Subcellular Location: mossy fiber rosette
Found 58 associated metabolites.
1 associated genes.
GRIK2
Spinosin
Spinosin is a flavone C-glycoside that is flavone substituted by hydroxy groups at positions 5 and 4, a methoxy group at position 7 and a 2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl residue at position 6 via a C-glycosidic linkage. It has a role as a plant metabolite and an anxiolytic drug. It is a flavone C-glycoside, a dihydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Spinosin is a natural product found in Clutia abyssinica, Galipea trifoliata, and other organisms with data available. A flavone C-glycoside that is flavone substituted by hydroxy groups at positions 5 and 4, a methoxy group at position 7 and a 2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl residue at position 6 via a C-glycosidic linkage. Spinosyn a C-glycoside flavonoid isolated from the seeds of Zizyphus jujube, with neuroprotective effects. Spinosin inhibits Aβ1-42 production and aggregation via activating Nrf2/HO-1 pathway[1][2][3]. Spinosyn a C-glycoside flavonoid isolated from the seeds of Zizyphus jujube, with neuroprotective effects. Spinosin inhibits Aβ1-42 production and aggregation via activating Nrf2/HO-1 pathway[1][2][3].
L-Glutamic acid
Glutamic acid (Glu), also known as L-glutamic acid or as glutamate, the name of its anion, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-glutamic acid is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamic acid is found in all organisms ranging from bacteria to plants to animals. It is classified as an acidic, charged (at physiological pH), aliphatic amino acid. In humans it is a non-essential amino acid and can be synthesized via alanine or aspartic acid via alpha-ketoglutarate and the action of various transaminases. Glutamate also plays an important role in the bodys disposal of excess or waste nitrogen. Glutamate undergoes deamination, an oxidative reaction catalysed by glutamate dehydrogenase leading to alpha-ketoglutarate. In many respects glutamate is a key molecule in cellular metabolism. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: Damage to mitochondria from excessively high intracellular Ca2+. Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. Glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization (http://en.wikipedia.org/wiki/Glutamic_acid). Glutamate was discovered in 1866 when it was extracted from wheat gluten (from where it got its name. Glutamate has an important role as a food additive and food flavoring agent. In 1908, Japanese researcher Kikunae Ikeda identified brown crystals left behind after the evaporation of a large amount of kombu broth (a Japanese soup) as glutamic acid. These crystals, when tasted, reproduced a salty, savory flavor detected in many foods, most especially in seaweed. Professor Ikeda termed this flavor umami. He then patented a method of mass-producing a crystalline salt of glutamic acid, monosodium glutamate. L-glutamic acid is an optically active form of glutamic acid having L-configuration. It has a role as a nutraceutical, a micronutrient, an Escherichia coli metabolite, a mouse metabolite, a ferroptosis inducer and a neurotransmitter. It is a glutamine family amino acid, a proteinogenic amino acid, a glutamic acid and a L-alpha-amino acid. It is a conjugate acid of a L-glutamate(1-). It is an enantiomer of a D-glutamic acid. A peptide that is a homopolymer of glutamic acid. L-Glutamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Glutamic acid (Glu), also referred to as glutamate (the anion), is one of the 20 proteinogenic amino acids. It is not among the essential amino acids. Glutamate is a key molecule in cellular metabolism. In humans, dietary proteins are broken down by digestion into amino acids, which serves as metabolic fuel or other functional roles in the body. Glutamate is the most abundant fast excitatory neurotransmitter in the mammalian nervous system. At chemical synapses, glutamate is stored in vesicles. Nerve impulses trigger release of glutamate from the pre-synaptic cell. In the opposing post-synaptic cell, glutamate receptors, such as the NMDA receptor, bind glutamate and are activated. Because of its role in synaptic plasticity, it is believed that glutamic acid is involved in cognitive functions like learning and memory in the brain. Glutamate transporters are found in neuronal and glial membranes. They rapidly remove glutamate from the extracellular space. In brain injury or disease, they can work in reverse and excess glutamate can accumulate outside cells. This process causes calcium ions to enter cells via NMDA receptor channels, leading to neuronal damage and eventual cell death, and is called excitotoxicity. The mechanisms of cell death include: * Damage to mitochondria from excessively high intracellular Ca2+. * Glu/Ca2+-mediated promotion of transcription factors for pro-apoptotic genes, or downregulation of transcription factors for anti-apoptotic genes. Excitotoxicity due to glutamate occurs as part of the ischemic cascade and is associated with stroke and diseases like amyotrophic lateral sclerosis, lathyrism, and Alzheimers disease. glutamic acid has been implicated in epileptic seizures. Microinjection of glutamic acid into neurons produces spontaneous depolarization around one second apart, and this firing pattern is similar to what is known as paroxysmal depolarizing shift in epileptic attacks. This change in the resting membrane potential at seizure foci could cause spontaneous opening of voltage activated calcium channels, leading to glutamic acid release and further depolarization. A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM. See also: Monosodium Glutamate (active moiety of); Glatiramer Acetate (monomer of); Glatiramer (monomer of) ... View More ... obtained from acid hydrolysis of proteins. Since 1965 the industrial source of glutamic acid for MSG production has been bacterial fermentation of carbohydrate sources such as molasses and corn starch hydrolysate in the presence of a nitrogen source such as ammonium salts or urea. Annual production approx. 350000t worldwide in 1988. Seasoning additive in food manuf. (as Na, K and NH4 salts). Dietary supplement, nutrient Glutamic acid (symbol Glu or E;[4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use. It is also the most abundant excitatory neurotransmitter in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABAergic neurons. Its molecular formula is C 5H 9NO 4. Glutamic acid exists in two optically isomeric forms; the dextrorotatory l-form is usually obtained by hydrolysis of gluten or from the waste waters of beet-sugar manufacture or by fermentation.[5][full citation needed] Its molecular structure could be idealized as HOOC−CH(NH 2)−(CH 2)2−COOH, with two carboxyl groups −COOH and one amino group −NH 2. However, in the solid state and mildly acidic water solutions, the molecule assumes an electrically neutral zwitterion structure −OOC−CH(NH+ 3)−(CH 2)2−COOH. It is encoded by the codons GAA or GAG. The acid can lose one proton from its second carboxyl group to form the conjugate base, the singly-negative anion glutamate −OOC−CH(NH+ 3)−(CH 2)2−COO−. This form of the compound is prevalent in neutral solutions. The glutamate neurotransmitter plays the principal role in neural activation.[6] This anion creates the savory umami flavor of foods and is found in glutamate flavorings such as MSG. In Europe, it is classified as food additive E620. In highly alkaline solutions the doubly negative anion −OOC−CH(NH 2)−(CH 2)2−COO− prevails. The radical corresponding to glutamate is called glutamyl. The one-letter symbol E for glutamate was assigned in alphabetical sequence to D for aspartate, being larger by one methylene –CH2– group.[7] DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals. L-Glutamic acid is an excitatory amino acid neurotransmitter that acts as an agonist for all subtypes of glutamate receptors (metabolic rhodophylline, NMDA, and AMPA). L-Glutamic acid has an agonist effect on the release of DA from dopaminergic nerve endings. L-Glutamic acid can be used in the study of neurological diseases[1][2][3][4][5]. L-Glutamic acid acts as an excitatory transmitter and an agonist at all subtypes of glutamate receptors (metabotropic, kainate, NMDA, and AMPA). L-Glutamic acid shows a direct activating effect on the release of DA from dopaminergic terminals.
Swertisin
Swertisin is a flavone C-glycoside that is 7-O-methylapigenin in which the hydrogen at position 6 has been replaced by a beta-D-glucosyl residue. It has a role as a plant metabolite, an adenosine A1 receptor antagonist, an anti-inflammatory agent, an antioxidant and a hypoglycemic agent. It is a flavone C-glycoside, a monosaccharide derivative, a polyphenol, a monomethoxyflavone and a dihydroxyflavone. It is functionally related to an apigenin. Swertisin is a natural product found in Carex fraseriana, Gentiana orbicularis, and other organisms with data available. A flavone C-glycoside that is 7-O-methylapigenin in which the hydrogen at position 6 has been replaced by a beta-D-glucosyl residue. Swertisin, a C-glucosylflavone isolated from Iris tectorum, is known to have antidiabetic, anti-inflammatory and antioxidant effects. Swertisin is an adenosine A1 receptor antagonist[1][2].
Quisqualic_acid
Quisqualic acid is a non-proteinogenic alpha-amino acid. Quisqualic acid is an agonist at two subsets of excitatory amino acid receptors, ionotropic receptors that directly control membrane channels and metabotropic receptors that indirectly mediate calcium mobilization from intracellular stores. The compound is obtained from the seeds and fruit of Quisqualis chinensis. An agonist at two subsets of excitatory amino acid receptors, ionotropic receptors that directly control membrane channels and metabotropic receptors that indirectly mediate calcium mobilization from intracellular stores. The compound is obtained from the seeds and fruit of Quisqualis chinensis. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID Q003 Quisqualic acid (L-Quisqualic acid), a natural analog of glutamate, is a potent and pan two subsets (iGluR and mGluR) of excitatory amino acid (EAA) agonist with an EC50 of 45 nM and a Ki of 10 nM for mGluR1R. Quisqualic acid is isolated from the fruits of Quisqualis indica[1][2]. Quisqualic acid (L-Quisqualic acid), a natural analog of glutamate, is a potent and pan two subsets (iGluR and mGluR) of excitatory amino acid (EAA) agonist with an EC50 of 45 nM and a Ki of 10 nM for mGluR1R. Quisqualic acid is isolated from the fruits of Quisqualis indica[1][2]. Quisqualic acid (L-Quisqualic acid), a natural analog of glutamate, is a potent and pan two subsets (iGluR and mGluR) of excitatory amino acid (EAA) agonist with an EC50 of 45 nM and a Ki of 10 nM for mGluR1R. Quisqualic acid is isolated from the fruits of Quisqualis indica[1][2].
N-Methyl-D-aspartic acid
N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. NMDA is a water-soluble endogenous metabolite that plays an important role in the neuroendocrine system of species across Animalia (PMID:18096065). It was first synthesized in the 1960s (PMID:14056452). NMDA is an excitotoxin; this trait has applications in behavioural neuroscience research. The body of work utilizing this technique falls under the term "lesion studies." Researchers apply NMDA to specific regions of an (animal) subjects brain or spinal cord and subsequently test for the behaviour of interest, such as operant behaviour. If the behaviour is compromised, it suggests that the destroyed tissue was part of a brain region that made an important contribution to the normal expression of that behaviour. Examples of antagonists of the NMDA receptor are ketamine, amantadine, dextromethorphan (DXM), riluzole, and memantine. They are commonly referred to as NMDA receptor antagonists (PMID:28877137). N-Methyl-D-aspartic acid is an amino acid derivative acting as a specific agonist at the NMDA receptor, and therefore mimics the action of the neurotransmitter glutamate on that receptor. In contrast to glutamate, NMDA binds to and regulates the above receptor only, but not other glutamate receptors. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Citalopram
Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety; Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). It is sold under the brand-names Celexa (U.S., Forest Laboratories, Inc.), Cipramil, Seropram (Europe and Australia) and Ciazil (Australia); A furancarbonitrile that is one of the serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety. Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety; Citalopram belongs to a class of drugs known as selective serotonin reuptake inhibitors (SSRIs). It is sold under the brand-names Celexa (U.S., Forest Laboratories, Inc.), Cipramil, Seropram (Europe and Australia) and Ciazil (Australia); A furancarbonitrile that is one of the serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Citalopram is an antidepressant drug used to treat depression associated with mood disorders. It is also used on occasion in the treatment of body dysmorphic disorder and anxiety. N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators
Flupentixol
D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist
aniracetam
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D01883 Aniracetam (Ro 13-5057) is an orally active neuroprotective agent, possessing nootropics effects. Aniracetam potentiates the ionotropic quisqualate (iQA) responses in the CA1 region of rat hippocampal slices. Aniracetam also potentiates the excitatory post synaptic potentials (EPSPs) in Schaffer collateral-commissural synapses. Aniracetam can prevents the CO2-induced impairment of acquisition in hypercapnia model rats. Aniracetam can be used to research cerebral dysfunctional disorders[1][2][3][4].
3-Hydroxyaspartic acid
A hydroxy-amino acid that is aspartic acid in which one of the methylene hydrogens has been replaced by a hydroxy group. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids KEIO_ID H086
Digenin
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2]. Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2].
ADP-Ribosyl-L-arginine
ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc) [HMDB] ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc).
Decyl alcohol
1-Decanol, or decyl alcohol, is a straight chain fatty alcohol with ten carbon atoms and the molecular formula CH3(CH2)9OH. It is a colorless viscous liquid that is insoluble in water. 1-Decanol has a strong odour. Decanol is used in the manufacture of plasticizers, lubricants, surfactants and solvents. Decanol causes a high irritability to skin and eyes, when splashed into the eyes it can cause permanent damage. Also inhalation and ingestion can be harmful, it can also function as a narcotic. It is also harmful to the environment. Isolated from plant sources, e.g. citrus oils, apple, coriander, babaco fruit (Carica pentagonia), wines, scallop and other foods
Enflurane
Enflurane is only found in individuals that have used or taken this drug. It is an extremely stable inhalation anesthetic that allows rapid adjustments of anesthesia depth with little change in pulse or respiratory rate. [PubChem]Enflurane induces a reduction in junctional conductance by decreasing gap junction channel opening times and increasing gap junction channel closing times. Enflurane also activates calcium dependent ATPase in the sarcoplasmic reticulum by increasing the fluidity of the lipid membrane. It also appears to bind the D subunit of ATP synthase and NADH dehydogenase. Enflurane also binds to and angonizes the GABA receptor, the large conductance Ca2+ activated potassium channel, the glycine receptor, and antagonizes the glutamate receptor receptor. These yield a decreased depolarization and therefore, tissue excitability which results in anesthesia. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
Cyclothiazide
As a diuretic, cyclothiazide inhibits active chloride reabsorption at the early distal tubule via the Na-Cl cotransporter, resulting in an increase in the excretion of sodium, chloride, and water. Thiazides like cyclothiazide also inhibit sodium ion transport across the renal tubular epithelium through binding to the thiazide sensitive sodium-chloride transporter. This results in an increase in potassium excretion via the sodium-potassium exchange mechanism. The antihypertensive mechanism of cyclothiazide is less well understood although it may be mediated through its action on carbonic anhydrases in the smooth muscle or through its action on the large-conductance calcium-activated potassium (KCa) channel, also found in the smooth muscle. Cyclothiazide is indicated as adjunctive therapy in edema associated with congestive heart failure, hepatic cirrhosis, and corticosteroid and estrogen therapy. It is also indicated in the management of hypertension either as the sole therapeutic agent or to enhance the effectiveness of other antihypertensive drugs in the more severe forms of hypertension. C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Same as: D01256 Cyclothiazide, a positive allosteric modulator of AMPA receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Cyclothiazide is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current[1].
2,3-Dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants NBQX (FG9202) is a highly selective and competitive AMPA receptor antagonist. NBQX has neuroprotective and anticonvulsant activity[1].
6-Cyano-7-nitroquinoxaline-2,3-dione
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists CNQX (FG9065) is a potent and competitive AMPA/kainate receptor antagonist with IC50s of 0.3 μM and 1.5 μM, respectively. CNQX is a competitive non-NMDA receptor antagonist[1]. CNQX blocks the expression of fear-potentiated startle in rats[5].
5-Fluorowillardiine
An alanine derivative that is L-alanine bearing a 5-fluorouracil-1-yl substituent at position 3. A more potent and selective AMPA receptor agonist (at hGluR1 and hGluR2) than AMPA itself (Ki = 14.7, 25.1, and 1820 nM for hGluR1, hGluR2 and hGluR5 respectively).
alpha-AMINO-3-HYDROXY-5-METHYL-4-ISOXAZOLEPROPIONIC ACID
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists (RS)-AMPA ((±)-AMPA) is a glutamate analogue and a potent and selective excitatory neurotransmitter L-glutamic acid agonist. (RS)-AMPA does not interfere with binding sites for kainic acid or NMDA receptors[1][2].
NS-102
NS-102 is a selective kainate (GluK2) receptor antagonist. NS-102 is a potent GluR6/7 receptor antagonist[1][2][3].
Domoic acid
D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents Isodomoic acid F is found in mollusks. Isodomoic acid F is isolated from mussels. Isolated from mussels. Isodomoic acid F is found in mollusks.
(S)-ATPA
A non-proteinogenic L-alpha-amino acid that is L-alanine in which one of the methyl hydrogens is replaced by a 5-tert-butyl-3-hydroxy-isooxazol-4-yl group.
4-(8-Methyl-9H-1,3-dioxolo(4,5-h)(2,3)benzodiazepin-5-yl)benzenamine
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents
3beta-Hydroxypregn-5-en-20-one sulfate
3beta-Hydroxypregn-5-en-20-one sulfate is a metabolite of pregnenolone. Pregnenolone, also known as 3α,5β-tetrahydroprogesterone (3α,5β-THP), is an endogenous steroid hormone involved in the steroidogenesis of progestogens, mineralocorticoids, glucocorticoids, androgens, and estrogens, as well as the neuroactive steroids. As such it is a prohormone, though it also has biological effects of its own, behaving namely as a neuroactive steroid in its own right with potent anxiolytic effects. (Wikipedia) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].
DL-Glutamate
DL-Glutamate, also known as E or DL-glutamic acid, belongs to the class of organic compounds known as glutamic acid and derivatives. Glutamic acid and derivatives are compounds containing glutamic acid or a derivative thereof resulting from reaction of glutamic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). DL-Glutamate exists in all living organisms, ranging from bacteria to humans. DL-Glutamate is found, on average, in the highest concentration within a few different foods, such as red bell peppers, milk (cow), and wheats and in a lower concentration in eggplants, romaine lettuces, and nanking cherries. DL-Glutamate has also been detected, but not quantified, in a few different foods, such as apples, broccoli, and lettuces. Glutamic acid (abbreviated as Glu or E) is one of the 20 proteinogenic amino acids. It is a non-essential amino acid. Glutamic acid is found in many foods, some of which are garden onion, orange bell pepper, oat, and cucumber. D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1].
UNII:EU52DFC4WJ
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Escitalopram
Escitalopram is a furancarbonitrile that is one of the Serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Escitalopram (Cipralex) is a medication developed by the Danish pharmaceutical company Lundbeck, that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD. In the United States, the drug is marketed under the name Lexapro by Forest Laboratories, Inc; Escitalopram is a medication that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD; Discontinuation from antidepressants, especially abruptly, has been known to cause certain withdrawal symptoms. One possible discontinuation symptom from Escitalopram is a type of spontaneous nerve pulse known as paresthesia or electric shock sensations, described by some patients as a feeling of small electric shocks, which may be accompanied by dizziness. These pulses may be short in duration, only milliseconds long, may affect any region of the body, and recur up to several times a minute, throughout all waking hours. They can be increased by physical activity, but are not solely linked to muscular activity. Other discontinuation symptoms include extreme sensitivity to loud sounds and bright lights, chills, hot flushes, cold sweats, reddening of the face, abdominal pain, weight gain and extreme mental fatigue. A furancarbonitrile that is one of the Serotonin uptake inhibitors used as an antidepressant. The drug is also effective in reducing ethanol uptake in alcoholics and is used in depressed patients who also suffer from tardive dyskinesia in preference to tricyclic antidepressants, which aggravate this condition; Escitalopram (Cipralex) is a medication developed by the Danish pharmaceutical company Lundbeck, that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD. In the United States, the drug is marketed under the name Lexapro by Forest Laboratories, Inc; Escitalopram is a medication that acts as a selective serotonin reuptake inhibitor (SSRI). It is typically used as an antidepressant to treat depression associated with mood disorders, although it also may be used in the treatment of body dysmorphic disorder and anxiety, including OCD; Discontinuation from antidepressants, especially abruptly, has been known to cause certain withdrawal symptoms. One possible discontinuation symptom from Escitalopram is a type of spontaneous nerve pulse known as paresthesia or electric shock sensations, described by some patients as a feeling of small electric shocks, which may be accompanied by dizziness. These pulses may be short in duration, only milliseconds long, may affect any region of the body, and recur up to several times a minute, throughout all waking hours. They can be increased by physical activity, but are not solely linked to muscular activity. Other discontinuation symptoms include extreme sensitivity to loud sounds and bright lights, chills, hot flushes, cold sweats, reddening of the face, abdominal pain, weight gain and extreme mental fatigue. [HMDB] N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators Escitalopram ((S)-Citalopram), the S-enantiomer of racemic Citalopram, is a selective serotonin reuptake inhibitor (SSRI) with a Ki of 0.89 nM. Escitalopram has ~30 fold higher binding affinity than its R(-)-enantiomer and shows selectivity over both dopamine transporter (DAT) and norepinephrine transporter (NET). Escitalopram is an antidepressant for the research of major depression[1][2].
Pregnenolone sulfate
Pregnenolone sulfate is a sulfated version of the steroid hormone known as pregnenolone. Pregnenolone sulfate belongs to the class of organic compounds known as sulfated steroids. These are sterol lipids containing a sulfate group attached to the steroid skeleton. Pregnenolone sulfate is a neurosteroid found in the brain and central nervous system. Pregnenolone sulfate is a metabolite synthesized from pregnenolone via sulfation. It is known to have cognitive and memory-enhancing, antidepressant, anxiogenic, and proconvulsant effects (PMID: 21094889). As a neurosteroid, pregnenolone sulfate modulates a variety of ion channels, transporters, and enzymes. Interestingly, as a sulfated steroid, pregnenolone sulfate is not the final- or waste-product of pregnenolone being sulfated via a phase II metabolism reaction and renally excreted, as one would presume from pharmacology textbook knowledge. Pregnenolone sulfate is also the source and thereby the starting point for subsequent steroid synthesis pathways. Recently, pregnenolone sulfate has been shown to not only be a modulator of ion channels, but it is also an activating ion channel ligand (PMID: 24084011). Pregnenolone sulfate, a neurosteroid, is a metabolite of Pregnenolone. It is found in the brain and central nervous system. [HMDB] D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].
N-Methyl-DL-aspartic acid
N-Methyl-DL-aspartic acid is a glutamate analogue and a?NMDA?receptor?agonist and can be used for neurological diseases research[1][2].
Citalopram
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent EAWAG_UCHEM_ID 2901; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2901 CONFIDENCE standard compound; INTERNAL_ID 8590 D049990 - Membrane Transport Modulators
Kainic acid
Kainic acid is a dicarboxylic acid, a pyrrolidinecarboxylic acid, a L-proline derivative and a non-proteinogenic L-alpha-amino acid. It has a role as an antinematodal drug and an excitatory amino acid agonist. It is a conjugate acid of a kainate(1-). (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2]. Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2].
Citalopram
N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AB - Selective serotonin reuptake inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents C78272 - Agent Affecting Nervous System > C94725 - Selective Serotonin Reuptake Inhibitor D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C265 - Antidepressant Agent D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1513 CONFIDENCE standard compound; INTERNAL_ID 4118
aniracetam
N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D002491 - Central Nervous System Agents > D018697 - Nootropic Agents C26170 - Protective Agent > C1509 - Neuroprotective Agent Same as: D01883 Aniracetam (Ro 13-5057) is an orally active neuroprotective agent, possessing nootropics effects. Aniracetam potentiates the ionotropic quisqualate (iQA) responses in the CA1 region of rat hippocampal slices. Aniracetam also potentiates the excitatory post synaptic potentials (EPSPs) in Schaffer collateral-commissural synapses. Aniracetam can prevents the CO2-induced impairment of acquisition in hypercapnia model rats. Aniracetam can be used to research cerebral dysfunctional disorders[1][2][3][4].
N-Methyl-D-aspartic acid
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists
cyclothiazide
C - Cardiovascular system > C03 - Diuretics > C03A - Low-ceiling diuretics, thiazides > C03AA - Thiazides, plain C78275 - Agent Affecting Blood or Body Fluid > C448 - Diuretic > C49185 - Thiazide Diuretic D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D045283 - Natriuretic Agents D045283 - Natriuretic Agents > D004232 - Diuretics Same as: D01256 Cyclothiazide, a positive allosteric modulator of AMPA receptors, is used frequently to block the desensitization of both native and heterologously expressed AMPA receptors. Cyclothiazide is known to produce a fast inhibition of AMPA receptor desensitization and a much slower potentiation of the AMPA current[1].
pregnenolone sulfate
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3]. Pregnenolone monosulfate (3β-Hydroxy-5-pregnen-20-one monosulfate) is a powerful neurosteroid, the main precursor of various steroid hormones including steroid ketones. Pregnenolone monosulfate acts as a signaling-specific inhibitor of cannabinoid CB1 receptor, inhibits the effects of tetrahydrocannabinol (THC) that are mediated by the CB1 receptors. Pregnenolone monosulfate can protect the brain from cannabis intoxication[1][2]. Pregnenolone monosulfate is also a TRPM3 channel activator, and also can weakly activate TRPM1 channels[3].
(3S,4aR,6S,8aR)-6-[(4-carboxyphenyl)methyl]-decahydroisoquinoline-3-carboxylic acid
(S)-(-)-5-Fluorowillardiine
enflurane
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics N - Nervous system > N01 - Anesthetics > N01A - Anesthetics, general > N01AB - Halogenated hydrocarbons C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent
DL-Glutamic acid
D018377 - Neurotransmitter Agents > D018846 - Excitatory Amino Acids DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1]. DL-Glutamic acid is the conjugate acid of Glutamic acid, which acts as a fundamental metabolite. Comparing with the second phase of polymorphs α and β L-Glutamic acid, DL-Glutamic acid presents better stability[1].
N-Methyl-D-aspartate
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists An aspartic acid derivative having an N-methyl substituent and D-configuration.
(RS)-AMPA
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists (RS)-AMPA ((±)-AMPA) is a glutamate analogue and a potent and selective excitatory neurotransmitter L-glutamic acid agonist. (RS)-AMPA does not interfere with binding sites for kainic acid or NMDA receptors[1][2].
nbqx
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D000927 - Anticonvulsants NBQX (FG9202) is a highly selective and competitive AMPA receptor antagonist. NBQX has neuroprotective and anticonvulsant activity[1].
CNQX
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists CNQX (FG9065) is a potent and competitive AMPA/kainate receptor antagonist with IC50s of 0.3 μM and 1.5 μM, respectively. CNQX is a competitive non-NMDA receptor antagonist[1]. CNQX blocks the expression of fear-potentiated startle in rats[5].
GYKI 52466
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents
1-Naphthylacetylspermine
Naspm (1-Naphthyl acetyl spermine), a synthetic analogue of Joro spider toxin, is a calcium permeable AMPA (CP-AMPA) receptors antagonist.