the rice storage mould Penicillium citreo-viride B.

   

6-Gingesulfonic acid

1-(4-Hydroxy-3-methoxyphenyl)-3-oxodecane-5-sulphonic acid

C17H26O6S (358.1450016)


6-Gingesulfonic acid is found in ginger. 6-Gingesulfonic acid is isolated from the rhizome of Zingiber officinale (ginger). Isolated from the rhizome of Zingiber officinale (ginger). 6-Gingesulfonic acid is found in herbs and spices and ginger.

   

4-Ethyl-2,6-dimethoxyphenol

1-Ethyl-3,5-dimethoxy-4-hydroxybenzene

C10H14O3 (182.0942894)


4-Ethyl-2,6-dimethoxyphenol is a component of smoked food flavourings. Component of smoked food flavourings

   

[6]-Gingerdiol 5-acetate

3-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)decan-5-yl acetic acid

C19H30O5 (338.209313)


[6]-Gingerdiol 5-acetate is found in ginger. [6]-Gingerdiol 5-acetate is a constituent of ginger (Zingiber officinale) rhizomes. Constituent of ginger (Zingiber officinale) rhizomes. [6]-Gingerdiol 5-acetate is found in herbs and spices and ginger.

   

threo-Syringoylglycerol

1-(4-hydroxy-3,5-dimethoxyphenyl)propane-1,2,3-triol

C11H16O6 (244.0946836)


erythro-Syringoylglycerol is found in alcoholic beverages. erythro-Syringoylglycerol is a constituent of the roots of Coix lachryma-jobi (Jobs tears)

   

N-[(4-Hydroxy-3-methoxyphenyl)methyl]octanamide

N-[(4-Hydroxy-3-methoxyphenyl)methyl]octanamide, 9ci

C16H25NO3 (279.18343400000003)


Constituent of red pepper (Capsicum annuum). N-[(4-Hydroxy-3-methoxyphenyl)methyl]octanamide is found in many foods, some of which are green bell pepper, orange bell pepper, italian sweet red pepper, and yellow bell pepper. N-[(4-Hydroxy-3-methoxyphenyl)methyl]octanamide is found in herbs and spices. N-[(4-Hydroxy-3-methoxyphenyl)methyl]octanamide is a constituent of red pepper (Capsicum annuum)

   

3-(4-Hydroxy-3-methoxyphenyl)-1,2-propanediol

3-(4-hydroxy-3-methoxyphenyl)propane-1,2-diol

C10H14O4 (198.0892044)


3-(4-Hydroxy-3-methoxyphenyl)-1,2-propanediol is found in herbs and spices. 3-(4-Hydroxy-3-methoxyphenyl)-1,2-propanediol is a constituent of allspice (Pimenta dioica). Constituent of allspice (Pimenta dioica). 3-(4-Hydroxy-3-methoxyphenyl)-1,2-propanediol is found in herbs and spices.

   

4-Methoxytyramine

4-Methoxy-3-hydroxyphenethylamine hydrochloride

C9H13NO2 (167.09462380000002)


4-Methoxytyramine is a catecholamine derivative. Catecholamines are important components of the central nervous system. A number of diseases are characterized by abnormal levels of catecholamines. For example, patients with Parkinsons disease have lower levels of dopamine than normal. L-3,4-Dihydroxyphennylalanune (L-Dopa), a catechol a-amino acid, is widely used in the treatment of Parkinsons disease. When L-Dopa is given orally to patients, the most prominent metabolite is 3-methoxy-4-hydroxyphenylalanine. However, a part of L-Dopa is methylated to 3-hydroxy-4-methylphenylalanine and to 3-hydroxy-4-methoxyphenethylamine. It has been reported that 4-O-methylation of catecholamines is implicated in some neuropsychiatric disorders and thus 3-hydroxy-4-methoxyphenethylamine appears to be the endogenous "toxin" in Parkinsons disease. Consequently, the determination of plasma levels of 3-hydroxy-4-methoxyphenethylamine is important following oral L-Dopa therapy (PMID: 6518609). [HMDB] 4-Methoxytyramine is a catecholamine derivative. Catecholamines are important components of the central nervous system. A number of diseases are characterized by abnormal levels of catecholamines. For example, patients with Parkinsons disease have lower levels of dopamine than normal. L-3,4-Dihydroxyphennylalanune (L-Dopa), a catechol a-amino acid, is widely used in the treatment of Parkinsons disease. When L-Dopa is given orally to patients, the most prominent metabolite is 3-methoxy-4-hydroxyphenylalanine. However, a part of L-Dopa is methylated to 3-hydroxy-4-methylphenylalanine and to 3-hydroxy-4-methoxyphenethylamine. It has been reported that 4-O-methylation of catecholamines is implicated in some neuropsychiatric disorders and thus 3-hydroxy-4-methoxyphenethylamine appears to be the endogenous "toxin" in Parkinsons disease. Consequently, the determination of plasma levels of 3-hydroxy-4-methoxyphenethylamine is important following oral L-Dopa therapy (PMID: 6518609).

   

Curcumin II

(2Z,7E)-9-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)nona-2,7-diene-4,6-dione

C22H22O5 (366.1467162)


Curcumin II is found in herbs and spices. Curcumin II is isolated from the rhizomes of Curcuma longa (turmeric). Isolated from the rhizomes of Curcuma longa (turmeric). Curcumin II is found in turmeric and herbs and spices.

   

4-(Ethoxymethyl)-2-methoxyphenol

Ethyl 4-hydroxy-3-methoxybenzyl ether

C10H14O3 (182.0942894)


4-(Ethoxymethyl)-2-methoxyphenol is a food additive listed in the EAFUS food Additive Database (Jan 2001). Food additive listed in the EAFUS Food Additive Database (Jan 2001)

   

3-Chloro-1-(4-hydroxy-3-methoxyphenyl)-1,2-propanediol

3-Chloro-1-(4-hydroxy-3-methoxyphenyl)-1,2-propanediol

C10H13ClO4 (232.0502328)


3-Chloro-1-(4-hydroxy-3-methoxyphenyl)-1,2-propanediol is found in fruits. 3-Chloro-1-(4-hydroxy-3-methoxyphenyl)-1,2-propanediol is a constituent of the fruit of Pimenta dioica (allspice) Constituent of the fruit of Pimenta dioica (allspice). 3-Chloro-1-(4-hydroxy-3-methoxyphenyl)-1,2-propanediol is found in herbs and spices and fruits.

   

Nordihydrocapsiate

(4-Hydroxy-3-methoxyphenyl)methyl 7-methyloctanoic acid

C17H26O4 (294.1830996)


Constituent of fruits of Capsicum annuum. Nordihydrocapsiate is found in many foods, some of which are green bell pepper, herbs and spices, fruits, and orange bell pepper. Nordihydrocapsiate is found in fruits. Nordihydrocapsiate is a constituent of fruits of Capsicum annuum

   

Methoxyeugenol

Phenol, 2,6-dimethoxy-4-(2-propenyl)- (9ci)

C11H14O3 (194.0942894)


Methoxyeugenol, also known as 4-allylsyringol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Methoxyeugenol is a sweet, bacon, and burnt tasting compound. Methoxyeugenol has been detected, but not quantified, in herbs and spices. This could make methoxyeugenol a potential biomarker for the consumption of these foods. Found in oil of sassafras (Sassafras albidum) root, nutmeg (Myristica fragrans) and Cinnamomum glanduiferum

   

Homocapsaicin

(7E)-N-[(4-Hydroxy-3-methoxyphenyl)methyl]-9-methyldec-7-enimidate

C19H29NO3 (319.2147324)


Isolated from the pungent principle of red pepper (Capsicum annuum). Homocapsaicin is found in many foods, some of which are green bell pepper, pepper (c. annuum), herbs and spices, and italian sweet red pepper. Homocapsaicin is found in herbs and spices. Homocapsaicin is isolated from the pungent principle of red pepper (Capsicum annuum

   

N-Dihydroferuloyltyramine

3-(4-Hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]propanimidate

C18H21NO4 (315.1470506)


N-Dihydroferuloyltyramine is found in fruits. N-Dihydroferuloyltyramine is an alkaloid from stems of cherimoya (Annona cherimola). Alkaloid from stems of cherimoya (Annona cherimola). N-Dihydroferuloyltyramine is found in fruits.

   

1-(3-Hydroxy-4-methoxyphenyl)-1,2-ethanediol

1-(3-Hydroxy-4-methoxyphenyl)-1,2-ethanediol

C9H12O4 (184.0735552)


1-(3-Hydroxy-4-methoxyphenyl)-1,2-ethanediol is found in herbs and spices. 1-(3-Hydroxy-4-methoxyphenyl)-1,2-ethanediol is a constituent of fennel (Foeniculum vulgare) Constituent of fennel (Foeniculum vulgare). 1-(3-Hydroxy-4-methoxyphenyl)-1,2-ethanediol is found in herbs and spices.

   

2,6-Dimethoxy-4-propylphenol

Phenol, 2,6-dimethoxy-4-propyl

C11H16O3 (196.1099386)


2,6-Dimethoxy-4-propylphenol is found in animal foods. 2,6-Dimethoxy-4-propylphenol is a component of smoked food flavourings. 2,6-Dimethoxy-4-propylphenol is present in Japanese smoked, dried fish products especially Katsuobushi and smoked baco 2,6-Dimethoxy-4-propylphenol is a component of smoked food flavourings. It is found in Japanese smoked, dried fish products especially katsuobushi and smoked bacon.

   

2,6-Dimethoxy-4-(1-propenyl)phenol

2,6-dimethoxy-4-[(1E)-prop-1-en-1-yl]phenol

C11H14O3 (194.0942894)


2,6-Dimethoxy-4-(1-propenyl)phenol is a flavouring ingredient. Flavouring ingredient

   

3-(4-Hydroxy-2-methoxyphenyl)-2-propenal

Ethyl 3-(4-methyl-2-oxo-1(2H)-quinolinyl)acrylate

C10H10O3 (178.062991)


3-(4-Hydroxy-2-methoxyphenyl)-2-propenal is found in fats and oils. 3-(4-Hydroxy-2-methoxyphenyl)-2-propenal is a constituent of sunflower and vanilla. Constituent of sunflower and vanilla. 3-(4-Hydroxy-2-methoxyphenyl)-2-propenal is found in fats and oils and herbs and spices.

   

Verimol J

1-(2-Hydroxy-4-methoxyphenyl)-2-propanol

C10H14O3 (182.0942894)


Verimol J is found in fruits. Verimol J is a constituent of Illicium verum (Chinese star anise). Constituent of Illicium verum (Chinese star anise). Verimol J is found in fruits.

   

Citreovirone

5,5-dichloro-4-Hydroxy-1-(3-hydroxy-5-methoxyphenyl)-2-pentanone, 9ci

C12H14Cl2O4 (292.0269104)


Citreovirone is a mycotoxin produced by the rice storage mould Penicillium citreo-viride. Mycotoxin production by the rice storage mould Penicillium citreo-viride.

   

Norcapsaicin

(5E)-N-[(4-Hydroxy-3-methoxyphenyl)methyl]-7-methyloct-5-enimidate

C17H25NO3 (291.18343400000003)


Isolated from the pungent principle of red pepper (Capsicum annuum). Norcapsaicin is found in many foods, some of which are herbs and spices, italian sweet red pepper, orange bell pepper, and red bell pepper. Norcapsaicin is found in herbs and spices. Norcapsaicin is isolated from the pungent principle of red pepper (Capsicum annuum

   

2-Methoxy-4-propylphenol

4-Propyl-2-methoxyphenol (4-propylguaiacol)

C10H14O2 (166.09937440000002)


2-Methoxy-4-propylphenol is a flavouring ingredien Flavouring ingredient

   

2-Methoxy-4-methylphenol

2-Methoxy-4-methylphenol (4-methylguaiacol)

C8H10O2 (138.06807600000002)


2-Methoxy-4-methylphenol, also known as 4-methylguaiacol or creosol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Creosol reacts with hydrogen halides to give a catechol. Compared with phenol, creosol is a less toxic disinfectant. It is one of the components of creosote. 2-Methoxy-4-methylphenol is a bacon, bitter, and carnation tasting compound. 2-Methoxy-4-methylphenol has been detected, but not quantified, in several different foods, such as red bell peppers, green bell peppers, orange bell peppers, corns, and pepper (c. annuum). Sources of creosol include: Coal tar, creosote Wood, creosoteReduction product of vanillin using zinc powder in strong hydrochloric acidFound as glycosides in green vanilla beans. It is also found in tequila. Flavouring ingredient. Constituent of ylang-ylang oil. 2-Methoxy-4-methylphenol is found in many foods, some of which are corn, red bell pepper, orange bell pepper, and green bell pepper. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent Creosol is an endogenous metabolite. Creosol is an endogenous metabolite.

   

3-O-Sulfogalactosylceramide (d18:1/24:0)

[(2R,5S,6R)-3,5-dihydroxy-2-{[(2S,3R,4E)-3-hydroxy-2-tetracosanamidooctadec-4-en-1-yl]oxy}-6-(hydroxymethyl)oxan-4-yl]oxidanesulfonic acid

C48H93NO11S (891.6468988)


3-O-Sulfogalactosylceramide is an acidic, sulfated glycosphingolipid, often known as sulfatide. This lipid occurs in membranes of various cell types, but is found in particularly high concentrations in myelin where it constitutes 3-4\\% of total membrane lipids. This lipid is synthesized primarily in the oligodendrocytes in the central nervous system. Accumulation of this lipid in the lysosomes is a characteristic of metachromatic leukodystrophy, a lysosomal storage disease caused by the deficiency of arylsulfatase A. Alterations in sulfatide metabolism, trafficking, and homeostasis are present in the earliest clinically recognizable stages of Alzheimers disease. Cerebrosides are glycosphingolipids. There are four types of glycosphingolipids, the cerebrosides, sulfatides, globosides and gangliosides. Cerebrosides have a single sugar group linked to ceramide. The most common are galactocerebrosides (containing galactose), the least common are glucocerebrosides (containing glucose). Galactocerebrosides are found predominantly in neuronal cell membranes. In contrast glucocerebrosides are not normally found in membranes. Instead, they are typically intermediates in the synthesis or degradation of more complex glycosphingolipids. Galactocerebrosides are synthesized from ceramide and UDP-galactose. Excess lysosomal accumulation of glucocerebrosides is found in Gaucher disease. Sulfatides are glycosphingolipids. There are four types of glycosphingolipids, the cerebrosides, sulfatides, globosides and gangliosides. Sulfatides are the sulfuric acid esters of galactocerebrosides. They are synthesized from galactocerebrosides and activated sulfate, 3-phosphoadenosine 5-phosphosulfate (PAPS).

   

Sylvopinol

3-(hydroxymethyl)-5-methoxyphenol

C8H10O3 (154.062991)


Sylvopinol is a constituent of Pinus sylvestris (Scotch pine)

   

3,5-Dihydroxyanisole

Phloroglucinol monomethyl ether

C7H8O3 (140.0473418)


3,5-Dihydroxyanisole, also known as 5-methoxyresorcinol or flamenol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 3,5-Dihydroxyanisole is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, 3,5-dihydroxyanisole has been detected, but not quantified in, several different foods, such as annual wild rice, prairie turnips, thistles, grapefruit/pummelo hybrids, and pecan nuts. This could make 3,5-dihydroxyanisole a potential biomarker for the consumption of these foods. BioTransformer predicts that 3,5-dihydroxyanisole is a product of helichrysetin metabolism via a keto-hydrolysis-pattern5 reaction occurring in human gut microbiota and catalyzed by an unspecified-gutmicro enzyme (PMID: 30612223). 5-methoxybenzene-1,3-diol, also known as flamenol or 5-methoxyresorcinol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 5-methoxybenzene-1,3-diol is soluble (in water) and a very weakly acidic compound (based on its pKa). 5-methoxybenzene-1,3-diol can be found in a number of food items such as chinese mustard, malus (crab apple), broad bean, and nanking cherry, which makes 5-methoxybenzene-1,3-diol a potential biomarker for the consumption of these food products. C78272 - Agent Affecting Nervous System > C29698 - Antispasmodic Agent

   

3-Hydroxy-4-methoxymandelate

(2R)-2-hydroxy-2-(3-hydroxy-4-methoxyphenyl)acetic acid

C9H10O5 (198.052821)


3-hydroxy-4-methoxymandelate is an urinary organic acid used to screen for inherited metabolic diseases.

   

5'-(3'-Methoxy-4'-hydroxyphenyl)-gamma-valerolactone

5-(3-Methoxy-4-hydroxyphenyl)-gamma-valerolactone

C12H14O4 (222.0892044)


5-(3-methoxy-4-hydroxyphenyl)-gamma-valerolactone is a cocoa metabolite from gut microflora. It is found in urine. A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

1-(3-Methoxy-4-hydroxy)-phenyl-6,7-dihydroxy-isochroman

1-(3-Methoxy-4-hydroxy)-phenyl-6,7-dihydroxy-3,4-dihydro-1H-2-benzopyran

C16H16O5 (288.0997686)


1-(3-methoxy-4-hydroxy)-phenyl-6,7-dihydroxy-isochroman is a polyphenol compound found in foods of plant origin (PMID: 20428313)

   

2,5-Dimethoxy-4-(2-propenyl)phenol

2,5-Dimethoxy-4-(2-propenyl)phenol, 9ci

C11H14O3 (194.0942894)


2,5-Dimethoxy-4-(2-propenyl)phenol is found in herbs and spices. 2,5-Dimethoxy-4-(2-propenyl)phenol is a constituent of Sassafras albidum (sassafras)

   

Vanillin 1,2-butylene glycol acetal

4-(4,5-dimethyl-1,3-dioxolan-2-yl)-2-methoxyphenol

C12H16O4 (224.10485359999998)


Vanillin 1,2-butylene glycol acetal is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]")

   

2-Methoxy-4-(4-methyl-1,3-dioxolan-2-yl)phenol

2-Methoxy-4-(4-methyl-1,3-dioxolan-2-yl)phenol, 9ci

C11H14O4 (210.0892044)


2-Methoxy-4-(4-methyl-1,3-dioxolan-2-yl)phenol is present in food as an artifact arising from reaction of BJR54-T flavouring and 1,2-Propanediol DFN63-V solven Present in food as an artifact arising from reaction of BJR54-T flavouring and 1,2-Propanediol DFN63-V solvent

   

Curcumin I

(2Z,7E)-1,9-bis(4-hydroxy-3-methoxyphenyl)nona-2,7-diene-4,6-dione

C23H24O6 (396.1572804)


Curcumin I is found in herbs and spices. Curcumin I is isolated from the rhizomes of Curcuma longa (turmeric). Isolated from the rhizomes of Curcuma longa (turmeric). Curcumin I is found in herbs and spices.

   

Dihydroferuloylglycine

2-Aminoacetyl 3-(4-hydroxy-3-methoxyphenyl)propanoic acid

C12H15NO5 (253.09501799999998)


Dihydroferuloylglycine is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

2-tert-Butyl-4-hydroxyanisole

2-(1,1-Dimethylethyl)-4-hydroxyanisole

C11H16O2 (180.1150236)


2-tert-Butyl-4-hydroxyanisole is an ingredient in butylated hydroxyanisole. Butylated hydroxyanisole (BHA) is an antioxidant consisting of a mixture of two isomeric organic compounds, 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. It is prepared from 4-methoxyphenol and isobutylene. It is a waxy solid used as a food additive with the E number E320. The primary use for BHA is as an antioxidant and preservative in food, food packaging, animal feed, cosmetics, rubber, and petroleum products. BHA also is commonly used in medicines, such as isotretinoin, lovastatin, and simvastatin, among others. (Wikipedia) C26170 - Protective Agent > C275 - Antioxidant

   

4-Hydroxy-5-(3',4',5'-trihydroxyphenyl)-valeric acid-O-methyl-O-glucuronide

(2S,3S,4S,5R,6S)-3,4,5-trihydroxy-6-({[4-hydroxy-5-(3,4,5-trihydroxyphenyl)pentanoyl]oxy}methoxy)oxane-2-carboxylic acid

C18H24O13 (448.1216854)


4-Hydroxy-5-(3,4,5-trihydroxyphenyl)-valeric acid-O-methyl-O-glucuronide is a conjugate of 4-hydroxy-5-(3,4,5-trihydroxyphenyl)-valeric acid-O-methyl and glucuronide. A glucuronide, also known as glucuronoside, is any substance produced by linking glucuronic acid to another substance via a glycosidic bond. The glucuronides belong to the glycosides. (Wikipedia)

   

Hydroxymethoxyphenylcarboxylic acid-O-sulphate

[Hydroxy(2-hydroxy-4-methoxyphenyl)methoxy]sulphonic acid

C8H10O7S (250.014723)


Hydroxymethoxyphenylcarboxylic acid-O-sulphate is a conjugate of hydroxymethoxyphenylcarboxylic acid and sulphate.

   

L-Metanephrine

4-[(1R)-1-hydroxy-2-(methylamino)ethyl]-2-methoxyphenol

C10H15NO3 (197.105188)


L-Metanephrine is classified as a member of the Methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. L-Metanephrine is considered to be soluble (in water) and acidic

   

3-Chloro-4-hydroxy-5-methoxybenzaldehyde

3-Chloro-4-hydroxy-5-methoxybenzaldehyde

C8H7ClO3 (186.0083702)


D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents > D016587 - Antimutagenic Agents D020011 - Protective Agents > D000975 - Antioxidants

   

4-[(E)-5,6-Dihydro-2,3'-bipyridin-3(4H)-ylidenemethyl]-3-methoxyphenol

3-methoxy-4-({3,4,5,6-tetrahydro-[2,3-bipyridine]-3-ylidene}methyl)phenol

C18H18N2O2 (294.1368208)


   

4-O-Methylascochlorin

3-chloro-6-hydroxy-4-methoxy-2-methyl-5-[3-methyl-5-(1,2,6-trimethyl-3-oxocyclohexyl)penta-2,4-dien-1-yl]benzaldehyde

C24H31ClO4 (418.19107560000003)


   

6-Fluorohomovanillic acid

2-(2-fluoro-4-hydroxy-5-methoxyphenyl)acetic acid

C9H9FO4 (200.0484846)


   

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methyl-6-nonenamide

N-[(4-Hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enimidate

C18H27NO3 (305.1990832)


   

Tyrphostin AG 825

3-{3-[(1,3-benzothiazol-2-ylsulfanyl)methyl]-4-hydroxy-5-methoxyphenyl}-2-cyanoprop-2-enamide

C19H15N3O3S2 (397.05548000000005)


   

Propenylguaiacol

1-Hydroxy-2-methoxy-4-propen-1-ylbenzene

C10H12O2 (164.0837252)


   

Bis(3-methoxysalicylidene)ethylenediamine

2-{[(2-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}ethyl)imino]methyl}-6-methoxyphenol

C18H20N2O4 (328.14230000000003)


   

Ftivazide

N-[(4-hydroxy-3-methoxyphenyl)methylidene]pyridine-4-carbohydrazide

C14H13N3O3 (271.0956868)


   

5-Hydroxy-1-(3-hydroxy-4-methoxyphenyl)decan-3-one

5-Hydroxy-1-(3-hydroxy-4-methoxyphenyl)decan-3-one

C17H26O4 (294.1830996)


   

methoxycatecholamine

3-amino-4-methoxybenzene-1,2-diol

C7H9NO3 (155.0582404)


   

Olvanil

N-[(4-Hydroxy-3-methoxyphenyl)methyl]octadec-9-enimidate

C26H43NO3 (417.3242768)


   

Sinapaldehyde

3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enal

C11H12O4 (208.0735552)


   

Syringaldehyde

3,5-Dimethoxy-4-hydroxy-benzaldehyde

C9H10O4 (182.057906)


4-hydroxy-3,5-dimethoxybenzaldehyde, also known as sinapaldehyde or 2,6-dimethoxy-4-formylphenol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 4-hydroxy-3,5-dimethoxybenzaldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 4-hydroxy-3,5-dimethoxybenzaldehyde is a mild, sweet, and plastic tasting compound and can be found in a number of food items such as whisky, common grape, garden tomato (variety), and coriander, which makes 4-hydroxy-3,5-dimethoxybenzaldehyde a potential biomarker for the consumption of these food products. 4-hydroxy-3,5-dimethoxybenzaldehyde may be a unique S.cerevisiae (yeast) metabolite. Because it contains many functional groups, it can be classified in many ways - aromatic, aldehyde, phenol. It is a colorless solid (impure samples appear yellowish) that is soluble in alcohol and polar organic solvents. Its refractive index is 1.53 . Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

2-Methoxy-5-prop-1-enylphenol

2-methoxy-5-(prop-1-en-1-yl)phenol

C10H12O2 (164.0837252)


2-methoxy-5-prop-1-enylphenol is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 2-methoxy-5-prop-1-enylphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 2-methoxy-5-prop-1-enylphenol can be found in sesame, which makes 2-methoxy-5-prop-1-enylphenol a potential biomarker for the consumption of this food product.

   

3,5-Dihydroxy-4-methoxybenzaldehyde

3,5-dihydroxy-4-methoxybenzaldehyde

C8H8O4 (168.0422568)


3,5-dihydroxy-4-methoxybenzaldehyde is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 3,5-dihydroxy-4-methoxybenzaldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 3,5-dihydroxy-4-methoxybenzaldehyde can be found in date, which makes 3,5-dihydroxy-4-methoxybenzaldehyde a potential biomarker for the consumption of this food product.

   

(+)-Pinoresinolin

4-[(3aR,4R)-4-(4-hydroxy-3-methoxyphenoxy)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H22O7 (374.1365462)


(+)-pinoresinolin is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety (+)-pinoresinolin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-pinoresinolin can be found in burdock, which makes (+)-pinoresinolin a potential biomarker for the consumption of this food product.

   

[4]-Isogingerol

6-hydroxy-8-(4-hydroxy-3-methoxyphenyl)octan-4-one

C15H22O4 (266.1518012)


[4]-isogingerol is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. [4]-isogingerol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). [4]-isogingerol can be found in ginger, which makes [4]-isogingerol a potential biomarker for the consumption of this food product.

   

Dehydrogingerdione

(1Z,3Z)-3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)deca-1,3-dien-5-one

C17H22O4 (290.1518012)


Dehydrogingerdione is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Dehydrogingerdione is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Dehydrogingerdione can be found in ginger, which makes dehydrogingerdione a potential biomarker for the consumption of this food product.

   

Vanillyl octanamide

4-hydroxy-3-methoxy-N-octylbenzene-1-carboximidic acid

C16H25NO3 (279.18343400000003)


Vanillyl octanamide is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Vanillyl octanamide is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Vanillyl octanamide can be found in a number of food items such as green bell pepper, pepper (c. annuum), red bell pepper, and orange bell pepper, which makes vanillyl octanamide a potential biomarker for the consumption of these food products.

   

10-Dehydrogingerdione

(1Z,3Z)-3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)tetradeca-1,3-dien-5-one

C21H30O4 (346.214398)


10-dehydrogingerdione is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 10-dehydrogingerdione is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 10-dehydrogingerdione can be found in ginger, which makes 10-dehydrogingerdione a potential biomarker for the consumption of this food product.

   

10-Gingerdione

(3Z)-3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)tetradec-3-en-5-one

C21H32O4 (348.2300472)


10-gingerdione is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 10-gingerdione is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 10-gingerdione can be found in ginger, which makes 10-gingerdione a potential biomarker for the consumption of this food product.

   

Isochavibetol

2-methoxy-5-[(1Z)-prop-1-en-1-yl]phenol

C10H12O2 (164.0837252)


Isochavibetol is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Isochavibetol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isochavibetol can be found in anise, which makes isochavibetol a potential biomarker for the consumption of this food product.

   

5-Ethenyl-2-methoxyphenol

5-Ethenyl-2-methoxyphenol

C9H10O2 (150.06807600000002)


5-ethenyl-2-methoxyphenol is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 5-ethenyl-2-methoxyphenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-ethenyl-2-methoxyphenol can be found in bilberry and highbush blueberry, which makes 5-ethenyl-2-methoxyphenol a potential biomarker for the consumption of these food products.

   

5-hydroxy-coniferaldehyde

3-(3,4-dihydroxy-5-methoxyphenyl)prop-2-enal

C10H10O4 (194.057906)


5-hydroxy-coniferaldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5-hydroxy-coniferaldehyde can be found in a number of food items such as tronchuda cabbage, bitter gourd, swiss chard, and bayberry, which makes 5-hydroxy-coniferaldehyde a potential biomarker for the consumption of these food products.

   

coniferyl acetate

3-(4-Hydroxy-3-methoxyphenyl)prop-2-en-1-yl acetic acid

C12H14O4 (222.0892044)


Coniferyl acetate is also known as coniferyl acetic acid. Coniferyl acetate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl acetate can be found in a number of food items such as endive, enokitake, black huckleberry, and devilfish, which makes coniferyl acetate a potential biomarker for the consumption of these food products.

   

vanillyl mandelate

2-hydroxy-2-(4-hydroxy-3-methoxyphenyl)acetate

C9H9O5 (197.0449964)


Vanillyl mandelate, also known as 3-methoxy-4-hydroxymandelate or vanilmandelic acid, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Vanillyl mandelate is soluble (in water) and a weakly acidic compound (based on its pKa). Vanillyl mandelate can be found in a number of food items such as brazil nut, feijoa, kiwi, and redcurrant, which makes vanillyl mandelate a potential biomarker for the consumption of these food products. Vanillylmandelic acid (VMA) is a chemical intermediate in the synthesis of artificial vanilla flavorings and is an end-stage metabolite of the catecholamines, epinephrine, and norepinephrine. It is produced via intermediary metabolites .