NCBI Taxonomy: 74709
Glycyrrhiza aspera (ncbi_taxid: 74709)
found 108 associated metabolites at species taxonomy rank level.
Ancestor: Glycyrrhiza
Child Taxonomies: none taxonomy data.
Liquiritin
Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). Liquiritin is found in herbs and spices. Liquiritin is isolated from Glycyrrhiza glabra (licorice) and Glycyrrhiza uralensis (Chinese licorice Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].
Isoliquiritigenin
Isoliquiritigenin is a member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, a biological pigment, a NMDA receptor antagonist, a GABA modulator, a metabolite, an antineoplastic agent and a geroprotector. It is functionally related to a trans-chalcone. It is a conjugate acid of an isoliquiritigenin(1-). Isoliquiritigenin is a precursor to several flavonones in many plants. Isoliquiritigenin is a natural product found in Pterocarpus indicus, Dracaena draco, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Medicago subspecies Isoliquiritigenin is found in many foods, some of which are cocoa bean, purple mangosteen, blackcurrant, and chives. A member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. Isoliquiritigenin is found in pulses. Isoliquiritigenin is isolated from Medicago specie D004791 - Enzyme Inhibitors Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM. Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.
Isoliquiritin
Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). Isoliquiritin is found in fruits. Isoliquiritin is isolated from Glycyrrhiza specie Isolated from Glycyrrhiza subspecies Isoliquiritin is found in tea and fruits. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].
Licoricidin
Licoricidin is a member of the class of hydroxyisoflavans that is R-isoflavan with hydroxy groups at positions 7, 2 and 4, a methoxy group at position 5 and prenyl groups at positions 6 and 3. Isolated from Glycyrrhiza uralensis, it exhibits antibacterial activity. It has a role as an antibacterial agent and a plant metabolite. It is a member of hydroxyisoflavans, an aromatic ether and a methoxyisoflavan. Licoricidin is a natural product found in Glycyrrhiza, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of). Licoricidin is found in herbs and spices. Licoricidin is a constituent of Glycyrrhiza glabra (licorice) and Glycyrrhiza uralensis (Chinese licorice). Constituent of Glycyrrhiza glabra (licorice) and Glycyrrhiza uralensis (Chinese licorice). Licoricidin is found in tea and herbs and spices.
Glycyrol
Glycyrol is a member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 1 and 9, a methoxy group at position 3 and a prenyl group at position 2 respectively. It has a role as a plant metabolite and an antineoplastic agent. It is a member of coumestans, a polyphenol, a delta-lactone and an aromatic ether. It is functionally related to a coumestan. Glycyrol is a natural product found in Glycyrrhiza, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of). A member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 1 and 9, a methoxy group at position 3 and a prenyl group at position 2 respectively. Glycyrol is found in root vegetables. Glycyrol is isolated from Glycyrrhiza sp. root (licorice Isolated from Glycyrrhiza species root (licorice). Glycyrol is found in root vegetables. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2]. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2].
Glycyrrhizin
Licoricesaponin H2 is found in herbs and spices. Licoricesaponin H2 is a constituent of Glycyrrhiza uralensis (Chinese licorice). A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound Acquisition and generation of the data is financially supported in part by CREST/JST. Isolated from Glycyrrhiza glabra (liquorice). Nutriceutical with anticancer props. C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000893 - Anti-Inflammatory Agents KEIO_ID G057 Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.
Vicenin 2
Constituent of lemons (Citrus limon). Vicenin 2 is found in many foods, some of which are common salsify, fenugreek, sweet orange, and cucumber. Vicenin 2 is found in citrus. Vicenin 2 is a constituent of lemons (Citrus limon) Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1]. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1].
Licoisoflavone A
Constituent of Phaseolus vulgaris (kidney bean). Licoisoflavone A is found in many foods, some of which are yellow wax bean, common bean, white lupine, and green bean. Licoisoflavone A is found in common bean. Licoisoflavone A is a constituent of Phaseolus vulgaris (kidney bean). Licoisoflavone A is an isoflavone[1]. Licoisoflavone A inhibits lipid peroxidation with an IC50 of 7.2 μM[1]. Licoisoflavone A is an isoflavone[1]. Licoisoflavone A inhibits lipid peroxidation with an IC50 of 7.2 μM[1].
Schaftoside
Apigenin 6-c-glucoside 8-c-riboside is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Apigenin 6-c-glucoside 8-c-riboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 6-c-glucoside 8-c-riboside can be found in herbs and spices, which makes apigenin 6-c-glucoside 8-c-riboside a potential biomarker for the consumption of this food product. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1].
Licochalcone B
Licochalcone B is a member of chalcones. Licochalcone B is a natural product found in Euphorbia helioscopia, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza inflata root (part of). Licochalcone B is found in herbs and spices. Licochalcone B is a constituent of the roots of Glycyrrhiza glabra (licorice). Constituent of the roots of Glycyrrhiza glabra (licorice). Licochalcone B is found in tea and herbs and spices. Licochalcone B is an extract from the root of Glycyrrhiza uralensis. Licochalcone B inhibits amyloid β (42) self-aggregation (IC50=2.16 μM) and disaggregate pre-formed Aβ42 fibrils, reduce metal-induced Aβ42 aggregation through chelating metal ionsLicochalcone B inhibits phosphorylation of NF-κB p65 in LPS signaling pathway. Licochalcone B inhibits growth and induces apoptosis of NSCLC cells. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7‐NLRP3 interaction[1][2][3][4]. Licochalcone B is an extract from the root of Glycyrrhiza uralensis. Licochalcone B inhibits amyloid β (42) self-aggregation (IC50=2.16 μM) and disaggregate pre-formed Aβ42 fibrils, reduce metal-induced Aβ42 aggregation through chelating metal ionsLicochalcone B inhibits phosphorylation of NF-κB p65 in LPS signaling pathway. Licochalcone B inhibits growth and induces apoptosis of NSCLC cells. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7‐NLRP3 interaction[1][2][3][4].
3'-(gamma,gamma-Dimethylallyl)genistein
Isowighteone is a member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 3. It has been isolated from Ficus mucuso. It has a role as a plant metabolite. It is functionally related to an isoflavone. Isowighteone is a natural product found in Sophora tomentosa, Erythrina addisoniae, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is isoflavone substituted by hydroxy groups at positions 5, 7 and 4 and a prenyl group at position 3. It has been isolated from Ficus mucuso. 3-(gamma,gamma-Dimethylallyl)genistein is found in pigeon pea. 3-(gamma,gamma-Dimethylallyl)genistein is isolated from Cajanus cajan (pigeon pea). Isolated from Cajanus cajan (pigeon pea). 3-(gamma,gamma-Dimethylallyl)genistein is found in pigeon pea and pulses.
Isolicoflavonol
Isolicoflavonol is a member of flavones. Isolicoflavonol is a natural product found in Macaranga conifera, Broussonetia papyrifera, and other organisms with data available. Isolicoflavonol is found in herbs and spices. Isolicoflavonol is a constituent of Glycyrrhiza uralensis (Chinese licorice) and Glycyrrhiza glabra (licorice). Constituent of Glycyrrhiza uralensis (Chinese licorice) and Glycyrrhiza glabra (licorice). Isolicoflavonol is found in herbs and spices.
Glycycoumarin
Glycycoumarin is a member of the class of coumarins that is coumarin substituted by a hydroxy group at position 7, a methoxy group at position 5, a prenyl group at position 6 and a 2,4-dihydroxyphenyl group at position 3. Isolated from Glycyrrhiza uralensis, it exhibits antispasmodic activity. It has a role as an antispasmodic drug and a plant metabolite. It is a member of coumarins, an aromatic ether and a member of resorcinols. Glycycoumarin is a natural product found in Glycyrrhiza glabra, Glycyrrhiza uralensis, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of). A member of the class of coumarins that is coumarin substituted by a hydroxy group at position 7, a methoxy group at position 5, a prenyl group at position 6 and a 2,4-dihydroxyphenyl group at position 3. Isolated from Glycyrrhiza uralensis, it exhibits antispasmodic activity. Glycycoumarin is found in root vegetables. Glycycoumarin is from licorice (Glycyrrhiza glabra From licorice (Glycyrrhiza glabra). Glycycoumarin is found in root vegetables. Glycycoumarin is a potent antispasmodic agent. Glycycoumarin is a major bioactive coumarin of licorice and exhibits antispasmodic activity. Glycycoumarin also has hepatoprotective effect. Glycycoumarin can be used for the research of abdominal pain and liver diseases[1][2]. Glycycoumarin is a potent antispasmodic agent. Glycycoumarin is a major bioactive coumarin of licorice and exhibits antispasmodic activity. Glycycoumarin also has hepatoprotective effect. Glycycoumarin can be used for the research of abdominal pain and liver diseases[1][2]. Glycycoumarin is a potent antispasmodic agent. Glycycoumarin is a major bioactive coumarin of licorice and exhibits antispasmodic activity. Glycycoumarin also has hepatoprotective effect. Glycycoumarin can be used for the research of abdominal pain and liver diseases[1][2].
Neolicuroside
Neolicuroside is found in herbs and spices. Neolicuroside is a constituent of Glycyrrhiza uralensis (Chinese licorice). Constituent of Glycyrrhiza uralensis (Chinese licorice). Neolicuroside is found in herbs and spices. Isoliquiritin apioside significantly decreases PMA-induced increases in MMP9 activities and suppresses PMA-induced activation of MAPK and NF-κB. Isoliquiritin apioside auppresseses invasiveness and angiogenesis of cancer cells and endothelial cells[1]. Isoliquiritin apioside significantly decreases PMA-induced increases in MMP9 activities and suppresses PMA-induced activation of MAPK and NF-κB. Isoliquiritin apioside auppresseses invasiveness and angiogenesis of cancer cells and endothelial cells[1].
Gancaonin A
Gancaonin A is found in herbs and spices. Gancaonin A is isolated from Glycyrrhiza uralensis (Chinese licorice). Isolated from Glycyrrhiza uralensis (Chinese licorice). Gancaonin A is found in herbs and spices.
Licocoumarone
Licocoumarone is found in herbs and spices. Licocoumarone is isolated from roots of Glycyrrhiza uralensis (Chinese licorice). Isolated from roots of Glycyrrhiza uralensis (Chinese licorice). Licocoumarone is found in herbs and spices.
Semilicoisoflavone B
Semilicoisoflavone B is found in root vegetables. Semilicoisoflavone B is a constituent of licorice (Glycyrrhiza sp.) Constituent of licorice (Glycyrrhiza species). Semilicoisoflavone B is found in root vegetables.
1-(2,4-Dihydroxyphenyl)-3-[4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]prop-2-en-1-one
Licoflavone B
Licoflavone B is a member of flavones. Licoflavone B is a natural product found in Lupinus albus, Glycyrrhiza glabra, and Glycyrrhiza inflata with data available. See also: Glycyrrhiza inflata root (part of). Licoflavone B is a flavonoid isolated from Glycyrrhiza inflata, inhibits S. mansoni ATPase (IC50, 23.78 μM) and ADPase (IC50, 31.50 μM) activity. Anti-schistosomiasis activity[1]. Licoflavone B is a flavonoid isolated from Glycyrrhiza inflata, inhibits S. mansoni ATPase (IC50, 23.78 μM) and ADPase (IC50, 31.50 μM) activity. Anti-schistosomiasis activity[1].
Liquiritin apioside
Liquiritin apioside is a member of flavonoids and a glycoside. Liquiritin apioside is a natural product found in Paeonia lactiflora, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of). Liquiritin apioside, a main flavonoid component of licorice, possesses antitussive effects[1]. Liquiritin apioside, a main flavonoid component of licorice, possesses antitussive effects[1].
Vicenin
Isovitexin 8-C-beta-glucoside is a C-glycosyl compound that is isovitexin in which the hydrogen at position 8 is replaced by a beta-D-glucosyl residue. It has a role as a metabolite. It is a trihydroxyflavone and a C-glycosyl compound. It is functionally related to an isovitexin. Vicenin-2 is a natural product found in Carex fraseriana, Pseudarrhenatherum longifolium, and other organisms with data available. A C-glycosyl compound that is isovitexin in which the hydrogen at position 8 is replaced by a beta-D-glucosyl residue. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1]. Vicenin 2 is an angiotensin-converting enzyme (ACE) inhibitor (IC50=43.83 μM) from the aerial parts of Desmodium styracifolium[1].
Glycyrrhizin
Glycyrrhizinic acid is a triterpenoid saponin that is the glucosiduronide derivative of 3beta-hydroxy-11-oxoolean-12-en-30-oic acid. It has a role as an EC 3.4.21.5 (thrombin) inhibitor and a plant metabolite. It is a glucosiduronic acid, a tricarboxylic acid, a pentacyclic triterpenoid, an enone and a triterpenoid saponin. It is a conjugate acid of a glycyrrhizinate(3-). Glycyrrhizic acid is extracted from the root of the licorice plant; Glycyrrhiza glabra. It is a triterpene glycoside with glycyrrhetinic acid that possesses a wide range of pharmacological and biological activities. When extracted from the plant, it can be obtained in the form of ammonium glycyrrhizin and mono-ammonium glycyrrhizin. Glycyrrhizic acid has been developed in Japan and China as a hepatoprotective drug in cases of chronic hepatitis. From January 2014, glycyrrhizic acid as part of the licorice extract was approved by the FDA as an existing food sweetener. It was approved by Health Canada to be used in over-the-counter products but all the products are currently on the status canceled post marketed. Glycyrrhizic acid is a natural product found in Hypomontagnella monticulosa, Abrus precatorius, and other organisms with data available. Glycyrrhizin is a saponin-like compound that provides the main sweet flavor for Glycyrrhiza glabra (licorice), with potential immunomodulating, anti-inflammatory, hepato- and neuro-protective, and antineoplastic activities. Glycyrrhizin modulates certain enzymes involved in inflammation and oxidative stress, and downregulates certain pro-inflammatory mediators, thereby protecting against inflammation- and reactive oxygen species (ROS)-induced damage. Glycerrhizin may also suppress the growth of susceptible tumor cells. Glycyrrhyzin is a metabolite found in or produced by Saccharomyces cerevisiae. A widely used anti-inflammatory agent isolated from the licorice root. It is metabolized to GLYCYRRHETINIC ACID, which inhibits 11-BETA-HYDROXYSTEROID DEHYDROGENASES and other enzymes involved in the metabolism of CORTICOSTEROIDS. Therefore, glycyrrhizic acid, which is the main and sweet component of licorice, has been investigated for its ability to cause hypermineralocorticoidism with sodium retention and potassium loss, edema, increased blood pressure, as well as depression of the renin-angiotensin-aldosterone system. See also: Enoxolone (has active moiety); Glycyrrhizinate Dipotassium (active moiety of); Glycyrrhiza uralensis Root (part of) ... View More ... A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05B - Liver therapy, lipotropics > A05BA - Liver therapy A triterpenoid saponin that is the glucosiduronide derivative of 3beta-hydroxy-11-oxoolean-12-en-30-oic acid. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product D000893 - Anti-Inflammatory Agents Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities. Glycyrrhizic acid is a triterpenoid saponinl, acting as a direct HMGB1 antagonist, with anti-tumor, anti-diabetic activities.
Sophoraisoflavone A
Licoricidin
Licoricidin is a member of the class of hydroxyisoflavans that is R-isoflavan with hydroxy groups at positions 7, 2 and 4, a methoxy group at position 5 and prenyl groups at positions 6 and 3. Isolated from Glycyrrhiza uralensis, it exhibits antibacterial activity. It has a role as an antibacterial agent and a plant metabolite. It is a member of hydroxyisoflavans, an aromatic ether and a methoxyisoflavan. Licoricidin is a natural product found in Glycyrrhiza, Glycyrrhiza glabra, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of). A member of the class of hydroxyisoflavans that is R-isoflavan with hydroxy groups at positions 7, 2 and 4, a methoxy group at position 5 and prenyl groups at positions 6 and 3. Isolated from Glycyrrhiza uralensis, it exhibits antibacterial activity.
Glycycoumarin
Glycycoumarin is a potent antispasmodic agent. Glycycoumarin is a major bioactive coumarin of licorice and exhibits antispasmodic activity. Glycycoumarin also has hepatoprotective effect. Glycycoumarin can be used for the research of abdominal pain and liver diseases[1][2]. Glycycoumarin is a potent antispasmodic agent. Glycycoumarin is a major bioactive coumarin of licorice and exhibits antispasmodic activity. Glycycoumarin also has hepatoprotective effect. Glycycoumarin can be used for the research of abdominal pain and liver diseases[1][2]. Glycycoumarin is a potent antispasmodic agent. Glycycoumarin is a major bioactive coumarin of licorice and exhibits antispasmodic activity. Glycycoumarin also has hepatoprotective effect. Glycycoumarin can be used for the research of abdominal pain and liver diseases[1][2].
Glycyrol
Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2]. Neoglycyrol is isolated from the root of Glycyrrhiza uralensis Fisch[1]. Neoglycyrol is a potential myocardial protection active compound screened from traditional patent medicine Tongmai Yangxin pill (TMYXP)[2].
Licocoumarone
A member of the class of 1-benzofurans which consists of 1-benzofuran substituted by a hydroxy group at position 6, a methoxy group at position 4, a prenyl group at position 5 and a 2,4-dihydroxyphenyl group at position 2. It has been isolated from Glycyrrhiza uralensis.
Licuroside
Licraside is isolated from Glycyrrhiza uralesis Fish. Licraside is isolated from Glycyrrhiza uralesis Fish.
Liquiritin
Liquiritin is a flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite, an anticoronaviral agent and an anti-inflammatory agent. It is a flavanone glycoside, a beta-D-glucoside, a monosaccharide derivative and a monohydroxyflavanone. It is functionally related to a liquiritigenin. Liquiritin is a natural product found in Polygonum aviculare, Artemisia capillaris, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of). A flavanone glycoside that is liquiritigenin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.697 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.694 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.693 Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1]. Neoliquiritin is isolated from Glycyrrhiza uralensis with an anti-inflammatory activity[1].
Semilicoisoflavone B
A member of the class of 7-hydroxyisoflavones that is 2,2-dimethyl-2H,4H-3,6-bichromen-4-one substituted by hydroxy groups at positions 5, 7 and 8. It has been isolated from Glycyrrhiza uralensis.
Isoliquiritigenin 4-O-glucoside 4-O-apiofuranosyl-(1->2)-glucoside
Licoisoflavone A
Licoisoflavone A is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by additional hydroxy groups at positions 5, 2 and 4 and a prenyl group at position 3. It has a role as a metabolite. Licoisoflavone A is a natural product found in Sophora moorcroftiana, Lupinus texensis, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by additional hydroxy groups at positions 5, 2 and 4 and a prenyl group at position 3. Constituent of Phaseolus vulgaris (kidney bean). Licoisoflavone A is found in many foods, some of which are yellow wax bean, common bean, white lupine, and green bean. Licoisoflavone A is found in common bean. Licoisoflavone A is a constituent of Phaseolus vulgaris (kidney bean). Licoisoflavone A is an isoflavone[1]. Licoisoflavone A inhibits lipid peroxidation with an IC50 of 7.2 μM[1]. Licoisoflavone A is an isoflavone[1]. Licoisoflavone A inhibits lipid peroxidation with an IC50 of 7.2 μM[1].
Licochalcone B
Licochalcone B is an extract from the root of Glycyrrhiza uralensis. Licochalcone B inhibits amyloid β (42) self-aggregation (IC50=2.16 μM) and disaggregate pre-formed Aβ42 fibrils, reduce metal-induced Aβ42 aggregation through chelating metal ionsLicochalcone B inhibits phosphorylation of NF-κB p65 in LPS signaling pathway. Licochalcone B inhibits growth and induces apoptosis of NSCLC cells. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7‐NLRP3 interaction[1][2][3][4]. Licochalcone B is an extract from the root of Glycyrrhiza uralensis. Licochalcone B inhibits amyloid β (42) self-aggregation (IC50=2.16 μM) and disaggregate pre-formed Aβ42 fibrils, reduce metal-induced Aβ42 aggregation through chelating metal ionsLicochalcone B inhibits phosphorylation of NF-κB p65 in LPS signaling pathway. Licochalcone B inhibits growth and induces apoptosis of NSCLC cells. Licochalcone B specifically inhibits the NLRP3 inflammasome by disrupting NEK7‐NLRP3 interaction[1][2][3][4].
Licoisoflavone
Licoisoflavone A is an isoflavone[1]. Licoisoflavone A inhibits lipid peroxidation with an IC50 of 7.2 μM[1]. Licoisoflavone A is an isoflavone[1]. Licoisoflavone A inhibits lipid peroxidation with an IC50 of 7.2 μM[1].
likviritin
Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2]. Liquiritin, a flavonoid isolated from Glycyrrhiza uralensis, is a potent and competitive AKR1C1 inhibitor with IC50s of 0.62 μM, 0.61 μM, and 3.72μM for AKR1C1, AKR1C2 and AKR1C3, respectively. Liquiritin efficiently inhibits progesterone metabolism mediated by AKR1C1 in vivo[1]. Liquiritin acts as an antioxidant and has neuroprotective, anti-cancer and anti-inflammatory activity[2].
Isoliquiritin
Isoliquiritin is a monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. It has a role as an antineoplastic agent and a plant metabolite. It is a member of chalcones, a member of resorcinols, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-chalcone. Isoliquiritin is a natural product found in Allium chinense, Portulaca oleracea, and other organisms with data available. See also: Glycyrrhiza Glabra (part of). A monosaccharide derivative that is trans-chalcone substituted by hydroxy groups at positions 2 and 4 and a beta-D-glucopyranosyloxy group at position 4 respectively. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3]. Isoliquiritin, isolated from Licorice Root, inhibits angiogenesis and tube formation. Isoliquiritin also exhibits antidepressant-like effects and antifungal activity[1][2][3].