Lupenone

(1S,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

D-Pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentol

C7H14O6 (194.079)


Widely distributed in plants. Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-Pinitol is found in many foods, some of which are ginkgo nuts, carob, soy bean, and common pea. D-Pinitol is found in carob. D-Pinitol is widely distributed in plants.Pinitol is a cyclitol, a cyclic polyol. It is a known anti-diabetic agent isolated from Sutherlandia frutescens leaves. (Wikipedia). D-Pinitol is a biomarker for the consumption of soy beans and other soy products. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

alpha-Spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). Constituent of Taraxacum officinale (dandelion). Taraxerol is found in many foods, some of which are kiwi, scarlet bean, prairie turnip, and grapefruit/pummelo hybrid. Taraxerol is found in alcoholic beverages. Taraxerol is a constituent of Taraxacum officinale (dandelion)

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.3861)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.1056)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Lutein

(1R,4R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol

C40H56O2 (568.428)


Lutein is a common carotenoid xanthophyll found in nature. Carotenoids are among the most common pigments in nature and are natural lipid-soluble antioxidants. Lutein is one of the two carotenoids (the other is zeaxanthin) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli, and eggs, are associated with a significant reduction in the risk for cataracts (up to 20\\\\\%) and age-related macular degeneration (up to 40\\\\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations (PMID: 11023002). Lutein is a carotenol. It has a role as a food colouring and a plant metabolite. It derives from a hydride of a (6R)-beta,epsilon-carotene. Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis. Lutein is a natural product found in Eupatorium cannabinum, Hibiscus syriacus, and other organisms with data available. Lutein is lutein (LOO-teen) is a oxygenated carotenoid found in vegetables and fruits. lutein is found in the macula of the eye, where it is believed to act as a yellow filter. Lutein acts as an antioxidant, protecting cells against the damaging effects of free radicals. A xanthophyll found in the major LIGHT-HARVESTING PROTEIN COMPLEXES of plants. Dietary lutein accumulates in the MACULA LUTEA. See also: Calendula Officinalis Flower (part of); Corn (part of); Chicken; lutein (component of) ... View More ... Pigment from egg yolk and leaves. Found in all higher plants. Nutriceutical with anticancer and antioxidation props. Potentially useful for the treatment of age-related macular degeneration (AMD) of the eye Lutein A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-40-2 (retrieved 2024-07-12) (CAS RN: 127-40-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.3912)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Glutinone

(6aS,6aS,6bR,8aR,12aR,14aR,14bS)-4,4,6a,6b,8a,11,11,14a-octamethyl-2,6,6a,7,8,9,10,12,12a,13,14,14b-dodecahydro-1H-picen-3-one

C30H48O (424.3705)


Glutinone is a member of cyclohexanones. Glutinone is a natural product found in Uvaria concava, Dischidia formosana, and other organisms with data available.

   

trans-Piceid

(2S,3R,4S,5S,6R)-2-{3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)ethenyl]phenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O8 (390.1315)


trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Oprea1_771605

3,11-dioxoolean-12-en-30-oic acid

C30H44O4 (468.3239)


   

Cassaidine

Cassaidine

C24H41NO4 (407.3035)


A tricyclic diterpenoid that is is isolated from several plant species including Erythrophleum guineense and Erythrophleum ivorense. It is toxic with a digitalis like effect on the heart and a strong local anesthetic action.

   

Cassaine

NCI60_041577

C24H39NO4 (405.2879)


A tricyclic diterpenoid isolated from several plant species of the genus Erythrophleum.

   

Erythrophleguine

Erythrophleguine

C25H39NO6 (449.2777)


   

Norerythrostachaldine

Norerythrostachaldine

C23H37NO5 (407.2672)


   

Glutinol

glutin-5-en-3beta-ol

C30H50O (426.3861)


   

Idrocilamide

Idrocilamide

C11H13NO2 (191.0946)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant

   

Pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.079)


D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol. Methylinositol has been used in trials studying the treatment of Dementia and Alzheimers Disease. D-Pinitol is a natural product found in Aegialitis annulata, Senna macranthera var. micans, and other organisms with data available. A member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3S,4S,5S,6S-isomer). D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

(3R,3'R,6'R,9-cis)-beta,epsilon-Carotene-3,3'-diol

(1R,4R)-4-[(1E,3E,5E,7E,9E,11E,13E,15Z,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol

C40H56O2 (568.428)


(3R,3R,6R,9-cis)-beta,epsilon-Carotene-3,3-diol is a carotenoid found in human fluids such as serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds and crustacea. Animals are unable to synthesise carotenoids de novo, and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids (3R,3R,6R,9-cis)-Carotene-3,3-diol is a carotenoid found in human fluids. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].

   

Cycloartanol

(1S,3R,6S,8R,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylheptan-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

C30H52O (428.4018)


Minor constituent of rice bran oil. Cycloartanol is found in many foods, some of which are yellow bell pepper, orange bell pepper, garden onion, and cereals and cereal products. Cycloartanol is found in cereals and cereal products. Cycloartanol is a minor constituent of rice bran oi

   

2-(Methylamino)ethanol

2-(Methylamino)ethanol

C3H9NO (75.0684)


   

Chondrillasterol

(2S,5S,7S,14R,15R)-14-[(2R,3E,5R)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H48O (412.3705)


Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. Chondrillasterol is found in tea. Chondrillasterol is found in tea. Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D003879 - Dermatologic Agents D003358 - Cosmetics

   

Squalen

2,6,10,15,19,23-Hexamethyltetracosa-2,6,10,14,18,22-hexaene

C30H50 (410.3912)


   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O10 (432.1056)


5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one can be found in a number of food items such as endive, linden, peach, and ginkgo nuts, which makes 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one a potential biomarker for the consumption of these food products. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

beta-Amyrin acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


Beta-amyrin acetate, also known as B-amyrin acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrin acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Beta-amyrin acetate can be found in burdock and guava, which makes beta-amyrin acetate a potential biomarker for the consumption of these food products. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Diterpene alkaloid

2-(Dimethylamino)ethyl 2-(7-hydroxy-1,4b,8,8-tetramethyl-10-oxo-tetradecahydrophenanthren-2-ylidene)acetic acid

C24H39NO4 (405.2879)


   

Friedelin

4,4a,6b,8a,11,11,12b,14a-octamethyl-docosahydropicen-3-one

C30H50O (426.3861)


Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as apple, pear, mammee apple, and sugar apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Lupenone

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one

C30H48O (424.3705)


1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. 1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one is an extremely weak basic (essentially neutral) compound (based on its pKa). This compound has been identified in human blood as reported by (PMID: 31557052 ). Lupenone is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Lupenone is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

Taraxerone

4,4,6a,8a,11,11,12b,14b-Octamethyl-1,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-octadecahydro-3(2H)-picenone

C30H48O (424.3705)


   

Spinosterol

(1R,2S,5S,7S,11R,14R,15R)-14-[(2R,3E,5S)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H48O (412.3705)


Spinosterol, also known as spinasterol, (3beta,5alpha,22e,24r)-isomer, belongs to stigmastanes and derivatives class of compounds. Those are sterol lipids with a structure based on the stigmastane skeleton, which consists of a cholestane moiety bearing an ethyl group at the carbon atom C24. Thus, spinosterol is considered to be a sterol lipid molecule. Spinosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Spinosterol can be found in wild celery, which makes spinosterol a potential biomarker for the consumption of this food product. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

Loliolide

(6S,7aR)-6-hydroxy-4,4,7a-trimethyl-2,4,5,6,7,7a-hexahydro-1-benzofuran-2-one

C11H16O3 (196.1099)


Loliolide, also known as (3s5r)-loliolide, is a member of the class of compounds known as benzofurans. Benzofurans are organic compounds containing a benzene ring fused to a furan. Furan is a five-membered aromatic ring with four carbon atoms and one oxygen atom. Loliolide is soluble (in water) and an extremely weak acidic compound (based on its pKa). Loliolide can be found in sunflower, tea, and wakame, which makes loliolide a potential biomarker for the consumption of these food products.

   

beta-Amyrenone

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-one

C30H48O (424.3705)


Beta-amyrenone is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrenone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrenone can be found in rosemary and shea tree, which makes beta-amyrenone a potential biomarker for the consumption of these food products.

   

trans-Piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1315)


Trans-piceid is a stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, a potassium channel modulator, an anti-arrhythmia drug, a hepatoprotective agent, an antioxidant, a nephroprotective agent and a geroprotector. It is a stilbenoid, a polyphenol, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a trans-resveratrol. Polydatin, or Piceid, is a natural precursor and glycoside form of resveratrol with a monocrystalline structure. While it is isolated from the bark of *Picea sitchensis* or *Polygonum cuspidatum*, polydatin may be detected in grape, peanut, hop cones, red wines, hop pellets, cocoa-containing products, chocolate products and many daily diets. Polydatin possesses anti-inflammatory, immunoregulatory, anti-oxidative and anti-tumor activities. It is shown to mediate a cytotoxic action on colorectal cancer cells by inducing cell arrest and apoptosis. Polydatin is a natural product found in Vitis rupestris, Vitis labrusca, and other organisms with data available. trans-Piceid is found in alcoholic beverages. trans-Piceid is present in grapeskins and red wine. It is isolated from Polygonum cuspidatum (Japanese knotweed).Piceid is a stilbenoid glucoside and is a major resveratrol derivative in grape juices A stilbenoid that is trans-resveratrol substituted at position 3 by a beta-D-glucosyl residue. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

Cycloartanol

(1S,3R,6S,8R,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylheptan-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C30H52O (428.4018)


   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterol

Stigmasterol

C29H48O (412.3705)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.1056)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Squalene

InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24

C30H50 (410.3912)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   
   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

N-(2-hydroxyethyl)-N-methyl-3-phenylprop-2-enamide

N-(2-hydroxyethyl)-N-methyl-3-phenylprop-2-enamide

C12H15NO2 (205.1103)


   

Taraxerone

Taraxerone

C30H48O (424.3705)


   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). A pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15.

   

2-(DIMETHYLAMINO)ETHYL 3-PHENYLPROP-2-ENOATE

2-(DIMETHYLAMINO)ETHYL 3-PHENYLPROP-2-ENOATE

C13H17NO2 (219.1259)


   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

echinulin

echinuline

C29H39N3O2 (461.3042)


An indole alkaloid with formula C29H39N3O2. It is a fungal metabolite found in several Aspergillus species.

   

Lutein

(1R,4R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethyl-1-cyclohexenyl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethyl-cyclohex-2-en-1-ol

C40H56O2 (568.428)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].

   

loliolide

2(4H)-Benzofuranone, 5,6,7,7a-tetrahydro-6-hydroxy-4,4,7a-trimethyl-, (6S-cis)-

C11H16O3 (196.1099)


A natural product found in Brachystemma calycinum.

   

piceid

(2S,3R,4S,5S,6R)-2-[3-hydroxy-5-[(E)-2-(4-hydroxyphenyl)vinyl]phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O8 (390.1315)


Origin: Plant, Glucosides, Stilbenes (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. (E/Z)-Polydatin ((E/Z)-Piceid) is a monocrystalline compound originally isolated from the root and rhizome of Polygonum cuspidatum. (E/Z)-Polydatin has anti-platelet aggregation, anti-oxidative action of low-density lipoprotein (LDL), cardioprotective activity, anti-inflammatory and immune-regulating functions[1]. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses. Polydatin (Standard) is the analytical standard of Polydatin. This product is intended for research and analytical applications. Polydatin (Piceid), extracted from the roots of Reynoutria japonica, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. Polydatin (Piceid) inhibits G6PD and induces oxidative and ER stresses.

   

pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentol

C7H14O6 (194.079)


D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-[(E,1R,4S)-4-ethyl-1,5-dimethyl-hex-2-enyl]-10,13-dimethyl-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

3-Oxoglycyrrhetinate

3,11-dioxoolean-12-en-30-oic acid

C30H44O4 (468.3239)


   

2-(dimethylamino)ethyl (2E)-3-phenylprop-2-enoate

2-(dimethylamino)ethyl (2E)-3-phenylprop-2-enoate

C13H17NO2 (219.1259)


   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Chondrillasterol

Chondrillasterol

C29H48O (412.3705)


   

alpha-Spinasterol

14-[(3E)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol

C29H48O (412.3705)


Constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. alpha-Spinasterol is found in many foods, some of which are bitter gourd, towel gourd, muskmelon, and green vegetables. alpha-Spinasterol is found in alfalfa. alpha-Spinasterol is a constituent of spinach (Spinacia oleracea) leaves, cucumber (Cucumis sativus), alfalfa meal, pumpkin seeds and senega root. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

7beta-Hydroxysitosterol

7beta-Hydroxysitosterol

C29H50O2 (430.3811)


A natural product found in Melia toosendan.

   

Spinasterol

(3S,5S,9R,10S,13R,14R,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Alpha-Spinasterol is a steroid. It derives from a hydride of a stigmastane. alpha-Spinasterol is a natural product found in Pandanus utilis, Benincasa hispida, and other organisms with data available. See also: Menyanthes trifoliata leaf (part of). α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2]. α-Spinasterol, isolated from Melandrium firmum, has antibacterial activity[1]. α-Spinasterol is a transient receptor potential vanilloid 1 (TRPV1) antagonist, has anti-inflammatory, antidepressant, antioxidant and antinociceptive effects. α-Spinasterol inhibits COX-1 andCOX-2 activities with IC50 values of 16.17 μM and 7.76 μM, respectively[2].

   

3-oxoglycyrrhetinic acid

3-oxoglycyrrhetinic acid

C30H44O4 (468.3239)


   

2-(Methylamino)ethanol

2-(Methylamino)ethanol

C3H9NO (75.0684)


   

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-2-{[(2e)-2-methylbut-2-enoyl]oxy}-10-oxo-decahydrophenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-2-{[(2e)-2-methylbut-2-enoyl]oxy}-10-oxo-decahydrophenanthrene-1-carboxylate

C29H43NO8 (533.2989)


   

(3s,6s)-3-{[5,7-bis(3-methylbut-2-en-1-yl)-2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-6-methyl-3,6-dihydropyrazine-2,5-diol

(3s,6s)-3-{[5,7-bis(3-methylbut-2-en-1-yl)-2-(2-methylbut-3-en-2-yl)-1h-indol-3-yl]methyl}-6-methyl-3,6-dihydropyrazine-2,5-diol

C29H39N3O2 (461.3042)


   

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-9-hydroxy-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-9-hydroxy-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

C25H41NO5 (435.2985)


   

2-[(1r,2e,4ar,4br,7s,8ar,10s,10as)-7,10-dihydroxy-1,4b,8,8-tetramethyl-decahydro-1h-phenanthren-2-ylidene]-n-(2-hydroxyethyl)-n-methylacetamide

2-[(1r,2e,4ar,4br,7s,8ar,10s,10as)-7,10-dihydroxy-1,4b,8,8-tetramethyl-decahydro-1h-phenanthren-2-ylidene]-n-(2-hydroxyethyl)-n-methylacetamide

C23H39NO4 (393.2879)


   

methyl (1s,4ar,4br,8r,8ar,9r,10ar)-9-hydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-10-oxo-decahydrophenanthrene-1-carboxylate

methyl (1s,4ar,4br,8r,8ar,9r,10ar)-9-hydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-10-oxo-decahydrophenanthrene-1-carboxylate

C24H37NO6 (435.2621)


   

methyl 9-hydroxy-2-({2-[10-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-9-oxo-decahydrophenanthren-2-ylidene]acetyl}oxy)-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl 9-hydroxy-2-({2-[10-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-9-oxo-decahydrophenanthren-2-ylidene]acetyl}oxy)-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C45H65NO12 (811.4507)


   

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-decahydrophenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-decahydrophenanthrene-1-carboxylate

C30H47NO12 (613.3098)


   

methyl (1s,4ar,4bs,7e,8r,8ar,9s,10ar)-9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

methyl (1s,4ar,4bs,7e,8r,8ar,9s,10ar)-9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

C24H39NO5 (421.2828)


   

methyl 7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-2-[(2-methylbut-2-enoyl)oxy]-9-oxo-decahydrophenanthrene-1-carboxylate

methyl 7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-2-[(2-methylbut-2-enoyl)oxy]-9-oxo-decahydrophenanthrene-1-carboxylate

C29H43NO7 (517.3039)


   

methyl 2,9-dihydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

methyl 2,9-dihydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

C24H39NO6 (437.2777)


   

methyl 2-(7-hydroxy-1,4b,8,8-tetramethyl-10-oxo-1,3,4,5,6,7,8a,9-octahydrophenanthren-2-ylidene)acetate

methyl 2-(7-hydroxy-1,4b,8,8-tetramethyl-10-oxo-1,3,4,5,6,7,8a,9-octahydrophenanthren-2-ylidene)acetate

C21H30O4 (346.2144)


   

methyl (1s,4ar,4br,7s,8s,8ar,9s,10ar)-7-{2-[2-(dimethylamino)ethoxy]-2-oxoethyl}-9-hydroxy-1,4a,8-trimethyl-dodecahydrophenanthrene-1-carboxylate

methyl (1s,4ar,4br,7s,8s,8ar,9s,10ar)-7-{2-[2-(dimethylamino)ethoxy]-2-oxoethyl}-9-hydroxy-1,4a,8-trimethyl-dodecahydrophenanthrene-1-carboxylate

C25H43NO5 (437.3141)


   

methyl (1s,4ar,4bs,7e,8r,8ar,9r,10as)-9-hydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-decahydro-2h-phenanthrene-1-carboxylate

methyl (1s,4ar,4bs,7e,8r,8ar,9r,10as)-9-hydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-decahydro-2h-phenanthrene-1-carboxylate

C24H39NO5 (421.2828)


   

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-2-({2-[(1r,2e,4as,4br,8s,8ar,10r,10as)-10-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-9-oxo-decahydrophenanthren-2-ylidene]acetyl}oxy)-9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-2-({2-[(1r,2e,4as,4br,8s,8ar,10r,10as)-10-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-9-oxo-decahydrophenanthren-2-ylidene]acetyl}oxy)-9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C45H65NO12 (811.4507)


   

1,1,4a,8-tetramethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-9-oxo-decahydrophenanthren-2-yl 3-hydroxy-3-methylbutanoate

1,1,4a,8-tetramethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-9-oxo-decahydrophenanthren-2-yl 3-hydroxy-3-methylbutanoate

C28H45NO6 (491.3247)


   

methyl (1s,4ar,4bs,8r,8ar,9r,10as)-9-hydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-decahydro-2h-phenanthrene-1-carboxylate

methyl (1s,4ar,4bs,8r,8ar,9r,10as)-9-hydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-decahydro-2h-phenanthrene-1-carboxylate

C24H39NO5 (421.2828)


   

2-[(1r,2e,4as,4br,7s,8r,8ar,9r,10as)-7-({2-[(1r,2e,4as,4br,8s,8ar,10r,10as)-10-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-9-oxo-decahydrophenanthren-2-ylidene]acetyl}oxy)-9-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-10-oxo-decahydrophenanthren-2-ylidene]-n-(2-hydroxyethyl)ethanimidic acid

2-[(1r,2e,4as,4br,7s,8r,8ar,9r,10as)-7-({2-[(1r,2e,4as,4br,8s,8ar,10r,10as)-10-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-9-oxo-decahydrophenanthren-2-ylidene]acetyl}oxy)-9-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-10-oxo-decahydrophenanthren-2-ylidene]-n-(2-hydroxyethyl)ethanimidic acid

C44H63NO12 (797.435)


   

(2s,4ar,4bs,7e,8r,8as,10ar)-1,1,4a,8-tetramethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-9-oxo-decahydrophenanthren-2-yl 3-hydroxy-3-methylbutanoate

(2s,4ar,4bs,7e,8r,8as,10ar)-1,1,4a,8-tetramethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-9-oxo-decahydrophenanthren-2-yl 3-hydroxy-3-methylbutanoate

C28H45NO6 (491.3247)


   

methyl (1r,2s,4ar,4bs,8r,8ar,10ar)-7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-2-hydroxy-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,8r,8ar,10ar)-7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-2-hydroxy-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

C25H39NO6 (449.2777)


   

methyl 9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

methyl 9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

C24H39NO5 (421.2828)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


   

methyl (1s,4ar,4bs,7e,8r,8as,9s,10ar)-7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-9-hydroxy-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

methyl (1s,4ar,4bs,7e,8r,8as,9s,10ar)-7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-9-hydroxy-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

C25H41NO5 (435.2985)


   

2-[7,9-dihydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-10-oxo-decahydrophenanthren-2-ylidene]-n-(2-hydroxyethyl)ethanimidic acid

2-[7,9-dihydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-10-oxo-decahydrophenanthren-2-ylidene]-n-(2-hydroxyethyl)ethanimidic acid

C23H35NO7 (437.2413)


   

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethyl}-2-hydroxy-1,4a,8-trimethyl-9-oxo-decahydro-2h-phenanthrene-1-carboxylate

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethyl}-2-hydroxy-1,4a,8-trimethyl-9-oxo-decahydro-2h-phenanthrene-1-carboxylate

C25H41NO6 (451.2934)


   

7β-hydroxysitosterol

7β-hydroxy-sitosterol

C29H50O2 (430.3811)


{"Ingredient_id": "HBIN013115","Ingredient_name": "7\u03b2-hydroxysitosterol","Alias": "7\u03b2-hydroxy-sitosterol","Ingredient_formula": "C29H50O2","Ingredient_Smile": "CCC(CCC(C)C1CCC2C1(CCC3C2C(C=C4C3(CCC(C4)O)C)O)C)C(C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "39602;34524","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

2-[(1r,2e,4as,4br,7s,8r,8ar,10r,10as)-10-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-7-{[(2e)-2-methylbut-2-enoyl]oxy}-9-oxo-decahydrophenanthren-2-ylidene]-n-(2-hydroxyethyl)ethanimidic acid

2-[(1r,2e,4as,4br,7s,8r,8ar,10r,10as)-10-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-7-{[(2e)-2-methylbut-2-enoyl]oxy}-9-oxo-decahydrophenanthren-2-ylidene]-n-(2-hydroxyethyl)ethanimidic acid

C28H41NO8 (519.2832)


   

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-9-hydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-10-oxo-2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-decahydrophenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-9-hydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-10-oxo-2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-decahydrophenanthrene-1-carboxylate

C30H47NO12 (613.3098)


   

methyl (1s,4ar,4bs,7e,8r,8ar,9s,10ar)-9-hydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-decahydro-2h-phenanthrene-1-carboxylate

methyl (1s,4ar,4bs,7e,8r,8ar,9s,10ar)-9-hydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-decahydro-2h-phenanthrene-1-carboxylate

C24H39NO5 (421.2828)


   

n-(2-hydroxyethyl)-3-phenylprop-2-enimidic acid

n-(2-hydroxyethyl)-3-phenylprop-2-enimidic acid

C11H13NO2 (191.0946)


   

4,4,6b,8a,11,11,12b,14a-octamethyl-1,2,3,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydropicen-3-ol

4,4,6b,8a,11,11,12b,14a-octamethyl-1,2,3,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

methyl 2,9-dihydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-10-oxo-decahydrophenanthrene-1-carboxylate

methyl 2,9-dihydroxy-1,4a,8-trimethyl-7-{2-[2-(methylamino)ethoxy]-2-oxoethylidene}-10-oxo-decahydrophenanthrene-1-carboxylate

C24H37NO7 (451.257)


   

methyl 2-(acetyloxy)-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

methyl 2-(acetyloxy)-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

C26H39NO7 (477.2726)


   

methyl (1r,2s,4ar,4bs,7e,8r,8as,9s,10ar)-2,9-dihydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,7e,8r,8as,9s,10ar)-2,9-dihydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

C24H39NO6 (437.2777)


   

methyl (1r,2s,4ar,4bs,8r,8as,9r,10ar)-2,9-dihydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,8r,8as,9r,10ar)-2,9-dihydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C22H32O7 (408.2148)


   

2-[(1r,2e,4as,4br,7s,8r,8ar,10ar)-7-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-10-oxo-decahydrophenanthren-2-ylidene]-n-[2-(dimethylamino)ethyl]ethanimidic acid

2-[(1r,2e,4as,4br,7s,8r,8ar,10ar)-7-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-10-oxo-decahydrophenanthren-2-ylidene]-n-[2-(dimethylamino)ethyl]ethanimidic acid

C25H40N2O5 (448.2937)


   

methyl 9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-2-[(2-methylbut-2-enoyl)oxy]-10-oxo-decahydrophenanthrene-1-carboxylate

methyl 9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-2-[(2-methylbut-2-enoyl)oxy]-10-oxo-decahydrophenanthrene-1-carboxylate

C29H43NO8 (533.2989)


   

methyl 9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl 9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C24H37NO6 (435.2621)


   

methyl (1r,2s,4ar,4bs,8r,8as,9r,10ar)-2-(acetyloxy)-9-hydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,8r,8as,9r,10ar)-2-(acetyloxy)-9-hydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C24H34O8 (450.2254)


   

7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-1,1,4a,8-tetramethyl-9-oxo-decahydrophenanthren-2-yl 3-hydroxy-3-methylbutanoate

7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-1,1,4a,8-tetramethyl-9-oxo-decahydrophenanthren-2-yl 3-hydroxy-3-methylbutanoate

C29H47NO6 (505.3403)


   

(1r,3as,3bs,5r,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-diol

(1r,3as,3bs,5r,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-diol

C29H50O2 (430.3811)


   

methyl 2-[(1s,2e,4bs,7s,8ar)-7-hydroxy-1,4b,8,8-tetramethyl-10-oxo-1,3,4,5,6,7,8a,9-octahydrophenanthren-2-ylidene]acetate

methyl 2-[(1s,2e,4bs,7s,8ar)-7-hydroxy-1,4b,8,8-tetramethyl-10-oxo-1,3,4,5,6,7,8a,9-octahydrophenanthren-2-ylidene]acetate

C21H30O4 (346.2144)


   

2,4a,6a,6b,9,9,12a-heptamethyl-10,13-dioxo-1,3,4,5,6,7,8,8a,11,12,12b,14b-dodecahydropicene-2-carboxylic acid

2,4a,6a,6b,9,9,12a-heptamethyl-10,13-dioxo-1,3,4,5,6,7,8,8a,11,12,12b,14b-dodecahydropicene-2-carboxylic acid

C30H44O4 (468.3239)


   

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-2-(acetyloxy)-9-hydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-2-(acetyloxy)-9-hydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C24H34O8 (450.2254)


   

methyl 2-(acetyloxy)-9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl 2-(acetyloxy)-9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C26H39NO8 (493.2676)


   

4-[(9e,11e,13e,15e,17e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol

4-[(9e,11e,13e,15e,17e)-18-(4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol

C40H56O2 (568.428)


   

methyl 9-hydroxy-7-(2-{[9-hydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydro-1h-phenanthren-2-yl]oxy}-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl 9-hydroxy-7-(2-{[9-hydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydro-1h-phenanthren-2-yl]oxy}-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C41H58O10 (710.403)


   

2-(8-formyl-7,10-dihydroxy-1,4b,8-trimethyl-decahydro-1h-phenanthren-2-ylidene)-n-(2-hydroxyethyl)-n-methylacetamide

2-(8-formyl-7,10-dihydroxy-1,4b,8-trimethyl-decahydro-1h-phenanthren-2-ylidene)-n-(2-hydroxyethyl)-n-methylacetamide

C23H37NO5 (407.2672)


   

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-4,7-diol

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-4,7-diol

C29H50O2 (430.3811)


   

methyl (1r,2s,4ar,4bs,7e,8r,8as,10ar)-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-2-{[(2e)-2-methylbut-2-enoyl]oxy}-9-oxo-decahydrophenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,7e,8r,8as,10ar)-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-2-{[(2e)-2-methylbut-2-enoyl]oxy}-9-oxo-decahydrophenanthrene-1-carboxylate

C29H43NO7 (517.3039)


   

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-9-hydroxy-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-9-hydroxy-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C25H39NO6 (449.2777)


   

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-diol

1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,5h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-5,7-diol

C29H50O2 (430.3811)


   

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-7-(2-ethoxy-2-oxoethylidene)-2,9-dihydroxy-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl (1r,2s,4ar,4bs,7e,8r,8as,9r,10ar)-7-(2-ethoxy-2-oxoethylidene)-2,9-dihydroxy-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C23H34O7 (422.2304)


   

2-[(1r,2e,4as,4br,7s,8r,8ar,10s,10as)-8-formyl-7,10-dihydroxy-1,4b,8-trimethyl-decahydro-1h-phenanthren-2-ylidene]-n-(2-hydroxyethyl)-n-methylacetamide

2-[(1r,2e,4as,4br,7s,8r,8ar,10s,10as)-8-formyl-7,10-dihydroxy-1,4b,8-trimethyl-decahydro-1h-phenanthren-2-ylidene]-n-(2-hydroxyethyl)-n-methylacetamide

C23H37NO5 (407.2672)


   

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-2-hydroxy-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-2-hydroxy-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

C25H39NO6 (449.2777)


   

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

C25H39NO5 (433.2828)


   

methyl (1s,4ar,4bs,7e,8r,8ar,9s,10ar)-7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-9-hydroxy-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

methyl (1s,4ar,4bs,7e,8r,8ar,9s,10ar)-7-{2-[2-(dimethylamino)ethoxy]-2-oxoethylidene}-9-hydroxy-1,4a,8-trimethyl-decahydro-2h-phenanthrene-1-carboxylate

C25H41NO5 (435.2985)


   

methyl 2-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

methyl 2-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

C24H37NO6 (435.2621)


   

(2e)-n-(2-hydroxyethyl)-n-methyl-3-phenylprop-2-enamide

(2e)-n-(2-hydroxyethyl)-n-methyl-3-phenylprop-2-enamide

C12H15NO2 (205.1103)


   

methyl (1s,4ar,4bs,7e,8r,8as,9r,10ar)-7-(2-{[(1s,2s,4ar,4bs,7e,8r,8as,9r,10as)-9-hydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydro-1h-phenanthren-2-yl]oxy}-2-oxoethylidene)-9-hydroxy-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl (1s,4ar,4bs,7e,8r,8as,9r,10ar)-7-(2-{[(1s,2s,4ar,4bs,7e,8r,8as,9r,10as)-9-hydroxy-7-(2-methoxy-2-oxoethylidene)-1,4a,8-trimethyl-10-oxo-decahydro-1h-phenanthren-2-yl]oxy}-2-oxoethylidene)-9-hydroxy-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C41H58O10 (710.403)


   

methyl 7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

methyl 7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-9-oxo-decahydrophenanthrene-1-carboxylate

C24H37NO5 (419.2672)


   

(1s,3r,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-6-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

(1s,3r,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-6-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

C30H48O (424.3705)


   

2-[10-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-7-[(2-methylbut-2-enoyl)oxy]-9-oxo-decahydrophenanthren-2-ylidene]-n-(2-hydroxyethyl)ethanimidic acid

2-[10-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-7-[(2-methylbut-2-enoyl)oxy]-9-oxo-decahydrophenanthren-2-ylidene]-n-(2-hydroxyethyl)ethanimidic acid

C28H41NO8 (519.2832)


   

methyl 10-hydroxy-1,4a,8-trimethyl-7-{[methyl(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl)carbamoyl]methylidene}-9-oxo-decahydrophenanthrene-1-carboxylate

methyl 10-hydroxy-1,4a,8-trimethyl-7-{[methyl(2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}ethyl)carbamoyl]methylidene}-9-oxo-decahydrophenanthrene-1-carboxylate

C30H47NO11 (597.3149)


   

2-[(1r,2e,4as,4br,8s,8ar,9r,10as)-9-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-10-oxo-decahydrophenanthren-2-ylidene]-n-(2-hydroxyethyl)ethanimidic acid

2-[(1r,2e,4as,4br,8s,8ar,9r,10as)-9-hydroxy-8-(methoxycarbonyl)-1,4b,8-trimethyl-10-oxo-decahydrophenanthren-2-ylidene]-n-(2-hydroxyethyl)ethanimidic acid

C23H35NO6 (421.2464)


   

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethyl}-9-hydroxy-1,4a,8-trimethyl-dodecahydrophenanthrene-1-carboxylate

methyl 7-{2-[2-(dimethylamino)ethoxy]-2-oxoethyl}-9-hydroxy-1,4a,8-trimethyl-dodecahydrophenanthrene-1-carboxylate

C25H43NO5 (437.3141)


   

methyl 9-hydroxy-7-{2-[(9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-decahydro-1h-phenanthren-2-yl)oxy]-2-oxoethylidene}-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

methyl 9-hydroxy-7-{2-[(9-hydroxy-7-{[(2-hydroxyethyl)(methyl)carbamoyl]methylidene}-1,4a,8-trimethyl-10-oxo-decahydro-1h-phenanthren-2-yl)oxy]-2-oxoethylidene}-1,4a,8-trimethyl-10-oxo-decahydrophenanthrene-1-carboxylate

C43H63NO10 (753.4452)


   

erythrophlamine

erythrophlamine

C25H39NO6 (449.2777)