NCBI Taxonomy: 248526

Psorothamnus (ncbi_taxid: 248526)

found 61 associated metabolites at genus taxonomy rank level.

Ancestor: Amorpheae

Child Taxonomies: Psorothamnus emoryi, Psorothamnus kingii, Psorothamnus schottii, Psorothamnus spinosus, Psorothamnus fremontii, Psorothamnus scoparius, Psorothamnus polydenius, Psorothamnus arborescens, Psorothamnus thompsoniae

Isoliquiritigenin

(E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

C15H12O4 (256.0736)


Isoliquiritigenin is a member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, a biological pigment, a NMDA receptor antagonist, a GABA modulator, a metabolite, an antineoplastic agent and a geroprotector. It is functionally related to a trans-chalcone. It is a conjugate acid of an isoliquiritigenin(1-). Isoliquiritigenin is a precursor to several flavonones in many plants. Isoliquiritigenin is a natural product found in Pterocarpus indicus, Dracaena draco, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Medicago subspecies Isoliquiritigenin is found in many foods, some of which are cocoa bean, purple mangosteen, blackcurrant, and chives. A member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. Isoliquiritigenin is found in pulses. Isoliquiritigenin is isolated from Medicago specie D004791 - Enzyme Inhibitors Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM. Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A polyphenol metabolite detected in biological fluids [PhenolExplorer] Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Eriodictyol, also known as 3,4,5,7-tetrahydroxyflavanone or 2,3-dihydroluteolin, belongs to the class of organic compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, eriodictyol is considered to be a flavonoid lipid molecule. Outside of the human body, eriodictyol has been detected, but not quantified in, several different foods, such as common oregano, common thymes, parsley, sweet basils, and tarragons. This could make eriodictyol a potential biomarker for the consumption of these foods. Eriodictyol is a compound isolated from Eriodictyon californicum and can be used in medicine as an expectorant. BioTransformer predicts that eriodictiol is a product of luteolin metabolism via a flavonoid-c-ring-reduction reaction catalyzed by an unspecified-gut microbiota enzyme (PMID: 30612223). Eriodictyol, also known as 5735-tetrahydroxyflavanone, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Eriodictyol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eriodictyol can be found in a number of food items such as rowal, grape, cardamom, and lemon balm, which makes eriodictyol a potential biomarker for the consumption of these food products. Eriodictyol is a bitter-masking flavanone, a flavonoid extracted from yerba santa (Eriodictyon californicum), a plant native to North America. Eriodictyol is one of the four flavanones identified in this plant as having taste-modifying properties, the other three being homoeriodictyol, its sodium salt, and sterubin . Eriodictyol is a tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. It is a tetrahydroxyflavanone and a member of 3-hydroxyflavanones. Eriodictyol is a natural product found in Eupatorium album, Eupatorium hyssopifolium, and other organisms with data available. A tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. Acquisition and generation of the data is financially supported in part by CREST/JST. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Medicarpin

9-Methoxy-6a,11a-dimethyl-6a,11a-dihydro-6H-\ 1-benzofuro[3,2-c]chromen-3-ol from Dalbergia Oliveri

C16H14O4 (270.0892)


A member of the class of pterocarpans that is 3-hydroxyptercarpan with a methoxy substituent at position 9. (+)-medicarpin is the (+)-enantiomer of medicarpin. It is an enantiomer of a (-)-medicarpin. (+)-Medicarpin is a natural product found in Dalbergia sissoo, Machaerium acutifolium, and other organisms with data available. The (+)-enantiomer of medicarpin. (-)-medicarpin is the (-)-enantiomer of medicarpin. It has a role as a plant metabolite. It is an enantiomer of a (+)-medicarpin. Medicarpin is a natural product found in Cicer chorassanicum, Melilotus dentatus, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of); Medicago sativa whole (part of). The (-)-enantiomer of medicarpin. Medicarpin is a flavonoid isolated from Medicago sativa. Medicarpin induces apoptosis and overcome multidrug resistance in leukemia P388 cells by modulating P-gp-mediated efflux of agents[1]. Medicarpin is a flavonoid isolated from Medicago sativa. Medicarpin induces apoptosis and overcome multidrug resistance in leukemia P388 cells by modulating P-gp-mediated efflux of agents[1].

   

(-)-Maackiain

(1R,12R)-5,7,11,19-tetraoxapentacyclo[10.8.0.02,10.04,8.013,18]icosa-2,4(8),9,13(18),14,16-hexaen-16-ol

C16H12O5 (284.0685)


(-)-maackiain is the (-)-enantiomer of maackiain. It is an enantiomer of a (+)-maackiain. Maackiain is a natural product found in Tephrosia virginiana, Leptolobium bijugum, and other organisms with data available. (-)-Maackiain. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2035-15-6 (retrieved 2024-07-09) (CAS RN: 2035-15-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

Melilotocarpan A

4-Hydroxy-3,9-dimethoxypterocarpan

C17H16O5 (300.0998)


   

(-)-Maackiain

5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-2,4(8),9,13(18),14,16-hexaen-16-ol

C16H12O5 (284.0685)


(-)-Maackiain is found in chickpea. (-)-Maackiain is widespread in the Leguminosae subfamily. (-)-Maackiain is a constituent of Trifolium pratense (red clover). (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

1-(2,4-dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one

1-(2,4-dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one

C18H18O5 (314.1154)


   

(S)-5,7-Dihydroxy-6,8-dimethylflavanone

5,7-dihydroxy-6,8-dimethyl-2-phenyl-3,4-dihydro-2H-1-benzopyran-4-one

C17H16O4 (284.1049)


(S)-5,7-Dihydroxy-6,8-dimethylflavanone is found in fruits. (S)-5,7-Dihydroxy-6,8-dimethylflavanone is isolated from Eugenia javanica (Java apple

   

Octacosane

CH3-[CH2]26-CH3

C28H58 (394.4538)


Octacosane, also known as ch3-[ch2]26-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, octacosane is considered to be a hydrocarbon lipid molecule. Octacosane can be found in a number of food items such as peach, linden, apple, and carrot, which makes octacosane a potential biomarker for the consumption of these food products. Octacosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Octacosane, also known as CH3-[CH2]26-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Octacosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, octacosane is considered to be a hydrocarbon lipid molecule. Octacosane has been detected, but not quantified, in several different foods, such as peachs, coconuts, apples, sweet cherries, and lindens. This could make octacosane a potential biomarker for the consumption of these foods. A straight-chain alkane containing 28 carbon atoms.

   

1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-phenyl-2-propen-1-one

(2E)-1-(2,4-dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-phenylprop-2-en-1-one

C18H18O4 (298.1205)


1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-phenyl-2-propen-1-one is found in herbs and spices. 1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-phenyl-2-propen-1-one is isolated from Myrica gale (bog myrtle). Isolated from Myrica gale (bog myrtle). 1-(2,4-Dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-phenyl-2-propen-1-one is found in herbs and spices.

   

Medicarpin

14-methoxy-8,17-dioxatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-2,4,6,11(16),12,14-hexaen-5-ol

C16H14O4 (270.0892)


Medicarpin is a member of the class of compounds known as pterocarpans. Pterocarpans are benzo-pyrano-furano-benzene compounds, containing the 6H-[1]benzofuro[3,2-c]chromene skeleton. They are derivatives of isoflavonoids. Medicarpin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Medicarpin can be found in black-eyed pea, broad bean, and chickpea, which makes medicarpin a potential biomarker for the consumption of these food products. Medicarpin is a pterocarpan, a derivative of isoflavonoids . Medicarpin is a flavonoid isolated from Medicago sativa. Medicarpin induces apoptosis and overcome multidrug resistance in leukemia P388 cells by modulating P-gp-mediated efflux of agents[1]. Medicarpin is a flavonoid isolated from Medicago sativa. Medicarpin induces apoptosis and overcome multidrug resistance in leukemia P388 cells by modulating P-gp-mediated efflux of agents[1].

   

4-Hydroxymaackiain

3,4-Dihydroxy-8,9-methylenedioxypterocarpan

C16H12O6 (300.0634)


   
   
   

fremontin

3- [2,4-Dihydroxy-5- (2-methylbut-3-en-2-yl) phenyl] -5,7-dihydroxychromen-4-one

C20H18O6 (354.1103)


   

Fremontone

5,7,2,4-Tetrahydroxy-3-prenyl-5- (1",1"-dimethylallyl) isoflavone

C25H26O6 (422.1729)


   

2,4-Dihydroxy-6-methoxy-3,5-dimethylchalcone

2,4-Dihydroxy-6-methoxy-3,5-dimethylchalcone

C18H18O4 (298.1205)


A member of the class of chalcones that is trans-chalcone substituted by hydroxy groups at positions 2 and 4, a methoxy group at position 6 and methyl groups at positions 3 and 5. Isolated from the buds of Cleistocalyx operculatus, it has been shown to exhibit inhibitory effects on the viral neuraminidases from two influenza viral strains, H1N1 and H9N2.

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Constituent of the leaves and branches of Phyllanthus emblica (emblic). Eriodictyol 7-(6-coumaroylglucoside) is found in fruits. Annotation level-1 Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

CHEMBL490343

CHEMBL490343

C20H18O6 (354.1103)


   

Oleanolic Acid

Oleanolic Acid

C30H48O3 (456.3603)


   

5-METHOXYCOUMARIN

5-METHOXYCOUMARIN

C10H8O3 (176.0473)


   

5,7,3,4-tetrahydroxy-2-(3,3-dimethylallyl)isoflavone

5,7,3,4-tetrahydroxy-2-(3,3-dimethylallyl)isoflavone

C20H18O6 (354.1103)


A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone with additional hydroxy groups at positions 5, 3 and 4 and a prenyl group at position 2. Isolated from the roots of Psorothamnus arborescens, it exhibits antileishmanial activity.

   

CHEMBL491481

CHEMBL491481

C17H12O6 (312.0634)


   

Isoliquiritigenin

Isoliquiritigenin

C15H12O4 (256.0736)


Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM. Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.

   

Calycosin

4H-1-Benzopyran-4-one, 7-hydroxy-3-(3-hydroxy-4-methoxyphenyl)-

C16H12O5 (284.0685)


Calycosin is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. It has a role as a metabolite and an antioxidant. It is a member of 7-hydroxyisoflavones and a member of 4-methoxyisoflavones. It is functionally related to an isoflavone. It is a conjugate acid of a calycosin(1-). Calycosin is a natural product found in Thermopsis lanceolata, Hedysarum polybotrys, and other organisms with data available. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone which is substituted by an additional hydroxy group at the 3 position and a methoxy group at the 4 position. Calycosin is a natural compound with antioxidant and anti-inflammatory activity. Calycosin is a natural compound with antioxidant and anti-inflammatory activity.

   

Maackiain

(-)-Maackiain

C16H12O5 (284.0685)


Widespread in the Leguminosae subfamily. Constituent of Trifolium pratense (red clover). (-)-Maackiain is found in many foods, some of which are nectarine, chickpea, alaska blueberry, and adzuki bean. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

Desmethoxymatteucinol

Desmethoxymatteucinol

C17H16O4 (284.1049)


   

OCTACOSANE

OCTACOSANE

C28H58 (394.4538)


A straight-chain alkane containing 28 carbon atoms.

   

Caryophyllin

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

AI3-52615

EINECS 211-125-7

C28H58 (394.4538)


   

33983-40-3

6H-Benzofuro(3,2-c)(1)benzopyran-3-ol, 6a,11a-dihydro-9-methoxy-, cis- (8CI)

C16H14O4 (270.0892)


   

2,2,4-Trihydroxy-6-methoxy-3,5-dimethylchalcone

2,2,4-Trihydroxy-6-methoxy-3,5-dimethylchalcone

C18H18O5 (314.1154)


A member of the class of chalcones that is 3,5-dimethylchalcone substituted by hydroxy groups at positions 2, 2 and 4 and a methoxy group at position 6. Isolated from Psorothamnus polydenius, it exhibits antiparasitic activity.

   

Maackiain

Maackiain

C16H12O5 (284.0685)


Maackiain (DL-Maackiain) is isolated from Maackia amurensis Rupr.et Maxim. Maackiain (DL-Maackiain) is a larvicidal agent against Aedes aegypti mosquito.xp Parasitol with a LD50 of ?21.95 μg/mL[1]. Maackiain (DL-Maackiain) induces fragmentations of DNA to oligonucleosomal-sized fragments that like a characteristic of apoptosis in the HL-60 cells[2]. Maackiain (DL-Maackiain) is isolated from Maackia amurensis Rupr.et Maxim. Maackiain (DL-Maackiain) is a larvicidal agent against Aedes aegypti mosquito.xp Parasitol with a LD50 of ?21.95 μg/mL[1]. Maackiain (DL-Maackiain) induces fragmentations of DNA to oligonucleosomal-sized fragments that like a characteristic of apoptosis in the HL-60 cells[2].

   

3-[3,4-dihydroxy-5-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxychromen-4-one

3-[3,4-dihydroxy-5-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxychromen-4-one

C20H18O6 (354.1103)


   

3-[4,5-dimethoxy-2-(2-methylbut-3-en-2-yl)phenyl]-5-hydroxy-7-methoxychromen-4-one

3-[4,5-dimethoxy-2-(2-methylbut-3-en-2-yl)phenyl]-5-hydroxy-7-methoxychromen-4-one

C23H24O6 (396.1573)


   

6-(chromen-2-ylidene)-5-methoxy-2,2,4-trimethylcyclohex-4-ene-1,3-dione

6-(chromen-2-ylidene)-5-methoxy-2,2,4-trimethylcyclohex-4-ene-1,3-dione

C19H18O4 (310.1205)


   

5,14-dimethoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11,13,15-hexaen-6-ol

5,14-dimethoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11,13,15-hexaen-6-ol

C17H16O5 (300.0998)


   

3-[3,4-dimethoxy-5-(3-methylbut-2-en-1-yl)phenyl]-5,7-dimethoxychromen-4-one

3-[3,4-dimethoxy-5-(3-methylbut-2-en-1-yl)phenyl]-5,7-dimethoxychromen-4-one

C24H26O6 (410.1729)


   

2',4,4'-trihydroxychalcone

2',4,4'-trihydroxychalcone

C15H12O4 (256.0736)


   

3-[3,4-dihydroxy-2-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxychromen-4-one

3-[3,4-dihydroxy-2-(3-methylbut-2-en-1-yl)phenyl]-5,7-dihydroxychromen-4-one

C20H18O6 (354.1103)


   

(1s,10s)-5,14-dimethoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11,13,15-hexaen-6-ol

(1s,10s)-5,14-dimethoxy-8,17-dioxatetracyclo[8.7.0.0²,⁷.0¹¹,¹⁶]heptadeca-2,4,6,11,13,15-hexaen-6-ol

C17H16O5 (300.0998)


   

(2s)-5,7-dihydroxy-6,8-dimethyl-2-phenyl-2,3-dihydro-1-benzopyran-4-one

(2s)-5,7-dihydroxy-6,8-dimethyl-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C17H16O4 (284.1049)


   

5,7-dihydroxy-3-[5-hydroxy-4-methoxy-2-(2-methylbut-3-en-2-yl)phenyl]chromen-4-one

5,7-dihydroxy-3-[5-hydroxy-4-methoxy-2-(2-methylbut-3-en-2-yl)phenyl]chromen-4-one

C21H20O6 (368.126)


   

2-(6-hydroxy-2h-1,3-benzodioxol-5-yl)-6-methoxy-1-benzofuran-3-carbaldehyde

2-(6-hydroxy-2h-1,3-benzodioxol-5-yl)-6-methoxy-1-benzofuran-3-carbaldehyde

C17H12O6 (312.0634)


   

(4s)-4-acetyl-2-(chromen-2-ylidene)-4-hydroxy-5,5-dimethylcyclopentane-1,3-dione

(4s)-4-acetyl-2-(chromen-2-ylidene)-4-hydroxy-5,5-dimethylcyclopentane-1,3-dione

C18H16O5 (312.0998)


   

(4s)-4-acetyl-2-[(2z)-chromen-2-ylidene]-4-hydroxy-5,5-dimethylcyclopentane-1,3-dione

(4s)-4-acetyl-2-[(2z)-chromen-2-ylidene]-4-hydroxy-5,5-dimethylcyclopentane-1,3-dione

C18H16O5 (312.0998)


   

6-[(2e)-chromen-2-ylidene]-5-methoxy-2,2,4-trimethylcyclohex-4-ene-1,3-dione

6-[(2e)-chromen-2-ylidene]-5-methoxy-2,2,4-trimethylcyclohex-4-ene-1,3-dione

C19H18O4 (310.1205)


   

(1r,12r)-5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-2,4(8),9,13,15,17-hexaene-16,17-diol

(1r,12r)-5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-2,4(8),9,13,15,17-hexaene-16,17-diol

C16H12O6 (300.0634)


   

2-(4-hydroxy-2-methoxyphenyl)-6-methoxy-1-benzofuran-3-carbaldehyde

2-(4-hydroxy-2-methoxyphenyl)-6-methoxy-1-benzofuran-3-carbaldehyde

C17H14O5 (298.0841)


   

3-[4,5-dihydroxy-2-(2-methylbut-3-en-2-yl)phenyl]-5,7-dihydroxychromen-4-one

3-[4,5-dihydroxy-2-(2-methylbut-3-en-2-yl)phenyl]-5,7-dihydroxychromen-4-one

C20H18O6 (354.1103)


   

5,7-dihydroxy-3-(8-hydroxy-2,2-dimethyl-3,4-dihydro-1-benzopyran-5-yl)chromen-4-one

5,7-dihydroxy-3-(8-hydroxy-2,2-dimethyl-3,4-dihydro-1-benzopyran-5-yl)chromen-4-one

C20H18O6 (354.1103)


   

(1s,12s)-5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-2,4(8),9,13,15,17-hexaene-16,17-diol

(1s,12s)-5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-2,4(8),9,13,15,17-hexaene-16,17-diol

C16H12O6 (300.0634)


   

11-(4-hydroxy-2-methoxyphenyl)-4,6,10-trioxatricyclo[7.3.0.0³,⁷]dodeca-1,3(7),8,11-tetraene-12-carbaldehyde

11-(4-hydroxy-2-methoxyphenyl)-4,6,10-trioxatricyclo[7.3.0.0³,⁷]dodeca-1,3(7),8,11-tetraene-12-carbaldehyde

C17H12O6 (312.0634)


   

(4as,6as,6br,8as,10s,12ar,12bs,14br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8as,10s,12ar,12bs,14br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


   

3-[4,5-dimethoxy-2-(2-methylbut-3-en-2-yl)phenyl]-5,7-dimethoxychromen-4-one

3-[4,5-dimethoxy-2-(2-methylbut-3-en-2-yl)phenyl]-5,7-dimethoxychromen-4-one

C24H26O6 (410.1729)


   

7-hydroxy-3-(2-hydroxy-4-methoxyphenyl)-6-methoxychromen-4-one

7-hydroxy-3-(2-hydroxy-4-methoxyphenyl)-6-methoxychromen-4-one

C17H14O6 (314.079)


   

(2e)-1-(2,4-dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one

(2e)-1-(2,4-dihydroxy-6-methoxy-3,5-dimethylphenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one

C18H18O5 (314.1154)


   

2-(acetyloxy)-4-[5,7-bis(acetyloxy)-4-oxochromen-3-yl]-5-(2-methylbut-3-en-2-yl)phenyl acetate

2-(acetyloxy)-4-[5,7-bis(acetyloxy)-4-oxochromen-3-yl]-5-(2-methylbut-3-en-2-yl)phenyl acetate

C28H26O10 (522.1526)


   

5,7-dihydroxy-3-(8-hydroxy-2,2-dimethyl-3,4-dihydro-1-benzopyran-6-yl)chromen-4-one

5,7-dihydroxy-3-(8-hydroxy-2,2-dimethyl-3,4-dihydro-1-benzopyran-6-yl)chromen-4-one

C20H18O6 (354.1103)