NCBI Taxonomy: 105674
Alpinia japonica (ncbi_taxid: 105674)
found 201 associated metabolites at species taxonomy rank level.
Ancestor: Alpinia
Child Taxonomies: none taxonomy data.
Isoliquiritigenin
Isoliquiritigenin is a member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, a biological pigment, a NMDA receptor antagonist, a GABA modulator, a metabolite, an antineoplastic agent and a geroprotector. It is functionally related to a trans-chalcone. It is a conjugate acid of an isoliquiritigenin(1-). Isoliquiritigenin is a precursor to several flavonones in many plants. Isoliquiritigenin is a natural product found in Pterocarpus indicus, Dracaena draco, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Medicago subspecies Isoliquiritigenin is found in many foods, some of which are cocoa bean, purple mangosteen, blackcurrant, and chives. A member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. Isoliquiritigenin is found in pulses. Isoliquiritigenin is isolated from Medicago specie D004791 - Enzyme Inhibitors Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM. Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.
Camphor
Camphor appears as a colorless or white colored crystalline powder with a strong mothball-like odor. About the same density as water. Emits flammable vapors above 150 °F. Used to make moth proofings, pharmaceuticals, and flavorings. Camphor is a cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. It has a role as a plant metabolite. It is a bornane monoterpenoid and a cyclic monoterpene ketone. Camphor is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. A cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.986 Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
Brazilin
Brazilin is a organic heterotetracyclic compound that is a red pigment obtained from the wood of Caesalpinia echinata (Brazil-wood) or Caesalpinia sappan (sappan-wood). It has a role as a plant metabolite, a histological dye, an antineoplastic agent, a biological pigment, an anti-inflammatory agent, an apoptosis inducer, an antioxidant, an antibacterial agent, a NF-kappaB inhibitor and a hepatoprotective agent. It is an organic heterotetracyclic compound, a member of catechols and a tertiary alcohol. Brazilin is a natural product found in Guilandina bonduc, Biancaea decapetala, and other organisms with data available. A organic heterotetracyclic compound that is a red pigment obtained from the wood of Caesalpinia echinata (Brazil-wood) or Caesalpinia sappan (sappan-wood). Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].
Beta-eudesmol
Beta-eudesmol is a carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). It has a role as a volatile oil component. It is a carbobicyclic compound, a tertiary alcohol and a eudesmane sesquiterpenoid. beta-Eudesmol is a natural product found in Rhododendron calostrotum, Rhododendron lepidotum, and other organisms with data available. See also: Arctium lappa Root (part of); Cannabis sativa subsp. indica top (part of); Pterocarpus marsupium wood (part of). A carbobicyclic compound that is trans-decalin substituted at positions 2, 4a, and 8 by 2-hydroxypropan-2-yl, methyl and methylidene groups, respectively (the 2R,4aR,8aS-diastereoisomer). Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].
Butein
Butein is a chalcone that is (E)-chalcone bearing four additional hydroxy substituents at positions 2, 3, 4 and 4. It has a role as a tyrosine kinase inhibitor, an antioxidant, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an antineoplastic agent, a geroprotector, a radiosensitizing agent, a hypoglycemic agent and a plant metabolite. It is a member of chalcones and a polyphenol. Butein is a natural product found in Dahlia pinnata, Calanticaria bicolor, and other organisms with data available. Butein is a flavonoid obtained from the seed of Cyclopia subternata. It is a specific protein tyrosine kinase inhibitor that induces apoptosis. (NCI) See also: Semecarpus anacardium juice (part of). A chalcone that is (E)-chalcone bearing four additional hydroxy substituents at positions 2, 3, 4 and 4. C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Butein, also known as 2,3,4,4-tetrahydroxychalcone, is a member of the class of compounds known as 2-hydroxychalcones. 2-hydroxychalcones are organic compounds containing chalcone skeleton that carries a hydroxyl group at the 2-position. Thus, butein is considered to be a flavonoid lipid molecule. Butein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Butein is a bitter tasting compound found in broad bean, which makes butein a potential biomarker for the consumption of this food product. Butein is a chalcone of the chalconoids. It can be found in Toxicodendron vernicifluum (or formerly Rhus verniciflua), Dahlia, Butea (Butea monosperma) and Coreopsis It has antioxidative, aldose reductase and advanced glycation endproducts inhibitory effects. It is also a sirtuin-activating compound, a chemical compound having an effect on sirtuins, a group of enzymes that use NAD+ to remove acetyl groups from proteins. It turned out that buteins possess a high ability to inhibit aromatase process in the human body, for this reason, the use of these compounds in the treatment of breast cancer on the estrogen ground has been taken into account. The first attempts of sport pro-hormone supplementation with the use of buteins took place in Poland . Butein is a cAMP-specific PDE inhibitor with an IC50 of 10.4 μM for PDE4[1]. Butein is a specific protein tyrosine kinase inhibitor with IC50s of 16 and 65 μM for EGFR and p60c-src in HepG2 cells[2]. Butein sensitizes HeLa cells to Cisplatin through AKT and ERK/p38 MAPK pathways by targeting FoxO3a[3]. Butein is a SIRT1 activator (STAC). Butein is a cAMP-specific PDE inhibitor with an IC50 of 10.4 μM for PDE4[1]. Butein is a specific protein tyrosine kinase inhibitor with IC50s of 16 and 65 μM for EGFR and p60c-src in HepG2 cells[2]. Butein sensitizes HeLa cells to Cisplatin through AKT and ERK/p38 MAPK pathways by targeting FoxO3a[3]. Butein is a SIRT1 activator (STAC).
Rhamnocitrin
Rhamnocitrin, also known as 3,4,5-trihydroxy-7-methoxyflavone or 7-methylkaempferol, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, rhamnocitrin is considered to be a flavonoid lipid molecule. Rhamnocitrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Rhamnocitrin can be found in cloves and lemon balm, which makes rhamnocitrin a potential biomarker for the consumption of these food products. Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol. Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2].
(+)-Camphor
Camphor, also known as (+)-camphor or (+)-bornan-2-one, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, camphor is primarily located in the membrane (predicted from logP). Camphor is a waxy, flammable, white or transparent solid with a strong aroma. It is a terpenoid with the chemical formula C10H16O. It is found in many plants, such as in the wood of the camphor laurel (Cinnamomum camphora), a large evergreen tree found in Asia (particularly in Sumatra and Borneo islands, Indonesia) and also of the unrelated Kapur tree, a tall timber tree from the same region. It also occurs in some other related trees in the laurel family, notably Ocotea usambarensis and in the oil in rosemary leaves (Rosmarinus officinalis). The mint family contains 10 to 20\\\\\\\\% camphor, while camphorweed (Heterotheca) only contains some 5\\\\\\\\%. Camphor can also be synthetically produced from oil of turpentine. It is used for its scent, as an ingredient in cooking (mainly in India), as an embalming fluid, for medicinal purposes, and in religious ceremonies. A major source of camphor in Asia is camphor basil (the parent of African blue basil) (Wikipedia). (R)-camphor is the (R)- enantiomer of camphor. It is an enantiomer of a (S)-camphor. Camphor is a bicyclic monoterpene ketone found widely in plants, especially Cinnamomum camphora. It is used topically as a skin antipruritic and as an anti-infective agent. When ingested, camphor has a rapid onset of toxic effects, and camphorated oil is the product most often responsible for its toxicity. The FDA ruled that camphorated oil could not be marketed in the United States and that no product could contain a concentration higher than 11\\\\\\\\%. It appears in the list of drug products withdrawn or removed from the market for safety or effectiveness. However, camphor can be found in several nonprescription medications at lower concentrations. D-Camphor is a natural product found in Chromolaena odorata, Curcuma amada, and other organisms with data available. See also: Coriander Oil (part of). C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C - Cardiovascular system > C01 - Cardiac therapy The (R)- enantiomer of camphor. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
2'-O-Methylisoliquiritigenin
2-O-Methylisoliquiritigenin (CAS: 51828-10-5), also known as 4,4-dihydroxy-2-methoxychalcone or 3-deoxysappanchalcone, belongs to the class of organic compounds known as cinnamylphenols. These are organic compounds containing the 1,3-diphenylpropene moiety with one benzene ring bearing one or more hydroxyl groups. Thus, 2-O-methylisoliquiritigenin is considered to be a flavonoid lipid molecule. 2-O-Methylisoliquiritigenin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 2-O-Methylisoliquiritigenin is a stress metabolite of Pisum sativum (pea). Stress metabolite of Pisum sativum (pea). 2-Methylisoliquiritigenin is found in pulses and common pea. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1]. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1]. 2'-O-Methylisoliquiritigenin, isolated from the Arachis species, up-regulates 5-HT, NE, DA and GABA pathways, but does not put a very significant effect on ne NE pathway[1].
10-epi-gamma-eudesmol
Flavouring compound [Flavornet]
(6As,11bS)-7,11b-dihydro-6H-indeno[2,1-c]chromene-3,6a,9,10-tetrol
Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].
Protosappanin A
Protosappanin B
Protosappanin B is a phenolic compound extracted from Caesalpinia sappan. Anti-cancer activity[1]. Protosappanin B induces apoptosis and causes G1 cell cycle arrest in human bladder cancer cells[2]. Protosappanin B is a phenolic compound extracted from Caesalpinia sappan. Anti-cancer activity[1]. Protosappanin B induces apoptosis and causes G1 cell cycle arrest in human bladder cancer cells[2].
D-Camphor
(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
gamma-Eudesmol
Gamma-eudesmol, also known as gamma-eudesmol, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Gamma-eudesmol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Gamma-eudesmol is a sweet and waxy tasting compound and can be found in a number of food items such as rosemary, ginkgo nuts, mango, and common thyme, which makes gamma-eudesmol a potential biomarker for the consumption of these food products. Gamma-eudesmol, also known as γ-eudesmol, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Gamma-eudesmol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Gamma-eudesmol is a sweet and waxy tasting compound and can be found in a number of food items such as rosemary, ginkgo nuts, mango, and common thyme, which makes gamma-eudesmol a potential biomarker for the consumption of these food products.
β-Eudesmol
Beta-eudesmol, also known as beta-selinenol, is a member of the class of compounds known as eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids. Eudesmane, isoeudesmane or cycloeudesmane sesquiterpenoids are sesquiterpenoids with a structure based on the eudesmane skeleton. Beta-eudesmol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-eudesmol is a green and wood tasting compound and can be found in a number of food items such as common walnut, sweet basil, ginkgo nuts, and burdock, which makes beta-eudesmol a potential biomarker for the consumption of these food products. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].
Sappanchalcone
Sappanchalcone is a member of the class of chalcones that consists of trans-chalcone substituted by hydroxy groups at positions 3, 4 and 4 and a methoxy group at position 2. Isolated from Caesalpinia sappan, it exhibits neuroprotective and cytoprotective activity. It has a role as a metabolite, an antioxidant, an anti-inflammatory agent and an anti-allergic agent. It is a member of chalcones, a member of catechols and a monomethoxybenzene. It is functionally related to a trans-chalcone. Sappanchalcone is a natural product found in Biancaea decapetala and Biancaea sappan with data available. A member of the class of chalcones that consists of trans-chalcone substituted by hydroxy groups at positions 3, 4 and 4 and a methoxy group at position 2. Isolated from Caesalpinia sappan, it exhibits neuroprotective and cytoprotective activity.
Rhamnocitrin
Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol. Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. A monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2].
Protosappanin A
Protosappanin A (PTA), an immunosuppressive ingredient and major biphenyl compound isolated from Caesalpinia sappan L, suppresses JAK2/STAT3-dependent inflammation pathway through down-regulating the phosphorylation of JAK2 and STAT3[1]. Protosappanin A (PTA), an immunosuppressive ingredient and major biphenyl compound isolated from Caesalpinia sappan L, suppresses JAK2/STAT3-dependent inflammation pathway through down-regulating the phosphorylation of JAK2 and STAT3[1].
sappanol B
Protosappanin A is a member of catechols. It has a role as a metabolite. Protosappanin A is a natural product found in Alpinia japonica, Biancaea decapetala, and Biancaea sappan with data available. A natural product found in Caesalpinia sappan. Protosappanin A (PTA), an immunosuppressive ingredient and major biphenyl compound isolated from Caesalpinia sappan L, suppresses JAK2/STAT3-dependent inflammation pathway through down-regulating the phosphorylation of JAK2 and STAT3[1]. Protosappanin A (PTA), an immunosuppressive ingredient and major biphenyl compound isolated from Caesalpinia sappan L, suppresses JAK2/STAT3-dependent inflammation pathway through down-regulating the phosphorylation of JAK2 and STAT3[1].
Isoliquiritigenin
Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM. Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.
(-)-guaia-6,9-diene
473-15-4
Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1]. Beta-Eudesmol is a natural oxygenated sesquiterpene, activates hTRPA1, with an EC50 of 32.5 μM. Beta-Eudesmol increases appetite through TRPA1[1].
10-epi-g-Eudesmol
A eudesmane sesquiterpenoid in which the eudesmane skeleton carries a hydroxy substituent at C-11, has a double bond between C-4 and C-5 and has inversion of configuration at C-10.
brasilin
Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3]. Brazilin is a red dye precursor obtained from the heartwood of several species of tropical hardwoods. Brazilin inhibits the cells proliferation, promotes apoptosis, and induces autophagy through the AMPK/mTOR pathway. Brazilin shows chondroprotective and anti-inflammatory activities[1][2][3].
dihydroagarofuran
A eudesmane sesquiterpenoid that is octahydro-2H-3,9a-methano-1-benzoxepine substituted by methyl groups at positions 2, 2, 5a and 9 (the 3R,5aS,9R,9aS stereoisomer).