Glyoxylic acid (BioDeep_00000002844)
Secondary id: BioDeep_00000405202, BioDeep_00000861640
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C2H2O3 (74.0004)
中文名称: 乙醛酸 一水合物, 乙醛酸
谱图信息:
最多检出来源 Homo sapiens(blood) 24.14%
Last reviewed on 2024-07-01.
Cite this Page
Glyoxylic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/glyoxylic_acid (retrieved
2024-12-26) (BioDeep RN: BioDeep_00000002844). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C(=O)C(=O)O
InChI: InChI=1S/C2H2O3/c3-1-2(4)5/h1H,(H,4,5)
描述信息
Glyoxylic acid or oxoacetic acid is an organic compound that is both an aldehyde and a carboxylic acid. Glyoxylic acid is a liquid with a melting point of -93°C and a boiling point of 111°C. It is an intermediate of the glyoxylate cycle, which enables certain organisms to convert fatty acids into carbohydrates. The conjugate base of glyoxylic acid is known as glyoxylate (PMID: 16396466). In humans, glyoxylate is produced via two pathways: (1) through the oxidation of glycolate in peroxisomes and (2) through the catabolism of hydroxyproline in mitochondria. In the peroxisomes, glyoxylate is converted into glycine by glyoxylate aminotransferase (AGT1) or into oxalate by glycolate oxidase. In the mitochondria, glyoxylate is converted into glycine by mitochondrial glyoxylate aminotransferase AGT2 or into glycolate by glycolate reductase. A small amount of glyoxylate is converted into oxalate by cytoplasmic lactate dehydrogenase. Glyoxylic acid is found to be associated with primary hyperoxaluria I, which is an inborn error of metabolism. Under certain circumstances, glyoxylate can be a nephrotoxin and a metabotoxin. A nephrotoxin is a compound that causes damage to the kidney and kidney tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. High levels of glyoxylate are involved in the development of hyperoxaluria, a key cause of nephrolithiasis (commonly known as kidney stones). Glyoxylate is both a substrate and inductor of sulfate anion transporter-1 (SAT-1), a gene responsible for oxalate transportation, allowing it to increase SAT-1 mRNA expression, and as a result oxalate efflux from the cell. The increased oxalate release allows the buildup of calcium oxalate in the urine, and thus the eventual formation of kidney stones. As an aldehyde, glyoxylate is also highly reactive and will modify proteins to form advanced glycation products (AGEs).
Glyoxylic acid, also known as alpha-ketoacetic acid or glyoxylate, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Glyoxylic acid is soluble (in water) and a moderately acidic compound (based on its pKa). Glyoxylic acid can be found in a number of food items such as european chestnut, cowpea, wheat, and common thyme, which makes glyoxylic acid a potential biomarker for the consumption of these food products. Glyoxylic acid can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout all human tissues. Glyoxylic acid exists in all living species, ranging from bacteria to humans. In humans, glyoxylic acid is involved in a couple of metabolic pathways, which include alanine metabolism and glycine and serine metabolism. Glyoxylic acid is also involved in several metabolic disorders, some of which include lactic acidemia, pyruvate carboxylase deficiency, 3-phosphoglycerate dehydrogenase deficiency, and hyperglycinemia, non-ketotic. Moreover, glyoxylic acid is found to be associated with transurethral resection of the prostate and primary hyperoxaluria I. Glyoxylic acid or oxoacetic acid is an organic compound. Together with acetic acid, glycolic acid, and oxalic acid, glyoxylic acid is one of the C2 carboxylic acids. It is a colourless solid that occurs naturally and is useful industrially .
KEIO_ID G013
同义名列表
33 个代谢物同义名
Glyoxylic acid, sodium salt, 2-(14)C-labeled; Glyoxylic acid, sodium salt, 14C-labeled; Glyoxylic acid, 2-(14)C-labeled; Glyoxylic acid, calcium salt; Glyoxylic acid, 14c2-labeled; Glyoxylic acid, sodium salt; α-Ketoacetic acid; alpha-Ketoacetic acid; α-Ketoacetate; Oxalaldehydic acid; alpha-Ketoacetate; a-Ketoacetic acid; Α-ketoacetic acid; Formylformic acid; Oxoethanoic acid; 2-Oxoacetic acid; oxo-Acetic acid; Glycoxylic acid; Oxalaldehydate; glyoxylic acid; Oxoacetic acid; Glyoxalic acid; Formylformate; Α-ketoacetate; a-Ketoacetate; Glyoxylsaeure; Glyoxalsaeure; Oxoethanoate; Glyoxalate; Glyoxylate; Oxoacetate; Glyoxylate; Glyoxylic acid
数据库引用编号
25 个数据库交叉引用编号
- ChEBI: CHEBI:16891
- KEGG: C00048
- KEGGdrug: D70821
- PubChem: 760
- HMDB: HMDB0000119
- Metlin: METLIN64613
- DrugBank: DB04343
- ChEMBL: CHEMBL1162545
- Wikipedia: Glyoxylic_acid
- MetaCyc: GLYOX
- KNApSAcK: C00001186
- foodb: FDB007244
- chemspider: 740
- CAS: 298-12-4
- MoNA: KO000837
- MoNA: KO000835
- MoNA: KO000836
- PMhub: MS000006651
- PDB-CCD: GLV
- 3DMET: B00014
- NIKKAJI: J38.150K
- RefMet: Glyoxylic acid
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-270
- PubChem: 3350
- KNApSAcK: 16891
分类词条
相关代谢途径
Reactome(5)
PlantCyc(0)
代谢反应
475 个相关的代谢反应过程信息。
Reactome(108)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
L-Ala + glyoxylate ⟶ Gly + PYR
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
DCA + H2O ⟶ HCl + glyoxylate
- Regulation of pyruvate dehydrogenase (PDH) complex:
DCA + H2O ⟶ HCl + glyoxylate
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
L-Ala + glyoxylate ⟶ Gly + PYR
BioCyc(9)
- glycine biosynthesis from alanine:
L-alanine + glyoxylate ⟶ glycine + pyruvate
- superpathway of glycine biosynthesis:
L-serine + a tetrahydrofolate ⟶ H2O + a 5,10-methylenetetrahydrofolate + glycine
- formaldehyde assimilation I (serine pathway):
L-malyl-CoA ⟶ acetyl-CoA + glyoxylate
- superpathway of glyoxylate cycle:
ATP + a fatty acid + coenzyme A ⟶ AMP + H+ + a 2,3,4-saturated fatty acyl CoA + diphosphate
- glyoxylate cycle:
H2O + acetyl-CoA + glyoxylate ⟶ (S)-malate + H+ + coenzyme A
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- allantoin degradation:
H2O + urea-1-carboxylate ⟶ CO2 + ammonia
- glyoxylate cycle:
H2O + cis-aconitate ⟶ isocitrate
Plant Reactome(303)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
glycolate ⟶ glyoxylate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
H2O + N-Carbamoylputrescine ⟶ Putrescine + ammonia + carbon dioxide
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + S-(-)-Ureidoglycolate ⟶ ammonia + carbon dioxide + glyoxylate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
glyoxylate ⟶ 2-hydroxy-3-oxopropanoic acid + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amine and polyamine biosynthesis:
AGM + H2O ⟶ N-Carbamoylputrescine + ammonia
- Allantoin assimilation:
H2O + allantoin ⟶ H+ + allantoate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
INOH(3)
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
- L-Alanine + Glyoxylic acid = Pyruvic acid + Glycine ( Glycolysis and Gluconeogenesis ):
Glycine + Pyruvic acid ⟶ Glyoxylic acid + L-Alanine
- Glycine and Serine metabolism ( Glycine and Serine metabolism ):
Guanidino-acetic acid + S-Adenosyl-L-methionine ⟶ Creatine + S-Adenosyl-L-homocysteine
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(51)
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Primary Hyperoxaluria Type I:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Pyruvate Carboxylase Deficiency:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Lactic Acidemia:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycine Metabolism:
DL-O-Phosphoserine + Water ⟶ L-Serine + Phosphate
- Glycine Metabolism:
L-Serine + Tetrahydrofolic acid ⟶ 5,10-Methylene-THF + Glycine + Water
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Lactic Acidemia:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Pyruvate Carboxylase Deficiency:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Primary Hyperoxaluria Type I:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- 3-Phosphoglycerate Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Alanine Metabolism:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Glycine and Serine Metabolism:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dihydropyrimidine Dehydrogenase Deficiency (DHPD):
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Dimethylglycine Dehydrogenase Deficiency:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Lactic Acidemia:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Sarcosinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Non-Ketotic Hyperglycinemia:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Pyruvate Carboxylase Deficiency:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Primary Hyperoxaluria Type I:
Adenosine triphosphate + L-Alanine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperglycinemia, Non-Ketotic:
Guanidoacetic acid + S-Adenosylhomocysteine ⟶ Creatine + S-Adenosylmethionine
- Glycolate and Glyoxylate Degradation:
Allantoin ⟶ (S)-(+)-allantoin
- Secondary Metabolites: Glyoxylate Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Glycolate and Glyoxylate Degradation II:
Water + cis-Aconitic acid ⟶ Isocitric acid
- Glyoxylate Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Urate Degradation to Glyoxylate:
5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate + Hydrogen Ion ⟶ Allantoin + Carbon dioxide
- Butanoate Metabolism:
3-Hydroxy-3-methylglutaryl-CoA ⟶ Acetoacetic acid + Acetyl-CoA
- Glycolate and Glyoxylate Degradation:
Allantoin ⟶ (S)-(+)-allantoin
- Secondary Metabolites: Glyoxylate Cycle:
Citric acid ⟶ Water + cis-Aconitic acid
- Glycolate and Glyoxylate Degradation II:
Water + cis-Aconitic acid ⟶ Isocitric acid
PharmGKB(0)
5 个相关的物种来源信息
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3818 - Arachis hypogaea: 10.1042/BJ0590228
- 72433 - Delonix regia: 10.1016/0031-9422(75)83096-2
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Ruth Belostotsky, Yaacov Frishberg. Catabolism of Hydroxyproline in Vertebrates: Physiology, Evolution, Genetic Diseases and New siRNA Approach for Treatment.
International journal of molecular sciences.
2022 Jan; 23(2):. doi:
10.3390/ijms23021005
. [PMID: 35055190] - Bohan Wang, Jingchao Wei, Qi Huangfu, Fei Gao, Lanxin Qin, Jiao Zhong, Jiaming Wen, Zhangqun Ye, Xiaoqi Yang, Haoran Liu. Identification of Resolvin D1 and Protectin D1 as Potential Therapeutic Agents for Treating Kidney Stones.
Oxidative medicine and cellular longevity.
2022; 2022(?):4345037. doi:
10.1155/2022/4345037
. [PMID: 35251472] - Shuo Zhao, Daniel Garcia, Yinglei Zhao, Danfeng Huang. Hydro-Electro Hybrid Priming Promotes Carrot (Daucus carota L.) Seed Germination by Activating Lipid Utilization and Respiratory Metabolism.
International journal of molecular sciences.
2021 Oct; 22(20):. doi:
10.3390/ijms222011090
. [PMID: 34681749] - Qing-Lin Ye, Da-Ming Wang, Xin Wang, Zhi-Qiang Zhang, Qi-Xing Tian, Shi-Yao Feng, Zhi-Hui Zhang, De-Xin Yu, De-Mao Ding, Dong-Dong Xie. Sirt1 inhibits kidney stones formation by attenuating calcium oxalate-induced cell injury.
Chemico-biological interactions.
2021 Sep; 347(?):109605. doi:
10.1016/j.cbi.2021.109605
. [PMID: 34333021] - Hiromasa Tanaka, Yugo Hosoi, Kenji Ishikawa, Jun Yoshitake, Takahiro Shibata, Koji Uchida, Hiroshi Hashizume, Masaaki Mizuno, Yasumasa Okazaki, Shinya Toyokuni, Kae Nakamura, Hiroaki Kajiyama, Fumitaka Kikkawa, Masaru Hori. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified.
Scientific reports.
2021 09; 11(1):18488. doi:
10.1038/s41598-021-98020-w
. [PMID: 34531507] - Kathrin Gianmoena, Nina Gasparoni, Adelina Jashari, Philipp Gabrys, Katharina Grgas, Ahmed Ghallab, Karl Nordström, Gilles Gasparoni, Jörg Reinders, Karolina Edlund, Patricio Godoy, Alexander Schriewer, Heiko Hayen, Christian A Hudert, Georg Damm, Daniel Seehofer, Thomas S Weiss, Peter Boor, Hans-Joachim Anders, Manga Motrapu, Peter Jansen, Tobias S Schiergens, Maren Falk-Paulsen, Philip Rosenstiel, Clivia Lisowski, Eduardo Salido, Rosemarie Marchan, Jörn Walter, Jan G Hengstler, Cristina Cadenas. Epigenomic and transcriptional profiling identifies impaired glyoxylate detoxification in NAFLD as a risk factor for hyperoxaluria.
Cell reports.
2021 08; 36(8):109526. doi:
10.1016/j.celrep.2021.109526
. [PMID: 34433051] - Hiba Baaziz, K Karl Compton, Sherry B Hildreth, Richard F Helm, Birgit E Scharf. McpT, a Broad-Range Carboxylate Chemoreceptor in Sinorhizobium meliloti.
Journal of bacteriology.
2021 08; 203(17):e0021621. doi:
10.1128/jb.00216-21
. [PMID: 34124939] - Tao Ding, Tingting Zhao, Yinhui Li, Zhixiao Liu, Jiarong Ding, Boyao Ji, Yue Wang, Zhiyong Guo. Vitexin exerts protective effects against calcium oxalate crystal-induced kidney pyroptosis in vivo and in vitro.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2021 Jun; 86(?):153562. doi:
10.1016/j.phymed.2021.153562
. [PMID: 33857849] - Khushboo Borah, Tom A Mendum, Nathaniel D Hawkins, Jane L Ward, Michael H Beale, Gerald Larrouy-Maumus, Apoorva Bhatt, Martine Moulin, Michael Haertlein, Gernot Strohmeier, Harald Pichler, V Trevor Forsyth, Stephan Noack, Celia W Goulding, Johnjoe McFadden, Dany J V Beste. Metabolic fluxes for nutritional flexibility of Mycobacterium tuberculosis.
Molecular systems biology.
2021 05; 17(5):e10280. doi:
10.15252/msb.202110280
. [PMID: 33943004] - Long He, Peng Jin, Xuan Chen, Tian-Ye Zhang, Kai-Li Zhong, Peng Liu, Jian-Ping Chen, Jian Yang. Comparative proteomic analysis of Nicotiana benthamiana plants under Chinese wheat mosaic virus infection.
BMC plant biology.
2021 Jan; 21(1):51. doi:
10.1186/s12870-021-02826-9
. [PMID: 33468046] - Xi Jin, Zhongyu Jian, Xiaoting Chen, Yucheng Ma, Hongwen Ma, Yu Liu, Lina Gong, Liyuan Xiang, Shiyu Zhu, Xiaoling Shu, Shiqian Qi, Hong Li, Kunjie Wang. Short Chain Fatty Acids Prevent Glyoxylate-Induced Calcium Oxalate Stones by GPR43-Dependent Immunomodulatory Mechanism.
Frontiers in immunology.
2021; 12(?):729382. doi:
10.3389/fimmu.2021.729382
. [PMID: 34675921] - Mirco Dindo, Giorgia Mandrile, Carolina Conter, Rosa Montone, Daniela Giachino, Alessandra Pelle, Claudio Costantini, Barbara Cellini. The ILE56 mutation on different genetic backgrounds of alanine:glyoxylate aminotransferase: Clinical features and biochemical characterization.
Molecular genetics and metabolism.
2020 Sep; 131(1-2):171-180. doi:
10.1016/j.ymgme.2020.07.012
. [PMID: 32792227] - Zhisheng Zhang, Xiu Liang, Lei Lu, Zheng Xu, Jiayu Huang, Han He, Xinxiang Peng. Two glyoxylate reductase isoforms are functionally redundant but required under high photorespiration conditions in rice.
BMC plant biology.
2020 Jul; 20(1):357. doi:
10.1186/s12870-020-02568-0
. [PMID: 32727356] - M Luisa Hernández, Elena Lima-Cabello, Juan de D Alché, José M Martínez-Rivas, Antonio J Castro. Lipid Composition and Associated Gene Expression Patterns during Pollen Germination and Pollen Tube Growth in Olive (Olea europaea L.).
Plant & cell physiology.
2020 Jul; 61(7):1348-1364. doi:
10.1093/pcp/pcaa063
. [PMID: 32384163] - Jasper Schierstaedt, Sven Jechalke, Joseph Nesme, Klaus Neuhaus, Søren J Sørensen, Rita Grosch, Kornelia Smalla, Adam Schikora. Salmonella persistence in soil depends on reciprocal interactions with indigenous microorganisms.
Environmental microbiology.
2020 07; 22(7):2639-2652. doi:
10.1111/1462-2920.14972
. [PMID: 32128943] - Wan-Lin Wu, Yu-Yun Hsiao, Hsiang-Chia Lu, Chieh-Kai Liang, Chih-Hsiung Fu, Tian-Hsiang Huang, Ming-Hsiang Chuang, Li-Jun Chen, Zhong-Jian Liu, Wen-Chieh Tsai. Expression regulation of MALATE SYNTHASE involved in glyoxylate cycle during protocorm development in Phalaenopsis aphrodite (Orchidaceae).
Scientific reports.
2020 06; 10(1):10123. doi:
10.1038/s41598-020-66932-8
. [PMID: 32572104] - Wei Zhou, Yanli Hong, Ailing Yin, Shijia Liu, Minmin Chen, Xifeng Lv, Xiaowei Nie, Ninghua Tan, Zhihao Zhang. Non-invasive urinary metabolomics reveals metabolic profiling of polycystic ovary syndrome and its subtypes.
Journal of pharmaceutical and biomedical analysis.
2020 Jun; 185(?):113262. doi:
10.1016/j.jpba.2020.113262
. [PMID: 32222648] - Seanna L Hewitt, Rishikesh Ghogare, Amit Dhingra. Glyoxylic acid overcomes 1-MCP-induced blockage of fruit ripening in Pyrus communis L. var. 'D'Anjou'.
Scientific reports.
2020 04; 10(1):7084. doi:
10.1038/s41598-020-63642-z
. [PMID: 32341384] - Vincenzo Cuomo, Cesare Gerardo Riccio, Salvatore Coppola. [Primary hyperoxaluria: case report and therapeutic perspectives].
Giornale italiano di nefrologia : organo ufficiale della Societa italiana di nefrologia.
2020 Feb; 37(1):. doi:
NULL
. [PMID: 32068359] - Toshiaki Kozuka, Yuji Sawada, Hiroyuki Imai, Masatake Kanai, Masami Yokota Hirai, Shoji Mano, Matsuo Uemura, Mikio Nishimura, Makoto Kusaba, Akira Nagatani. Regulation of Sugar and Storage Oil Metabolism by Phytochrome during De-etiolation.
Plant physiology.
2020 02; 182(2):1114-1129. doi:
10.1104/pp.19.00535
. [PMID: 31748417] - Dewi van Harskamp, Sander F Garrelfs, Michiel J S Oosterveld, Jaap W Groothoff, Johannes B van Goudoever, Henk Schierbeek. Development and Validation of a New Gas Chromatography-Tandem Mass Spectrometry Method for the Measurement of Enrichment of Glyoxylate Metabolism Analytes in Hyperoxaluria Patients Using a Stable Isotope Procedure.
Analytical chemistry.
2020 01; 92(2):1826-1832. doi:
10.1021/acs.analchem.9b03670
. [PMID: 31867958] - Xiaoqi Yang, Haoran Liu, Tao Ye, Chen Duan, Peng Lv, Xiaoliang Wu, Jianhe Liu, Kehua Jiang, Hongyan Lu, Huan Yang, Ding Xia, Ejun Peng, Zhiqiang Chen, Kun Tang, Zhangqun Ye. AhR activation attenuates calcium oxalate nephrocalcinosis by diminishing M1 macrophage polarization and promoting M2 macrophage polarization.
Theranostics.
2020; 10(26):12011-12025. doi:
10.7150/thno.51144
. [PMID: 33204326] - Jade Martins, Darina Czamara, Jennifer Lange, Frederik Dethloff, Elisabeth B Binder, Chris W Turck, Angelika Erhardt. Exposure-induced changes of plasma metabolome and gene expression in patients with panic disorder.
Depression and anxiety.
2019 12; 36(12):1173-1181. doi:
10.1002/da.22946
. [PMID: 31374578] - Spencer M Heuchan, Bo Fan, Jessica J Kowalski, Elizabeth R Gillies, Hugh A L Henry. Development of Fertilizer Coatings from Polyglyoxylate-Polyester Blends Responsive to Root-Driven pH Change.
Journal of agricultural and food chemistry.
2019 Nov; 67(46):12720-12729. doi:
10.1021/acs.jafc.9b04717
. [PMID: 31652059] - Yong Jia, Crista A Burbidge, Crystal Sweetman, Emi Schutz, Kathy Soole, Colin Jenkins, Robert D Hancock, John B Bruning, Christopher M Ford. An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera.
The Journal of biological chemistry.
2019 11; 294(44):15932-15946. doi:
10.1074/jbc.ra119.010196
. [PMID: 31488549] - Mingwei Wang, Hailiang Nie, Dandan Han, Xiaoqiang Qiao, Hongyuan Yan, Shigang Shen. Cauliflower-like resin microspheres with tuneable surface roughness as solid-phase extraction adsorbent for efficient extraction and determination of plant growth regulators in cucumbers.
Food chemistry.
2019 Oct; 295(?):259-266. doi:
10.1016/j.foodchem.2019.05.130
. [PMID: 31174757] - Agnese Serafini, Lendl Tan, Stuart Horswell, Steven Howell, Daniel J Greenwood, Deborah M Hunt, Minh-Duy Phan, Mark Schembri, Mercedes Monteleone, Christine R Montague, Warwick Britton, Acely Garza-Garcia, Ambrosius P Snijders, Brian VanderVen, Maximiliano G Gutierrez, Nicholas P West, Luiz Pedro S de Carvalho. Mycobacterium tuberculosis requires glyoxylate shunt and reverse methylcitrate cycle for lactate and pyruvate metabolism.
Molecular microbiology.
2019 10; 112(4):1284-1307. doi:
10.1111/mmi.14362
. [PMID: 31389636] - Lu Wang, Huaiyuan Zhang, Yao Zhang, Yuanda Song. 13C metabolic flux analysis on roles of malate transporter in lipid accumulation of Mucor circinelloides.
Microbial cell factories.
2019 Sep; 18(1):154. doi:
10.1186/s12934-019-1207-9
. [PMID: 31506101] - Falicia Qi Yun Goh, Justin Jeyakani, Phornpimon Tipthara, Amaury Cazenave-Gassiot, Rajoshi Ghosh, Nicholas Bogard, Zhenxuan Yeo, Gane Ka-Shu Wong, Michael Melkonian, Markus R Wenk, Neil D Clarke. Gains and losses of metabolic function inferred from a phylotranscriptomic analysis of algae.
Scientific reports.
2019 07; 9(1):10482. doi:
10.1038/s41598-019-46869-3
. [PMID: 31324835] - Junhua Xi, Yang Chen, Junfeng Jing, Yanbin Zhang, Chaozhao Liang, Zongyao Hao, Li Zhang. Sirtuin 3 suppresses the formation of renal calcium oxalate crystals through promoting M2 polarization of macrophages.
Journal of cellular physiology.
2019 07; 234(7):11463-11473. doi:
10.1002/jcp.27803
. [PMID: 30588609] - Teruaki Sugino, Atsushi Okada, Kazumi Taguchi, Rei Unno, Shuzo Hamamoto, Ryosuke Ando, Tohru Mogami, Kenjiro Kohri, Hitoshi Yamashita, Takahiro Yasui. Brown adipocytes and β3-stimulant-induced brown-like adipocytes contribute to the prevention of renal crystal formation.
American journal of physiology. Renal physiology.
2019 06; 316(6):F1282-F1292. doi:
10.1152/ajprenal.00523.2018
. [PMID: 30995115] - Paola Faraoni, Elettra Sereni, Alessio Gnerucci, Francesca Cialdai, Monica Monici, Francesco Ranaldi. Glyoxylate cycle activity in Pinus pinea seeds during germination in altered gravity conditions.
Plant physiology and biochemistry : PPB.
2019 Jun; 139(?):389-394. doi:
10.1016/j.plaphy.2019.03.042
. [PMID: 30959447] - Yong Min, Wenjia Cao, Yun Xiong, Zhihao Si, Dawood Khan, Limei Chen. Formaldehyde assimilation through coordination of the glyoxylate pathway and the tricarboxylic acid cycle in broad bean roots.
Plant physiology and biochemistry : PPB.
2019 May; 138(?):65-79. doi:
10.1016/j.plaphy.2019.02.019
. [PMID: 30852239] - Anjli Kukreja, Melissa Lasaro, Christian Cobaugh, Chris Forbes, Jian-Ping Tang, Xiang Gao, Cristina Martin-Higueras, Angel L Pey, Eduardo Salido, Susan Sobolov, Romesh R Subramanian. Systemic Alanine Glyoxylate Aminotransferase mRNA Improves Glyoxylate Metabolism in a Mouse Model of Primary Hyperoxaluria Type 1.
Nucleic acid therapeutics.
2019 04; 29(2):104-113. doi:
10.1089/nat.2018.0740
. [PMID: 30676254] - Mirco Dindo, Carolina Conter, Elisa Oppici, Veronica Ceccarelli, Lorella Marinucci, Barbara Cellini. Molecular basis of primary hyperoxaluria: clues to innovative treatments.
Urolithiasis.
2019 Feb; 47(1):67-78. doi:
10.1007/s00240-018-1089-z
. [PMID: 30430197] - Masayuki Usami, Atsushi Okada, Kazumi Taguchi, Shuzo Hamamoto, Kenjiro Kohri, Takahiro Yasui. Genetic differences in C57BL/6 mouse substrains affect kidney crystal deposition.
Urolithiasis.
2018 Nov; 46(6):515-522. doi:
10.1007/s00240-018-1040-3
. [PMID: 29362828] - Yufan Chao, Songyan Gao, Xuelei Wang, Na Li, Hongxia Zhao, Xiaofei Wen, Ziyang Lou, Xin Dong. Untargeted lipidomics based on UPLC-QTOF-MS/MS and structural characterization reveals dramatic compositional changes in serum and renal lipids in mice with glyoxylate-induced nephrolithiasis.
Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.
2018 Sep; 1095(?):258-266. doi:
10.1016/j.jchromb.2018.08.003
. [PMID: 30099286] - Alexander T Eprintsev, Dmitry N Fedorin, Maria A Dobychina, Abir U Igamberdiev. Regulation of expression of the mitochondrial and peroxisomal forms of citrate synthase in maize during germination and in response to light.
Plant science : an international journal of experimental plant biology.
2018 Jul; 272(?):157-163. doi:
10.1016/j.plantsci.2018.04.017
. [PMID: 29807587] - Manman Zhang, Chao Gao, Xiaoting Guo, Shiting Guo, Zhaoqi Kang, Dan Xiao, Jinxin Yan, Fei Tao, Wen Zhang, Wenyue Dong, Pan Liu, Chen Yang, Cuiqing Ma, Ping Xu. Increased glutarate production by blocking the glutaryl-CoA dehydrogenation pathway and a catabolic pathway involving L-2-hydroxyglutarate.
Nature communications.
2018 05; 9(1):2114. doi:
10.1038/s41467-018-04513-0
. [PMID: 29844506] - Bei Yan, Yao Liu, Aixin Shi, Zhihong Wang, Jiye Aa, Xiaoping Huang, Yi Liu. Investigation of the Antifatigue Effects of Korean Ginseng on Professional Athletes by Gas Chromatography-Time-of-Flight-Mass Spectrometry-Based Metabolomics.
Journal of AOAC International.
2018 May; 101(3):701-707. doi:
10.5740/jaoacint.17-0220
. [PMID: 28927488] - Mahmoud El-Maghrabey, Masaki Mine, Naoya Kishikawa, Kaname Ohyama, Naotaka Kuroda. A novel dual labeling approach enables converting fluorescence labeling reagents into fluorogenic ones via introduction of purification tags. Application to determination of glyoxylic acid in serum.
Talanta.
2018 Apr; 180(?):323-328. doi:
10.1016/j.talanta.2017.12.023
. [PMID: 29332818] - Rui Zheng, Xiaoliang Fang, Lei He, Yanjiao Shao, Nana Guo, Liren Wang, Mingyao Liu, Dali Li, Hongquan Geng. Generation of a Primary Hyperoxaluria Type 1 Disease Model Via CRISPR/Cas9 System in Rats.
Current molecular medicine.
2018; 18(7):436-447. doi:
10.2174/1566524019666181212092440
. [PMID: 30539697] - Jingbo Yu, Ling Kong, Aihua Zhang, Ying Han, Zhidong Liu, Hui Sun, Liang Liu, Xijun Wang. High-Throughput Metabolomics for Discovering Potential Metabolite Biomarkers and Metabolic Mechanism from the APPswe/PS1dE9 Transgenic Model of Alzheimer's Disease.
Journal of proteome research.
2017 09; 16(9):3219-3228. doi:
10.1021/acs.jproteome.7b00206
. [PMID: 28753016] - Rosaria Campilongo, Rowena K Y Fung, Richard H Little, Lucia Grenga, Eleftheria Trampari, Simona Pepe, Govind Chandra, Clare E M Stevenson, Davide Roncarati, Jacob G Malone. One ligand, two regulators and three binding sites: How KDPG controls primary carbon metabolism in Pseudomonas.
PLoS genetics.
2017 Jun; 13(6):e1006839. doi:
10.1371/journal.pgen.1006839
. [PMID: 28658302] - Alessandro Roncador, Elisa Oppici, Marina Talelli, Amaya Niño Pariente, Marta Donini, Stefano Dusi, Carla Borri Voltattorni, María J Vicent, Barbara Cellini. Use of polymer conjugates for the intraperoxisomal delivery of engineered human alanine:glyoxylate aminotransferase as a protein therapy for primary hyperoxaluria type I.
Nanomedicine : nanotechnology, biology, and medicine.
2017 04; 13(3):897-907. doi:
10.1016/j.nano.2016.12.011
. [PMID: 27993722] - Kazuki Takahashi, Ryousuke Morimoto, Hiromitsu Tabeta, Mariko Asaoka, Masanori Ishida, Masayoshi Maeshima, Hirokazu Tsukaya, Ali Ferjani. Compensated Cell Enlargement in fugu5 is Specifically Triggered by Lowered Sucrose Production from Seed Storage Lipids.
Plant & cell physiology.
2017 04; 58(4):668-678. doi:
10.1093/pcp/pcx021
. [PMID: 28201798] - Stéphanie Arrivault, Toshihiro Obata. Quantification of Photorespiratory Intermediates by Mass Spectrometry-Based Approaches.
Methods in molecular biology (Clifton, N.J.).
2017; 1653(?):97-104. doi:
10.1007/978-1-4939-7225-8_7
. [PMID: 28822128] - Saoussen M'dimegh, Asma Omezzine, Mériam Ben Hamida-Rebai, Cécile Aquaviva-Bourdain, Ibtihel M'barek, Wissal Sahtout, Dorsaf Zellama, Geneviéve Souche, Abdellatif Achour, Saoussen Abroug, Ali Bouslama. Identification of a novel AGXT gene mutation in primary hyperoxaluria after kidney transplantation failure.
Transplant immunology.
2016 11; 39(?):60-65. doi:
10.1016/j.trim.2016.08.008
. [PMID: 27568336] - Aleksandra Eckstein, Dominika Jagiełło-Flasińska, Aleksandra Lewandowska, Paweł Hermanowicz, Klaus-J Appenroth, Halina Gabryś. Mobilization of storage materials during light-induced germination of tomato (Solanum lycopersicum) seeds.
Plant physiology and biochemistry : PPB.
2016 Aug; 105(?):271-281. doi:
10.1016/j.plaphy.2016.05.008
. [PMID: 27208503] - Zhenguo Ma, Frédéric Marsolais, Mark A Bernards, Mark W Sumarah, Natalia V Bykova, Abir U Igamberdiev. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.
Plant science : an international journal of experimental plant biology.
2016 Jul; 248(?):37-44. doi:
10.1016/j.plantsci.2016.04.007
. [PMID: 27181945] - Younès Dellero, Mathieu Jossier, Jessica Schmitz, Veronica G Maurino, Michael Hodges. Photorespiratory glycolate-glyoxylate metabolism.
Journal of experimental botany.
2016 05; 67(10):3041-52. doi:
10.1093/jxb/erw090
. [PMID: 26994478] - Cristina Martin-Higueras, Sergio Luis-Lima, Eduardo Salido. Glycolate Oxidase Is a Safe and Efficient Target for Substrate Reduction Therapy in a Mouse Model of Primary Hyperoxaluria Type I.
Molecular therapy : the journal of the American Society of Gene Therapy.
2016 Apr; 24(4):719-25. doi:
10.1038/mt.2015.224
. [PMID: 26689264] - Chaitali Dutta, Nicole Avitahl-Curtis, Natalie Pursell, Marita Larsson Cohen, Benjamin Holmes, Rohan Diwanji, Wei Zhou, Luciano Apponi, Martin Koser, Bo Ying, Dongyu Chen, Xue Shui, Utsav Saxena, Wendy A Cyr, Anee Shah, Naim Nazef, Weimin Wang, Marc Abrams, Henryk Dudek, Eduardo Salido, Bob D Brown, Chengjung Lai. Inhibition of Glycolate Oxidase With Dicer-substrate siRNA Reduces Calcium Oxalate Deposition in a Mouse Model of Primary Hyperoxaluria Type 1.
Molecular therapy : the journal of the American Society of Gene Therapy.
2016 Apr; 24(4):770-8. doi:
10.1038/mt.2016.4
. [PMID: 26758691] - Lei Yin, Kevin Shengyang Yu, Kun Lu, Xiaozhong Yu. Benzyl butyl phthalate promotes adipogenesis in 3T3-L1 preadipocytes: A High Content Cellomics and metabolomic analysis.
Toxicology in vitro : an international journal published in association with BIBRA.
2016 Apr; 32(?):297-309. doi:
10.1016/j.tiv.2016.01.010
. [PMID: 26820058] - Shivangi Rastogi, Pooja Agarwal, Manju Y Krishnan. Use of an adipocyte model to study the transcriptional adaptation of Mycobacterium tuberculosis to store and degrade host fat.
International journal of mycobacteriology.
2016 Mar; 5(1):92-8. doi:
10.1016/j.ijmyco.2015.10.003
. [PMID: 26927997] - Pieter Giesbertz, Inken Padberg, Dietrich Rein, Josef Ecker, Anja S Höfle, Britta Spanier, Hannelore Daniel. Metabolite profiling in plasma and tissues of ob/ob and db/db mice identifies novel markers of obesity and type 2 diabetes.
Diabetologia.
2015 Sep; 58(9):2133-43. doi:
10.1007/s00125-015-3656-y
. [PMID: 26058503] - Javier Sánchez-Martín, Jim Heald, Alison Kingston-Smith, Ana Winters, Diego Rubiales, Mariluz Sanz, Luis A J Mur, Elena Prats. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signalling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism.
Plant, cell & environment.
2015 Jul; 38(7):1434-52. doi:
10.1111/pce.12501
. [PMID: 25533379] - Wenqiang Yang, Claudia Catalanotti, Tyler M Wittkopp, Matthew C Posewitz, Arthur R Grossman. Algae after dark: mechanisms to cope with anoxic/hypoxic conditions.
The Plant journal : for cell and molecular biology.
2015 May; 82(3):481-503. doi:
10.1111/tpj.12823
. [PMID: 25752440] - Haiyan Hu, Wei Chen, Jiarong Ding, Meng Jia, Jingjing Yin, Zhiyong Guo. Fasudil prevents calcium oxalate crystal deposit and renal fibrogenesis in glyoxylate-induced nephrolithic mice.
Experimental and molecular pathology.
2015 Apr; 98(2):277-85. doi:
10.1016/j.yexmp.2015.02.006
. [PMID: 25697583] - Alma Rosa Corrales Escobosa, Katarzyna Wrobel, Eunice Yanez Barrientos, Sarahi Jaramillo Ortiz, Alejandra Sarahi Ramirez Segovia, Kazimierz Wrobel. Effect of different glycation agents on Cu(II) binding to human serum albumin, studied by liquid chromatography, nitrogen microwave-plasma atomic-emission spectrometry, inductively-coupled-plasma mass spectrometry, and high-resolution molecular-mass spectrometry.
Analytical and bioanalytical chemistry.
2015 Feb; 407(4):1149-57. doi:
10.1007/s00216-014-8335-1
. [PMID: 25428457] - Zhongjiang Peng, Wei Chen, Li Wang, Zhouheng Ye, Songyan Gao, Xuejun Sun, Zhiyong Guo. Inhalation of hydrogen gas ameliorates glyoxylate-induced calcium oxalate deposition and renal oxidative stress in mice.
International journal of clinical and experimental pathology.
2015; 8(3):2680-9. doi:
NULL
. [PMID: 26045773] - Evan Barr-Beare, Vijay Saxena, Evann E Hilt, Krystal Thomas-White, Megan Schober, Birong Li, Brian Becknell, David S Hains, Alan J Wolfe, Andrew L Schwaderer. The Interaction between Enterobacteriaceae and Calcium Oxalate Deposits.
PloS one.
2015; 10(10):e0139575. doi:
10.1371/journal.pone.0139575
. [PMID: 26448465] - Rita J M Volkers, L Basten Snoek, Harald J Ruijssenaars, Johannes H de Winde. Dynamic Response of Pseudomonas putida S12 to Sudden Addition of Toluene and the Potential Role of the Solvent Tolerance Gene trgI.
PloS one.
2015; 10(7):e0132416. doi:
10.1371/journal.pone.0132416
. [PMID: 26181384] - Mark A Hooks, J William Allwood, Joanna K D Harrison, Joachim Kopka, Alexander Erban, Royston Goodacre, Janneke Balk. Selective induction and subcellular distribution of ACONITASE 3 reveal the importance of cytosolic citrate metabolism during lipid mobilization in Arabidopsis.
The Biochemical journal.
2014 Oct; 463(2):309-17. doi:
10.1042/bj20140430
. [PMID: 25061985] - Yaacov Frishberg, Avraham Zeharia, Roman Lyakhovetsky, Ruth Bargal, Ruth Belostotsky. Mutations in HAO1 encoding glycolate oxidase cause isolated glycolic aciduria.
Journal of medical genetics.
2014 Aug; 51(8):526-9. doi:
10.1136/jmedgenet-2014-102529
. [PMID: 24996905] - Laura Strittmatter, Yang Li, Nathan J Nakatsuka, Sarah E Calvo, Zenon Grabarek, Vamsi K Mootha. CLYBL is a polymorphic human enzyme with malate synthase and β-methylmalate synthase activity.
Human molecular genetics.
2014 May; 23(9):2313-23. doi:
10.1093/hmg/ddt624
. [PMID: 24334609] - Victoria J Nikiforova, Pieter Giesbertz, Jan Wiemer, Bianca Bethan, Ralf Looser, Volker Liebenberg, Patricia Ruiz Noppinger, Hannelore Daniel, Dietrich Rein. Glyoxylate, a new marker metabolite of type 2 diabetes.
Journal of diabetes research.
2014; 2014(?):685204. doi:
10.1155/2014/685204
. [PMID: 25525609] - Inken Padberg, Erik Peter, Sandra González-Maldonado, Henning Witt, Matthias Mueller, Tanja Weis, Bianca Bethan, Volker Liebenberg, Jan Wiemer, Hugo A Katus, Dietrich Rein, Philipp Schatz. A new metabolomic signature in type-2 diabetes mellitus and its pathophysiology.
PloS one.
2014; 9(1):e85082. doi:
10.1371/journal.pone.0085082
. [PMID: 24465478] - Gordon J Hoover, René Jørgensen, Amanda Rochon, Vikramjit S Bajwa, A Rod Merrill, Barry J Shelp. Identification of catalytically important amino acid residues for enzymatic reduction of glyoxylate in plants.
Biochimica et biophysica acta.
2013 Dec; 1834(12):2663-71. doi:
10.1016/j.bbapap.2013.09.013
. [PMID: 24076009] - Alessio Aprile, Lenka Havlickova, Riccardo Panna, Caterina Marè, Grazia M Borrelli, Daniela Marone, Carla Perrotta, Patrizia Rampino, Luigi De Bellis, Vladislav Curn, Anna M Mastrangelo, Fulvia Rizza, Luigi Cattivelli. Different stress responsive strategies to drought and heat in two durum wheat cultivars with contrasting water use efficiency.
BMC genomics.
2013 Nov; 14(?):821. doi:
10.1186/1471-2164-14-821
. [PMID: 24267539] - Christian Blume, Christof Behrens, Holger Eubel, Hans-Peter Braun, Christoph Peterhansel. A possible role for the chloroplast pyruvate dehydrogenase complex in plant glycolate and glyoxylate metabolism.
Phytochemistry.
2013 Nov; 95(?):168-76. doi:
10.1016/j.phytochem.2013.07.009
. [PMID: 23916564] - Mukesh K Dubey, Anders Broberg, Sanjeewani Sooriyaarachchi, Wimal Ubhayasekera, Dan Funck Jensen, Magnus Karlsson. The glyoxylate cycle is involved in pleotropic phenotypes, antagonism and induction of plant defence responses in the fungal biocontrol agent Trichoderma atroviride.
Fungal genetics and biology : FG & B.
2013 Sep; 58-59(?):33-41. doi:
10.1016/j.fgb.2013.06.008
. [PMID: 23850601] - Wei Wei, Wenjun Zhu, Jiasen Cheng, Jiatao Xie, Bo Li, Daohong Jiang, Guoqing Li, Xianhong Yi, Yanping Fu. CmPEX6, a gene involved in peroxisome biogenesis, is essential for parasitism and conidiation by the sclerotial parasite Coniothyrium minitans.
Applied and environmental microbiology.
2013 Jun; 79(12):3658-66. doi:
10.1128/aem.00375-13
. [PMID: 23563946] - Andrei Tintu, Ellen Rouwet, Henk Russcher. Interference of ethylene glycol with (L)-lactate measurement is assay-dependent.
Annals of clinical biochemistry.
2013 Jan; 50(Pt 1):70-2. doi:
10.1258/acb.2012.012052
. [PMID: 23129723] - Yasuyuki Kubo. Function of peroxisomes in plant-pathogen interactions.
Sub-cellular biochemistry.
2013; 69(?):329-45. doi:
10.1007/978-94-007-6889-5_18
. [PMID: 23821157] - Ruth Belostotsky, James Jonathon Pitt, Yaacov Frishberg. Primary hyperoxaluria type III--a model for studying perturbations in glyoxylate metabolism.
Journal of molecular medicine (Berlin, Germany).
2012 Dec; 90(12):1497-504. doi:
10.1007/s00109-012-0930-z
. [PMID: 22729392] - Antonio Di Matteo, Adriana Sacco, Rosalba De Stefano, Luigi Frusciante, Amalia Barone. Comparative transcriptomic profiling of two tomato lines with different ascorbate content in the fruit.
Biochemical genetics.
2012 Dec; 50(11-12):908-21. doi:
10.1007/s10528-012-9531-3
. [PMID: 22911514] - Antoine Lesur, Emmanuel Varesio, Bruno Domon, Gérard Hopfgartner. Peptides quantification by liquid chromatography with matrix-assisted laser desorption/ionization and selected reaction monitoring detection.
Journal of proteome research.
2012 Oct; 11(10):4972-82. doi:
10.1021/pr300514u
. [PMID: 22897511] - Kefeng Li, Ramana R Pidatala, Wusirika Ramakrishna. Mutational, proteomic and metabolomic analysis of a plant growth promoting copper-resistant Pseudomonas spp.
FEMS microbiology letters.
2012 Oct; 335(2):140-8. doi:
10.1111/j.1574-6968.2012.02646.x
. [PMID: 22845850] - Travis J Riedel, John Knight, Michael S Murray, Dawn S Milliner, Ross P Holmes, W Todd Lowther. 4-Hydroxy-2-oxoglutarate aldolase inactivity in primary hyperoxaluria type 3 and glyoxylate reductase inhibition.
Biochimica et biophysica acta.
2012 Oct; 1822(10):1544-52. doi:
10.1016/j.bbadis.2012.06.014
. [PMID: 22771891] - Eduardo Salido, Angel L Pey, Rosa Rodriguez, Victor Lorenzo. Primary hyperoxalurias: disorders of glyoxylate detoxification.
Biochimica et biophysica acta.
2012 Sep; 1822(9):1453-64. doi:
10.1016/j.bbadis.2012.03.004
. [PMID: 22446032] - Guozhu Ye, Bin Zhu, Zhenzhen Yao, Peiyuan Yin, Xin Lu, Hongwei Kong, Fei Fan, Binghua Jiao, Guowang Xu. Analysis of urinary metabolic signatures of early hepatocellular carcinoma recurrence after surgical removal using gas chromatography-mass spectrometry.
Journal of proteome research.
2012 Aug; 11(8):4361-72. doi:
10.1021/pr300502v
. [PMID: 22768978] - Hiroshi Mizuno, Hiroyuki Kawahigashi, Yoshihiro Kawahara, Hiroyuki Kanamori, Jun Ogata, Hiroshi Minami, Takeshi Itoh, Takashi Matsumoto. Global transcriptome analysis reveals distinct expression among duplicated genes during sorghum-interaction.
BMC plant biology.
2012 Jul; 12(?):121. doi:
10.1186/1471-2229-12-121
. [PMID: 22838966] - Kohki Chihara, Naoya Kishikawa, Kaname Ohyama, Kenichiro Nakashima, Naotaka Kuroda. Determination of glyoxylic acid in urine by liquid chromatography with fluorescence detection, using a novel derivatization procedure based on the Petasis reaction.
Analytical and bioanalytical chemistry.
2012 Jul; 403(9):2765-70. doi:
10.1007/s00216-012-6036-1
. [PMID: 22580421] - Bernd Hoppe. An update on primary hyperoxaluria.
Nature reviews. Nephrology.
2012 Jun; 8(8):467-75. doi:
10.1038/nrneph.2012.113
. [PMID: 22688746] - Maria Kendziorek, Andrzej Paszkowski, Barbara Zagdańska. Differential regulation of alanine aminotransferase homologues by abiotic stresses in wheat (Triticum aestivum L.) seedlings.
Plant cell reports.
2012 Jun; 31(6):1105-17. doi:
10.1007/s00299-012-1231-2
. [PMID: 22327955] - G Vidgren, K Vainio-Siukola, S Honkasalo, K Dillard, M Anttila, H Vauhkonen. Primary hyperoxaluria in Coton de Tulear.
Animal genetics.
2012 Jun; 43(3):356-61. doi:
10.1111/j.1365-2052.2011.02260.x
. [PMID: 22486513] - M R Ercolano, W Sanseverino, P Carli, F Ferriello, L Frusciante. Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects.
Plant cell reports.
2012 Jun; 31(6):973-85. doi:
10.1007/s00299-012-1234-z
. [PMID: 22350316] - Yun-Hyeok Choi, Hee-Jung Yoo, Ill Chan Noh, Jeong-Min Lee, Jae Won Park, Wahn Soo Choi, Jung Ho Choi. Bioassay-guided isolation of novel compound from Paeonia suffruticosa Andrews roots as an IL-1β inhibitor.
Archives of pharmacal research.
2012 May; 35(5):801-5. doi:
10.1007/s12272-012-0506-z
. [PMID: 22644848] - Pierre Cochat, Sally-Anne Hulton, Cécile Acquaviva, Christopher J Danpure, Michel Daudon, Mario De Marchi, Sonia Fargue, Jaap Groothoff, Jérôme Harambat, Bernd Hoppe, Neville V Jamieson, Markus J Kemper, Giorgia Mandrile, Martino Marangella, Stefano Picca, Gill Rumsby, Eduardo Salido, Michael Straub, Christiaan S van Woerden. Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment.
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.
2012 May; 27(5):1729-36. doi:
10.1093/ndt/gfs078
. [PMID: 22547750] - Masahito Hirose, Keiichi Tozawa, Atsushi Okada, Shuzo Hamamoto, Yuji Higashibata, Bin Gao, Yutaro Hayashi, Hideo Shimizu, Yasue Kubota, Takahiro Yasui, Kenjiro Kohri. Role of osteopontin in early phase of renal crystal formation: immunohistochemical and microstructural comparisons with osteopontin knock-out mice.
Urological research.
2012 Apr; 40(2):121-9. doi:
10.1007/s00240-011-0400-z
. [PMID: 21833789] - Yan Gu, Cheng Lu, Qinglin Zha, Hongwei Kong, Xin Lu, Aiping Lu, Guowang Xu. Plasma metabonomics study of rheumatoid arthritis and its Chinese medicine subtypes by using liquid chromatography and gas chromatography coupled with mass spectrometry.
Molecular bioSystems.
2012 Apr; 8(5):1535-43. doi:
10.1039/c2mb25022e
. [PMID: 22419152] - Markus Niessen, Katrin Krause, Ina Horst, Norma Staebler, Stephanie Klaus, Stefanie Gaertner, Rashad Kebeish, Wagner L Araujo, Alisdair R Fernie, Christoph Peterhansel. Two alanine aminotranferases link mitochondrial glycolate oxidation to the major photorespiratory pathway in Arabidopsis and rice.
Journal of experimental botany.
2012 Apr; 63(7):2705-16. doi:
10.1093/jxb/err453
. [PMID: 22268146] - Effie S Mutasa-Göttgens, Anagha Joshi, Helen F Holmes, Peter Hedden, Berthold Göttgens. A new RNASeq-based reference transcriptome for sugar beet and its application in transcriptome-scale analysis of vernalization and gibberellin responses.
BMC genomics.
2012 Mar; 13(?):99. doi:
10.1186/1471-2164-13-99
. [PMID: 22429863] - John Knight, Ross P Holmes, Scott D Cramer, Tatsuya Takayama, Eduardo Salido. Hydroxyproline metabolism in mouse models of primary hyperoxaluria.
American journal of physiology. Renal physiology.
2012 Mar; 302(6):F688-93. doi:
10.1152/ajprenal.00473.2011
. [PMID: 22189945] - Ana P Ortega-Galisteo, María Rodríguez-Serrano, Diana M Pazmiño, Dharmendra K Gupta, Luisa M Sandalio, María C Romero-Puertas. S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress.
Journal of experimental botany.
2012 Mar; 63(5):2089-103. doi:
10.1093/jxb/err414
. [PMID: 22213812] - Steven L K Ching, Satinder K Gidda, Amanda Rochon, Owen R van Cauwenberghe, Barry J Shelp, Robert T Mullen. Glyoxylate reductase isoform 1 is localized in the cytosol and not peroxisomes in plant cells.
Journal of integrative plant biology.
2012 Mar; 54(3):152-68. doi:
10.1111/j.1744-7909.2012.01103.x
. [PMID: 22309191] - Darren M Soanes, Apratim Chakrabarti, Konrad H Paszkiewicz, Angus L Dawe, Nicholas J Talbot. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae.
PLoS pathogens.
2012 Feb; 8(2):e1002514. doi:
10.1371/journal.ppat.1002514
. [PMID: 22346750] - Mi-Sun Koo, Selvakumar Subbian, Gilla Kaplan. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages.
Cell communication and signaling : CCS.
2012 Jan; 10(1):2. doi:
10.1186/1478-811x-10-2
. [PMID: 22280836]