(S)-2-Methyl-1-butanol (BioDeep_00000019402)

   

human metabolite Endogenous


代谢物信息卡片


DL-2-METHYL-1-butanol, pract

化学式: C5H12O (88.0888102)
中文名称: S(-)-2-甲基-1-丁醇, DL-2-甲基-1-丁醇, 2-甲基丁醇
谱图信息: 最多检出来源 Anoectochilus roxburghii(viridiplantae) 23.53%

分子结构信息

SMILES: CCC(C)CO
InChI: InChI=1S/C5H12O/c1-3-5(2)4-6/h5-6H,3-4H2,1-2H3

描述信息

(S)-2-Methyl-1-butanol, also known as sec-butylcarbinol or 2-methyl butanol-1, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). (S)-2-Methyl-1-butanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (S)-2-methyl-1-butanol is considered to be a fatty alcohol lipid molecule. (S)-2-Methyl-1-butanol exists in all eukaryotes, ranging from yeast to humans. (S)-2-Methyl-1-butanol is a malt tasting compound. (S)-2-Methyl-1-butanol is found, on average, in the highest concentration within milk (cow) and it has also been detected, but not quantified, in several different foods, such as red raspberries, nectarines, carobs, wild leeks, and black-eyed pea. This could make (S)-2-methyl-1-butanol a potential biomarker for the consumption of these foods.
Isolated from grapes, apples, tomatoes etc. (S)-2-Methyl-1-butanol is found in many foods, some of which are carrot, shallot, rose hip, and muskmelon.

同义名列表

27 个代谢物同义名

DL-2-METHYL-1-butanol, pract; Active primary amyl alcohol; Primary active amyl alcohol; (S)-(-)-2-Methyl-1-butanol; 2-Methyl-(.+/-.)-1-butanol; (+/-)-2-methyl-1-butanol; 2-Methyl-(2S)-1-butanol; (S)-(−)-2-Methylbutanol; (S)-2-Methylbutan-1-ol; (1)-2-Methylbutan-1-ol; 2-Methyl-(S)-1-butanol; (S)-2-Methyl-1-butanol; 2-Methylbutyl alcohol; DL-2-Methyl-1-butanol; DL-Sec-butyl carbinol; D-2-METHYL-1-butanol; L-2-Methyl-1-butanol; Methyl-2-butan-1-ol; Active amyl alcohol; 2-Methyl butanol-1; 2-Methylbutan-1-ol; Sec-butyl carbinol; 2-METHYL-1-BUTANOL; CH3CH2CH(CH3)CH2OH; 2-Methyl-N-butanol; Sec-butylcarbinol; 2-Methylbutanol



数据库引用编号

12 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

6 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(5)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(1)

PharmGKB(0)

22 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Mikael A Molander, Mattias C Larsson. Identification of the Aggregation-sex Pheromone of the Cerambycid Beetle Phymatodes pusillus ssp. pusillus and Evidence of a Synergistic Effect from a Heterospecific Pheromone Component. Journal of chemical ecology. 2018 Nov; 44(11):987-998. doi: 10.1007/s10886-018-1008-3. [PMID: 30151708]
  • Poowadol Thammarat, Chadin Kulsing, Kanet Wongravee, Natchanun Leepipatpiboon, Thumnoon Nhujak. Identification of Volatile Compounds and Selection of Discriminant Markers for Elephant Dung Coffee Using Static Headspace Gas Chromatography-Mass Spectrometry and Chemometrics. Molecules (Basel, Switzerland). 2018 Jul; 23(8):. doi: 10.3390/molecules23081910. [PMID: 30065213]
  • Payal Sanadhya, Patricia Bucki, Orna Liarzi, David Ezra, Abraham Gamliel, Sigal Braun Miyara. Caenorhabditis elegans susceptibility to Daldinia cf. concentrica bioactive volatiles is coupled with expression activation of the stress-response transcription factor daf-16, a part of distinct nematicidal action. PloS one. 2018; 13(5):e0196870. doi: 10.1371/journal.pone.0196870. [PMID: 29723292]
  • Thomas Seth Davis, Kyria Boundy-Mills, Peter J Landolt. Volatile emissions from an epiphytic fungus are semiochemicals for eusocial wasps. Microbial ecology. 2012 Nov; 64(4):1056-63. doi: 10.1007/s00248-012-0074-2. [PMID: 22644482]
  • Vassiliki A Boumba, Vangelis Economou, Nikolaos Kourkoumelis, Panagiota Gousia, Chrissanthy Papadopoulou, Theodore Vougiouklakis. Microbial ethanol production: experimental study and multivariate evaluation. Forensic science international. 2012 Feb; 215(1-3):189-98. doi: 10.1016/j.forsciint.2011.03.003. [PMID: 21470803]
  • Ekaterina A Savrasova, Aleksander D Kivero, Rustem S Shakulov, Nataliya V Stoynova. Use of the valine biosynthetic pathway to convert glucose into isobutanol. Journal of industrial microbiology & biotechnology. 2011 Sep; 38(9):1287-94. doi: 10.1007/s10295-010-0907-2. [PMID: 21161324]
  • Valentina Vasta, Giuseppe Luciano, Corrado Dimauro, Florian Röhrle, Alessandro Priolo, Frank J Monahan, Aidan P Moloney. The volatile profile of longissimus dorsi muscle of heifers fed pasture, pasture silage or cereal concentrate: implication for dietary discrimination. Meat science. 2011 Mar; 87(3):282-9. doi: 10.1016/j.meatsci.2010.11.003. [PMID: 21126829]
  • Ludmila V Roze, Anindya Chanda, Maris Laivenieks, Randolph M Beaudry, Katherine A Artymovich, Anna V Koptina, Deena W Awad, Dina Valeeva, Arthur D Jones, John E Linz. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism. BMC biochemistry. 2010 Aug; 11(?):33. doi: 10.1186/1471-2091-11-33. [PMID: 20735852]
  • Itay Gonda, Einat Bar, Vitaly Portnoy, Shery Lev, Joseph Burger, Arthur A Schaffer, Ya'akov Tadmor, Shimon Gepstein, James J Giovannoni, Nurit Katzir, Efraim Lewinsohn. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit. Journal of experimental botany. 2010 Feb; 61(4):1111-23. doi: 10.1093/jxb/erp390. [PMID: 20065117]
  • Daryl D Rowan, Martin B Hunt, Aurélie Dimouro, Peter A Alspach, Rosemary Weskett, Richard K Volz, Susan E Gardiner, David Chagné. Profiling fruit volatiles in the progeny of a 'Royal Gala' x 'Granny Smith' apple (Malus x domestica) cross. Journal of agricultural and food chemistry. 2009 Sep; 57(17):7953-61. doi: 10.1021/jf901678v. [PMID: 19691320]
  • Sandrine Mathieu, Valeriano Dal Cin, Zhangjun Fei, Hua Li, Peter Bliss, Mark G Taylor, Harry J Klee, Denise M Tieman. Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of experimental botany. 2009; 60(1):325-37. doi: 10.1093/jxb/ern294. [PMID: 19088332]
  • Laila H Ribeiro, Ana M Costa Freitas, Marco D R Gomes da Silva. The use of headspace solid phase microextraction for the characterization of volatile compounds in olive oil matrices. Talanta. 2008 Oct; 77(1):110-7. doi: 10.1016/j.talanta.2008.05.051. [PMID: 18804607]
  • Edwige J F Souleyre, David R Greenwood, Ellen N Friel, Sakuntala Karunairetnam, Richard D Newcomb. An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. The FEBS journal. 2005 Jun; 272(12):3132-44. doi: 10.1111/j.1742-4658.2005.04732.x. [PMID: 15955071]
  • Márta Dregus, Hans-Georg Schmarr, Eisuke Takahisa, Karl-Heinz Engel. Enantioselective analysis of methyl-branched alcohols and acids in rhubarb (Rheum rhabarbarum L.) stalks. Journal of agricultural and food chemistry. 2003 Nov; 51(24):7086-91. doi: 10.1021/jf030466b. [PMID: 14611176]
  • Mario Estévez, David Morcuende, Sonia Ventanas, Ramón Cava. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS. Journal of agricultural and food chemistry. 2003 May; 51(11):3429-35. doi: 10.1021/jf026218h. [PMID: 12744679]
  • Ines Schulz, Detlef Ulrich, Christa Fischer. Rapid differentiation of new apple cultivars by headspace solid-phase microextraction in combination with chemometrical data processing. Die Nahrung. 2003 Apr; 47(2):136-9. doi: 10.1002/food.200390025. [PMID: 12744294]
  • . . . . doi: . [PMID: 19346240]