NCBI Taxonomy: 53583

Helianthus simulans (ncbi_taxid: 53583)

found 50 associated metabolites at species taxonomy rank level.

Ancestor: Helianthus

Child Taxonomies: none taxonomy data.

Isoliquiritigenin

(E)-1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one

C15H12O4 (256.0735552)


Isoliquiritigenin is a member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, a biological pigment, a NMDA receptor antagonist, a GABA modulator, a metabolite, an antineoplastic agent and a geroprotector. It is functionally related to a trans-chalcone. It is a conjugate acid of an isoliquiritigenin(1-). Isoliquiritigenin is a precursor to several flavonones in many plants. Isoliquiritigenin is a natural product found in Pterocarpus indicus, Dracaena draco, and other organisms with data available. See also: Glycyrrhiza Glabra (part of); Glycyrrhiza uralensis Root (part of); Pterocarpus marsupium wood (part of). Isolated from Medicago subspecies Isoliquiritigenin is found in many foods, some of which are cocoa bean, purple mangosteen, blackcurrant, and chives. A member of the class of chalcones that is trans-chalcone hydroxylated at C-2, -4 and -4. Isoliquiritigenin is found in pulses. Isoliquiritigenin is isolated from Medicago specie D004791 - Enzyme Inhibitors Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM. Isoliquiritigenin is an anti-tumor flavonoid from the root of Glycyrrhiza uralensis Fisch., which inhibits aldose reductase with an IC50 of 320 nM. Isoliquiritigenin is a potent inhibitor of influenza virus replication with an EC50 of 24.7 μM.

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

dinatin

Scutellarein 6-methyl ether

C16H12O6 (300.06338519999997)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Diterpenoid SP-II

ent-16beta,17-Dihydroxy-19-kauranoic acid

C20H32O4 (336.2300472)


   

Nevadensin

5,7-Dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

C18H16O7 (344.0895986)


Nevadensin, also known as pedunculin or 5,7-hydroxy-4,6,8-trimethoxyflavone, is a member of the class of compounds known as 8-o-methylated flavonoids. 8-o-methylated flavonoids are flavonoids with methoxy groups attached to the C8 atom of the flavonoid backbone. Thus, nevadensin is considered to be a flavonoid lipid molecule. Nevadensin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Nevadensin can be found in peppermint and sweet basil, which makes nevadensin a potential biomarker for the consumption of these food products. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2]. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2].

   

Heliangin

(9Z)-8-Hydroxy-4,9-dimethyl-14-methylidene-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradec-9-en-2-yl (2E)-2-methylbut-2-enoic acid

C20H26O6 (362.17292960000003)


Heliangin is found in jerusalem artichoke. Heliangin is isolated from Helianthus tuberosus (Jerusalem artichoke).

   

Quercetin 7-glucoside

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Quercetin 7-glucoside, also known as quercimeritrin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Quercetin 7-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 7-glucoside can be found in a number of food items such as roman camomile, okra, dandelion, and cottonseed, which makes quercetin 7-glucoside a potential biomarker for the consumption of these food products. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

Grandiflorolic acid

(1R,4S,5R,9S,10S,13R,15S)-15-Hydroxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylic acid

C20H30O3 (318.21948299999997)


Grandiflorolic acid is found in green vegetables. Grandiflorolic acid is a constituent of Aralia cordata (udo).

   

Lysionotin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-

C18H16O7 (344.0895986)


Nevadensin is a trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 8 and 4 and hydroxy groups at positions 5 and 7 respectively. It has a role as a plant metabolite. It is a trimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. It is a conjugate acid of a nevadensin-7-olate. Nevadensin is a natural product found in Calanticaria bicolor, Gardenia resinifera, and other organisms with data available. A trimethoxyflavone that is flavone substituted by methoxy groups at positions 6, 8 and 4 and hydroxy groups at positions 5 and 7 respectively. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2]. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2].

   

Quercimeritrin

Quercetin 7-O-beta-D-glucoside

C21H20O12 (464.09547200000003)


Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

Hymenoxin

2-(3,4-Dimethoxyphenyl)-5,7-dihydroxy-6,8-dimethoxy-4H-1-benzopyran-4-one, 9ci

C19H18O8 (374.1001628)


Isolated from Mentha piperita (peppermint). Hymenoxin is found in sunflower, peppermint, and herbs and spices. Hymenoxin is found in herbs and spices. Hymenoxin is isolated from Mentha piperita (peppermint).

   

Hispidulin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.06338519999997)


Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Quercimeritrin

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Quercetin 7-O-beta-D-glucoside is a quercetin O-glucoside in which a glucosyl residue is attached at position 7 of quercetin via a beta-glycosidic linkage. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of flavonols, a tetrahydroxyflavone and a quercetin O-glucoside. Quercimeritrin is a natural product found in Salix atrocinerea, Dendroviguiera sphaerocephala, and other organisms with data available. See also: Chamomile (part of). Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

Coreopsin

(E)-3-(3,4-Dihydroxyphenyl)-1-(2-hydroxy-4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)prop-2-en-1-one

C21H22O10 (434.1212912)


Coreopsin is a natural product found in Calanticaria bicolor, Bahiopsis tomentosa, and other organisms with data available.

   

sulfurein

(Z) -2- [ (3,4-Dihydroxyphenyl) methylene ] -6- (beta-D-glucopyranosyloxy) -3 (2H) -benzofuranone

C21H20O10 (432.105642)


   

dinatin

4H-1-Benzopyran-4-one, 5, 7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-

C16H12O6 (300.06338519999997)


Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.

   

Hymenoxin

2- (3,4-Dimethoxyphenyl) -5,7-dihydroxy-6,8-dimethoxy-4H-1-benzopyran-4-one

C19H18O8 (374.1001628)


   

ent-Kaur-16-en-19-oic acid

ent-Kaur-16-en-19-oic acid

C20H30O2 (302.224568)


   

Lysionotin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6,8-dimethoxy-2-(4-methoxyphenyl)-

C18H16O7 (344.0895986)


Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2]. Nevadensin is a naturally occurring selective inhibitor of human carboxylesterase 1 (hCE1) with an IC50 of 2.64 μM. Nevadensin has a variety of pharmacological effects such as anti-mycobacterium tuberculosis activities, antitussive, anti-inflammatory and anti-hypertensive[1][2].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

15-Hydroxykaur-16-en-18-oic acid

(1R,4S,5R,9S,10S,13R,15S)-15-Hydroxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadecane-5-carboxylic acid

C20H30O3 (318.21948299999997)


   

8-hydroxy-4,9-dimethyl-14-methylidene-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradec-9-en-2-yl 2-methylbut-2-enoate

8-hydroxy-4,9-dimethyl-14-methylidene-13-oxo-5,12-dioxatricyclo[9.3.0.0⁴,⁶]tetradec-9-en-2-yl 2-methylbut-2-enoate

C20H26O6 (362.17292960000003)


   

2',4,4'-trihydroxychalcone

2',4,4'-trihydroxychalcone

C15H12O4 (256.0735552)


   

(1s,4s,5r,9s,10r,12s,13r)-12-(acetyloxy)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1s,4s,5r,9s,10r,12s,13r)-12-(acetyloxy)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C22H32O4 (360.2300472)