Benzaldehyde (BioDeep_00000004135)
Secondary id: BioDeep_00000405602, BioDeep_00000859886
human metabolite blood metabolite Exogenous Industrial Pollutants natural product PANOMIX_OTCML-2023 BioNovoGene_Lab2019
代谢物信息卡片
化学式: C7H6O (106.0419)
中文名称: 苯甲醛, 苦杏仁油
谱图信息:
最多检出来源 Homo sapiens(plant) 18.21%
Last reviewed on 2024-10-22.
Cite this Page
Benzaldehyde. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/benzaldehyde (retrieved
2024-12-23) (BioDeep RN: BioDeep_00000004135). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC=C(C=C1)C=O
InChI: InChI=1S/C7H6O/c8-6-7-4-2-1-3-5-7/h1-6H
描述信息
Benzaldehyde is occasionally found as a volatile component of urine. Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5\\\% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products. (PMID:16835129, Int J Toxicol. 2006;25 Suppl 1:11-27.).
Benzaldehyde, a volatile organic compound, is naturally present in a variety of plants, particularly in certain fruits, nuts, and flowers. It plays a significant role in the aromatic profiles of these plants.
For instance, benzaldehyde is a primary component of bitter almond oil, which was one of its earliest known natural sources. Besides bitter almonds, it is also found in fruits like cherries, peaches, and plums, as well as in flowers such as jasmine. In the food industry, benzaldehyde is occasionally used as a food additive to impart specific flavors.
This prevalence in plants highlights that benzaldehyde is not only an industrial chemical but also a naturally occurring compound in the plant kingdom. Its presence in these natural sources underscores its significance in both nature and industry.
Found in plants, especies in almond kernelsand is) also present in strawberry jam, leek, crispbread, cheese, black tea and several essential oils. Parent and derivs. (e.g. glyceryl acetal) are used as flavourings
同义名列表
35 个代谢物同义名
Phenylmethanal benzenecarboxaldehyde; Benzaldehyde, formyl-(14)C-labeled; Artificial essential oil OF almond; Almond artificial essential oil; Ethereal oil OF bitter almonds; Synthetic oil OF bitter almond; Artificial bitter almond oil; benzaldehyde-carbonyl-13c; Benzene carboxaldehyde; Benzoic acid aldehyde; Benzenecarboxaldehyde; Artificial almond oil; Benzene carbaldehyde; Oil OF bitter almond; Phenylformaldehyde; Benzoate aldehyde; Benzoic aldehyde; Benzene methylal; Benzaldehyde FFC; Benzoyl hydride; Benzenemethylal; Benzenecarbonal; Benzanoaldehyde; Caswell no. 076; Benzylaldehyde; Phenylmethanal; Benzyaldehyde; FEMA no. 2127; Benzoic Acid; benzaldehyde; Benzadehyde; benzoate; BEZ; Benzaldehyde; Benzaldehyde
数据库引用编号
22 个数据库交叉引用编号
- ChEBI: CHEBI:17169
- KEGG: C00261
- KEGG: C00193
- KEGGdrug: D02314
- PubChem: 240
- HMDB: HMDB0006115
- ChEMBL: CHEMBL15972
- Wikipedia: Benzaldehyde
- MetaCyc: BENZALDEHYDE
- KNApSAcK: C00034452
- foodb: FDB014661
- chemspider: 235
- CAS: 100-52-7
- PMhub: MS000015885
- PDB-CCD: HBX
- 3DMET: B00077
- NIKKAJI: J4.010J
- RefMet: Benzaldehyde
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-452
- PubChem: 3559
- KNApSAcK: 17169
- LOTUS: LTS0094193
分类词条
相关代谢途径
BioCyc(18)
- vicianin bioactivation
- superpathway of N-acetylneuraminate degradation
- mixed acid fermentation
- amygdalin and prunasin degradation
- superpathway of pyrimidine deoxyribonucleosides degradation
- superpathway of purine deoxyribonucleosides degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- superpathway of aromatic compound degradation via 3-oxoadipate
- mandelate degradation to acetyl-CoA
- superpathway of L-threonine metabolism
- 2'-deoxy-α-D-ribose 1-phosphate degradation
- ethanol degradation I
- ethanolamine utilization
- L-threonine degradation IV
- pyruvate fermentation to ethanol I
- salicortin biosynthesis
- glycine betaine biosynthesis I (Gram-negative bacteria)
- salicin biosynthesis
代谢反应
162 个相关的代谢反应过程信息。
Reactome(33)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase I - Functionalization of compounds:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase I - Functionalization of compounds:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
BioCyc(18)
- amygdalin and prunasin degradation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- salicin biosynthesis:
benzaldehyde ⟶ salicylaldehyde
- toluene degradation to benzoate:
NAD+ + benzyl alcohol ⟶ H+ + NADH + benzaldehyde
- toluene degradation IV (aerobic) (via catechol):
O2 + catechol ⟶ H+ + HMS
- superpathway of aerobic toluene degradation:
4-methylphenol + H2O + an oxidized azurin ⟶ 4-hydroxybenzyl alcohol + H+ + a reduced azurin
- salicortin biosynthesis:
benzylbenzoate ⟶ benzyl-6-hydroxy-2-cyclohexene-on-oyl
- toluene degradation to benzoate:
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate:
O2 + catechol ⟶ H+ + HMS
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + catechol ⟶ H+ + HMS
- mandelate degradation I:
H+ + phenylglyoxylate ⟶ CO2 + benzaldehyde
- mandelate degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + trp ⟶ N-formylkynurenine
- mandelate degradation I:
H2O + NADP+ + benzaldehyde ⟶ H+ + NADPH + benzoate
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(111)
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- amygdalin and prunasin degradation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- amygdalin and prunasin degradation:
(R)-amygdalin + H2O ⟶ (R)-prunasin + D-glucopyranose
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- amygdalin and prunasin degradation:
(R)-prunasin + H2O ⟶ (R)-mandelonitrile + D-glucopyranose
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- vicianin bioactivation:
(R)-mandelonitrile ⟶ benzaldehyde + hydrogen cyanide
- salicin biosynthesis:
benzaldehyde ⟶ salicylaldehyde
- salicin biosynthesis:
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- salicortin biosynthesis:
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- salicortin biosynthesis:
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
606 个相关的物种来源信息
- 13328 - Achillea: LTS0094193
- 282714 - Achillea abrotanoides: 10.1016/0305-1978(92)90070-T
- 282714 - Achillea abrotanoides: LTS0094193
- 3624 - Actinidia: LTS0094193
- 3625 - Actinidia chinensis: 10.1021/JF00069A050
- 3625 - Actinidia chinensis: LTS0094193
- 3623 - Actinidiaceae: LTS0094193
- 43363 - Aesculus: LTS0094193
- 43364 - Aesculus hippocastanum: 10.1080/10412905.1994.9698335
- 43364 - Aesculus hippocastanum: LTS0094193
- 5339 - Agaricaceae: LTS0094193
- 155619 - Agaricomycetes: LTS0094193
- 5340 - Agaricus: LTS0094193
- 5341 - Agaricus bisporus: 10.1016/0031-9422(81)84057-5
- 5341 - Agaricus bisporus: LTS0094193
- 39130 - Agastache: LTS0094193
- 39269 - Agastache foeniculum: 10.1080/10412905.1992.9698065
- 39269 - Agastache foeniculum: LTS0094193
- 94326 - Alpinia: LTS0094193
- 299928 - Alpinia latilabris: 10.1080/10412905.1994.9698447
- 299928 - Alpinia latilabris: LTS0094193
- 224099 - Amauris: LTS0094193
- 1699378 - Amauris echeria: 10.1515/ZNC-1988-1-219
- 1699378 - Amauris echeria: LTS0094193
- 554915 - Amoebozoa: LTS0094193
- 4011 - Anacardiaceae: LTS0094193
- 128591 - Aniba: LTS0094193
- 2803977 - Aniba canelilla: 10.1080/10412905.1994.9698432
- 2803977 - Aniba canelilla: LTS0094193
- 22140 - Annonaceae: LTS0094193
- 4037 - Apiaceae: LTS0094193
- 7458 - Apidae: LTS0094193
- 7459 - Apis: LTS0094193
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0094193
- 4056 - Apocynaceae: LTS0094193
- 4216 - Arctium: LTS0094193
- 4217 - Arctium lappa: 10.1271/NOGEIKAGAKU1924.59.389
- 4217 - Arctium lappa: LTS0094193
- 16727 - Aristolochiaceae: LTS0094193
- 193297 - Aronia: LTS0094193
- 661339 - Aronia melanocarpa: 10.1002/JSFA.2740360908
- 661339 - Aronia melanocarpa: LTS0094193
- 4219 - Artemisia: LTS0094193
- 265783 - Artemisia capillaris: 10.1016/J.FCT.2010.01.017
- 265783 - Artemisia capillaris: LTS0094193
- 401933 - Artemisia sericea:
- 401933 - Artemisia sericea: 10.1055/S-2007-969917
- 401933 - Artemisia sericea: 10.1080/10412905.1999.9701070
- 401933 - Artemisia sericea: LTS0094193
- 6656 - Arthropoda: LTS0094193
- 16728 - Asarum: LTS0094193
- 28498 - Asarum canadense: 10.1021/JF00065A004
- 28498 - Asarum canadense: LTS0094193
- 4890 - Ascomycota: LTS0094193
- 70004 - Aspalathus: LTS0094193
- 155124 - Aspalathus linearis: 10.1021/JF00062A024
- 155124 - Aspalathus linearis: LTS0094193
- 41479 - Aster: LTS0094193
- 385370 - Aster scaber: 10.1021/JF00034A033
- 385370 - Aster scaber: LTS0094193
- 4210 - Asteraceae: LTS0094193
- 4496 - Avena: LTS0094193
- 146531 - Avena byzantina: 10.1021/JF00112A045
- 4498 - Avena sativa: 10.1021/JF00112A045
- 4498 - Avena sativa: LTS0094193
- 21563 - Averrhoa: LTS0094193
- 28974 - Averrhoa carambola: 10.1021/JF00062A009
- 28974 - Averrhoa carambola: LTS0094193
- 5204 - Basidiomycota: LTS0094193
- 41491 - Bellis: LTS0094193
- 41492 - Bellis perennis: 10.1016/0031-9422(95)00183-8
- 41492 - Bellis perennis: LTS0094193
- 33196 - Botrytis: LTS0094193
- 40559 - Botrytis cinerea: 10.1248/CPB.31.659
- 40559 - Botrytis cinerea: LTS0094193
- 3705 - Brassica: LTS0094193
- 3707 - Brassica juncea: 10.1016/0031-9422(88)83085-1
- 3707 - Brassica juncea: LTS0094193
- 3708 - Brassica napus: 10.1016/0031-9422(88)83085-1
- 3708 - Brassica napus: LTS0094193
- 3710 - Brassica nigra: 10.1016/0031-9422(88)83085-1
- 3710 - Brassica nigra: LTS0094193
- 3711 - Brassica rapa: 10.1016/0031-9422(88)83085-1
- 3711 - Brassica rapa: LTS0094193
- 145471 - Brassica rapa subsp. oleifera: 10.1016/0031-9422(88)83085-1
- 145471 - Brassica rapa subsp. oleifera: LTS0094193
- 3700 - Brassicaceae: LTS0094193
- 37411 - Bryaceae: LTS0094193
- 3208 - Bryophyta: LTS0094193
- 3214 - Bryopsida: LTS0094193
- 3593 - Cactaceae: LTS0094193
- 4441 - Camellia: LTS0094193
- 4442 - Camellia sinensis:
- 4442 - Camellia sinensis: 10.1021/BK-1993-0525.CH013
- 4442 - Camellia sinensis: 10.1271/BBB1961.50.1039
- 4442 - Camellia sinensis: 10.2503/JJSHS.58.429
- 4442 - Camellia sinensis: LTS0094193
- 13392 - Cananga: LTS0094193
- 13393 - Cananga odorata: 10.1021/JF00069A028
- 13393 - Cananga odorata: LTS0094193
- 4071 - Capsicum: LTS0094193
- 4072 - Capsicum annuum:
- 4072 - Capsicum annuum: LTS0094193
- 3648 - Carica: LTS0094193
- 3649 - Carica papaya: 10.1021/JF00119A021
- 3649 - Carica papaya: LTS0094193
- 3647 - Caricaceae: LTS0094193
- 114815 - Castanopsis: LTS0094193
- 114816 - Castanopsis cuspidata: 10.1021/JF60224A025
- 114816 - Castanopsis cuspidata: LTS0094193
- 4057 - Catharanthus: LTS0094193
- 4058 - Catharanthus roseus: 10.1002/FFJ.958
- 4058 - Catharanthus roseus: LTS0094193
- 260594 - Cedronella: LTS0094193
- 260595 - Cedronella canariensis: 10.1016/0031-9422(95)00241-X
- 260595 - Cedronella canariensis: LTS0094193
- 4305 - Celastraceae: LTS0094193
- 41503 - Centaurea: LTS0094193
- 363414 - Centaurea armena: 10.1016/J.PHYTOCHEM.2005.04.006
- 363414 - Centaurea armena: LTS0094193
- 50282 - Centaurea benedicta: 10.1055/S-0028-1099484
- 50282 - Centaurea benedicta: LTS0094193
- 41534 - Centaurea involucrata: 10.1002/CBER.19660991121
- 41534 - Centaurea involucrata: LTS0094193
- 7711 - Chordata: LTS0094193
- 13426 - Cichorium: LTS0094193
- 114280 - Cichorium endivia: 10.1021/JF00068A014
- 114280 - Cichorium endivia: LTS0094193
- 13428 - Cinnamomum: LTS0094193
- 119261 - Cinnamomum burmannii: 10.1248/YAKUSHI1947.106.1_17
- 258907 - Cinnamomum osmophloeum: 10.1016/S0378-8741(01)00273-2
- 258907 - Cinnamomum osmophloeum: LTS0094193
- 714455 - Cinnamomum parthenoxylon: 10.1080/10412905.1995.9698462
- 714455 - Cinnamomum parthenoxylon: LTS0094193
- 119266 - Cinnamomum sieboldii: 10.1248/YAKUSHI1947.106.1_17
- 119266 - Cinnamomum sieboldii: LTS0094193
- 128608 - Cinnamomum verum:
- 128608 - Cinnamomum verum: 10.1021/JF60218A031
- 128608 - Cinnamomum verum: 10.1055/S-0028-1099572
- 128608 - Cinnamomum verum: 10.1515/ZNC-2002-11-1206
- 128608 - Cinnamomum verum: LTS0094193
- 3653 - Citrullus: LTS0094193
- 3654 - Citrullus lanatus: 10.1271/BBB1961.49.3145
- 3654 - Citrullus lanatus: LTS0094193
- 2706 - Citrus: LTS0094193
- 159033 - Citrus aurantiifolia: 10.1016/J.PHYTOCHEM.2009.07.031
- 43166 - Citrus aurantium: 10.1016/J.PHYTOCHEM.2009.07.031
- 558547 - Citrus deliciosa: 10.1016/J.PHYTOCHEM.2009.07.031
- 2708 - Citrus limon: 10.1016/J.PHYTOCHEM.2009.07.031
- 171249 - Citrus limonia: LTS0094193
- 85571 - Citrus reticulata: 10.1016/J.PHYTOCHEM.2009.07.031
- 85571 - Citrus reticulata: LTS0094193
- 2711 - Citrus sinensis: 10.1016/J.PHYTOCHEM.2009.07.031
- 2711 - Citrus sinensis: LTS0094193
- 37656 - Citrus × paradisi: 10.1016/J.PHYTOCHEM.2009.07.031
- 182371 - Clinopodium: LTS0094193
- 751812 - Clinopodium suaveolens: 10.1055/S-2006-962451
- 751812 - Clinopodium suaveolens: LTS0094193
- 55961 - Clusiaceae: LTS0094193
- 87658 - Corymbia: LTS0094193
- 34329 - Corymbia citriodora: 10.1080/10412905.1991.9697921
- 34329 - Corymbia citriodora: LTS0094193
- 87660 - Corymbia maculata: 10.1080/10412905.1991.9697921
- 87660 - Corymbia maculata: LTS0094193
- 3781 - Crassulaceae: LTS0094193
- 3655 - Cucumis: LTS0094193
- 3656 - Cucumis melo: 10.1111/J.1365-2621.1987.TB14284.X
- 3656 - Cucumis melo: LTS0094193
- 3660 - Cucurbita: LTS0094193
- 3661 - Cucurbita maxima: 10.1021/JF00073A014
- 3661 - Cucurbita maxima: LTS0094193
- 3650 - Cucurbitaceae: LTS0094193
- 406287 - Curio: LTS0094193
- 189231 - Curio articulatus: 10.1016/S0031-9422(97)00141-6
- 66679 - Daphne: LTS0094193
- 66680 - Daphne mezereum: 10.1016/0031-9422(95)00801-2
- 66680 - Daphne mezereum: LTS0094193
- 329675 - Daphne odora: 10.1271/BBB1961.47.483
- 329675 - Daphne odora: LTS0094193
- 2715869 - Daphne papyracea: 10.1271/BBB1961.47.483
- 2715869 - Daphne papyracea: LTS0094193
- 413277 - Decalepis: LTS0094193
- 492000 - Decalepis hamiltonii: 10.1002/1099-1026(200101/02)16:1<27::AID-FFJ937>3.0.CO;2-F
- 492000 - Decalepis hamiltonii: LTS0094193
- 2864 - Dinophyceae: LTS0094193
- 72926 - Doellingeria: LTS0094193
- 41225 - Elsholtzia: LTS0094193
- 1874227 - Elsholtzia blanda: 10.1080/10412905.1992.9698130
- 1874227 - Elsholtzia blanda: LTS0094193
- 698833 - Elsholtzia fruticosa: 10.1055/S-2006-961490
- 698833 - Elsholtzia fruticosa: LTS0094193
- 4345 - Ericaceae: LTS0094193
- 3932 - Eucalyptus: 10.1002/FFJ.2730050207
- 3932 - Eucalyptus: LTS0094193
- 183809 - Eucalyptus albens: 10.1080/10412905.1991.9697921
- 183809 - Eucalyptus albens: LTS0094193
- 1711162 - Eucalyptus astringens: 10.1080/10412905.1991.9697921
- 1711162 - Eucalyptus astringens: LTS0094193
- 338533 - Eucalyptus blakelyi: 10.1080/10412905.1991.9697921
- 338533 - Eucalyptus blakelyi: LTS0094193
- 1516054 - Eucalyptus bosistoana: 10.1080/10412905.1991.9697921
- 1516054 - Eucalyptus bosistoana: LTS0094193
- 33130 - Eucalyptus botryoides: 10.1080/10412905.1991.9697921
- 33130 - Eucalyptus botryoides: LTS0094193
- 34316 - Eucalyptus camaldulensis: 10.1080/10412905.1991.9697921
- 34316 - Eucalyptus camaldulensis: LTS0094193
- 452569 - Eucalyptus cladocalyx: 10.1080/10412905.1991.9697921
- 452569 - Eucalyptus cladocalyx: 10.4324/9780203219430_CHAPTER_13
- 452569 - Eucalyptus cladocalyx: LTS0094193
- 1711250 - Eucalyptus dealbata: 10.1080/10412905.1991.9697921
- 1711250 - Eucalyptus dealbata: LTS0094193
- 166933 - Eucalyptus diversicolor: 10.1080/10412905.1991.9697921
- 166933 - Eucalyptus diversicolor: LTS0094193
- 34317 - Eucalyptus globulus: 10.1080/10412905.1991.9697921
- 34317 - Eucalyptus globulus: LTS0094193
- 183838 - Eucalyptus melliodora: 10.1080/10412905.1991.9697921
- 183838 - Eucalyptus melliodora: LTS0094193
- 468242 - Eucalyptus moluccana: 10.1080/10412905.1991.9697921
- 468242 - Eucalyptus moluccana: LTS0094193
- 229548 - Eucalyptus occidentalis: 10.1080/10412905.1991.9697921
- 229548 - Eucalyptus occidentalis: LTS0094193
- 183847 - Eucalyptus polyanthemos: 10.1080/10412905.1991.9697921
- 183847 - Eucalyptus polyanthemos: LTS0094193
- 338543 - Eucalyptus punctata: 10.1080/10412905.1991.9697921
- 338543 - Eucalyptus punctata: 10.1080/10412905.1992.9698059
- 338543 - Eucalyptus punctata: LTS0094193
- 99019 - Eucalyptus saligna: 10.1080/10412905.1991.9697921
- 99019 - Eucalyptus saligna: 10.1080/10412905.1992.9698059
- 99019 - Eucalyptus saligna: LTS0094193
- 795993 - Eucalyptus siderophloia: 10.1080/10412905.1991.9697921
- 795993 - Eucalyptus siderophloia: LTS0094193
- 1541731 - Eucalyptus sideroxylon: 10.1080/10412905.1991.9697921
- 1541731 - Eucalyptus sideroxylon: LTS0094193
- 183855 - Eucalyptus tereticornis: 10.1080/10412905.1991.9697921
- 183855 - Eucalyptus tereticornis: LTS0094193
- 2759 - Eukaryota: LTS0094193
- 142796 - Eumycetozoa: LTS0094193
- 2605435 - Evosea: LTS0094193
- 3803 - Fabaceae: LTS0094193
- 3503 - Fagaceae: LTS0094193
- 4605 - Festuca: LTS0094193
- 52153 - Festuca rubra: 10.1016/0031-9422(91)84185-U
- 52153 - Festuca rubra: LTS0094193
- 36668 - Formicidae: LTS0094193
- 4751 - Fungi: LTS0094193
- 58227 - Garcinia: LTS0094193
- 58228 - Garcinia mangostana: 10.1016/0031-9422(82)80025-3
- 58228 - Garcinia mangostana: LTS0094193
- 21472 - Gentianaceae: LTS0094193
- 3761 - Geum: LTS0094193
- 148894 - Geum heterocarpum: 10.1080/10412905.1994.9698398
- 148894 - Geum heterocarpum: LTS0094193
- 9893 - Giraffa: LTS0094193
- 9894 - Giraffa camelopardalis: 10.1016/S0305-1978(02)00037-6
- 9894 - Giraffa camelopardalis: LTS0094193
- 9892 - Giraffidae: LTS0094193
- 46347 - Glycyrrhiza: LTS0094193
- 49827 - Glycyrrhiza glabra:
- 49827 - Glycyrrhiza glabra: 10.1002/FFJ.2730050305
- 49827 - Glycyrrhiza glabra: 10.1021/JF60214A042
- 49827 - Glycyrrhiza glabra: LTS0094193
- 3633 - Gossypium: LTS0094193
- 3635 - Gossypium hirsutum: 10.1021/JF60200A011
- 3635 - Gossypium hirsutum: LTS0094193
- 66801 - Gymnodiniaceae: LTS0094193
- 2955 - Gymnodinium: LTS0094193
- 671128 - Gymnodinium nagasakiense: 10.1016/0031-9422(92)80160-G
- 671128 - Gymnodinium nagasakiense: LTS0094193
- 209791 - Gymnomitriaceae: LTS0094193
- 264417 - Hesperis: LTS0094193
- 264418 - Hesperis matronalis: 10.1016/J.PHYTOCHEM.2006.12.009
- 264418 - Hesperis matronalis: LTS0094193
- 35910 - Hoffmannia: LTS0094193
- 9606 - Homo sapiens: -
- 50557 - Insecta: LTS0094193
- 41589 - Inula: LTS0094193
- 483693 - Inula racemosa: 10.1016/S0031-9422(00)83760-7
- 483693 - Inula racemosa: LTS0094193
- 16714 - Juglandaceae: LTS0094193
- 16718 - Juglans: LTS0094193
- 16719 - Juglans nigra:
- 16719 - Juglans nigra: 10.1080/10412905.1992.9698128
- 16719 - Juglans nigra: 10.1080/10412905.1993.9698259
- 16719 - Juglans nigra: LTS0094193
- 186771 - Jungermanniopsida: LTS0094193
- 225107 - Karenia mikimotoi: 10.1016/0031-9422(92)80160-G
- 313966 - Laggera: LTS0094193
- 441197 - Laggera alata: 10.1002/FFJ.2730050307
- 441197 - Laggera alata: LTS0094193
- 4136 - Lamiaceae: LTS0094193
- 3433 - Lauraceae: LTS0094193
- 147548 - Leotiomycetes: LTS0094193
- 19205 - Lepidium: LTS0094193
- 153348 - Lepidium meyenii: 10.1016/S0031-9422(02)00208-X
- 153348 - Lepidium meyenii: LTS0094193
- 219782 - Leptogenys: LTS0094193
- 611049 - Leptogenys processionalis: 10.1007/BF00988325
- 611049 - Leptogenys processionalis: LTS0094193
- 4447 - Liliopsida: LTS0094193
- 43170 - Linaria: LTS0094193
- 43171 - Linaria vulgaris: 10.1248/CPB.50.1393
- 43171 - Linaria vulgaris: LTS0094193
- 151068 - Litchi: LTS0094193
- 151069 - Litchi chinensis: 10.1021/JF60230A021
- 151069 - Litchi chinensis: LTS0094193
- 4606 - Lolium arundinaceum: 10.1016/0031-9422(91)84185-U
- 2849048 - Lucensosergia lucens: 10.1080/00021369.1984.10866348
- 1085093 - Macrococculus: LTS0094193
- 1085094 - Macrococculus pomiferus: 10.1016/J.PHYTOCHEM.2004.08.007
- 1085094 - Macrococculus pomiferus: LTS0094193
- 3398 - Magnoliopsida: LTS0094193
- 6681 - Malacostraca: LTS0094193
- 3749 - Malus: LTS0094193
- 3750 - Malus domestica: 10.1021/JF00025A025
- 3750 - Malus domestica: LTS0094193
- 283210 - Malus pumila: 10.1021/JF00025A025
- 283210 - Malus pumila: LTS0094193
- 3752 - Malus sylvestris: 10.1021/JF00025A025
- 3752 - Malus sylvestris: LTS0094193
- 3629 - Malvaceae: LTS0094193
- 40674 - Mammalia: LTS0094193
- 3740 - Manilkara: LTS0094193
- 3741 - Manilkara zapota: 10.1021/JF00111A026
- 3741 - Manilkara zapota: LTS0094193
- 3195 - Marchantiophyta: LTS0094193
- 209794 - Marsupella: LTS0094193
- 253513 - Marsupella emarginata: 10.1016/S0031-9422(02)00214-5
- 253513 - Marsupella emarginata: LTS0094193
- 3877 - Medicago: LTS0094193
- 3879 - Medicago sativa: 10.1016/S0031-9422(97)00119-2
- 3879 - Medicago sativa: LTS0094193
- 164936 - Melaleuca leucadendra: 10.1002/CBDV.200900162
- 39170 - Melissa: LTS0094193
- 39338 - Melissa officinalis: 10.1080/10412905.1991.9697919
- 39338 - Melissa officinalis: LTS0094193
- 3455 - Menispermaceae: LTS0094193
- 33208 - Metazoa: LTS0094193
- 224744 - Micromeria: LTS0094193
- 306398 - Micromeria sinaica: 10.3109/13880209109082877
- 306398 - Micromeria sinaica: LTS0094193
- 1075371 - Monosis: LTS0094193
- 516064 - Mosla: LTS0094193
- 516065 - Mosla chinensis: 10.1002/CJOC.201180379
- 516065 - Mosla chinensis: LTS0094193
- 39979 - Myrcianthes: LTS0094193
- 39980 - Myrcianthes fragrans: 10.1080/10412905.1992.9698071
- 39980 - Myrcianthes fragrans: LTS0094193
- 3931 - Myrtaceae: LTS0094193
- 33680 - Myxogastria: LTS0094193
- 39172 - Nepeta: LTS0094193
- 1000421 - Nepeta nepetella: 10.1055/S-2007-969632
- 1000421 - Nepeta nepetella: LTS0094193
- 4085 - Nicotiana: LTS0094193
- 4087 - Nicotiana alata: 10.1016/J.PHYTOCHEM.2006.05.038
- 4087 - Nicotiana alata: LTS0094193
- 118700 - Nicotiana langsdorffii: 10.1016/J.PHYTOCHEM.2006.05.038
- 118700 - Nicotiana langsdorffii: LTS0094193
- 2939662 - Nymphaea lasiophylla: 10.1016/J.PHYTOCHEM.2014.04.007
- 33415 - Nymphalidae: LTS0094193
- 39173 - Ocimum: LTS0094193
- 204144 - Ocimum gratissimum: 10.1515/ZNC-1990-9-1023
- 204144 - Ocimum gratissimum: LTS0094193
- 59329 - Ophrys: LTS0094193
- 145953 - Ophrys sphegodes: 10.1016/S0031-9422(00)81276-5
- 145953 - Ophrys sphegodes: LTS0094193
- 882724 - Ophrys × arachnitiformis: 10.1016/S0031-9422(00)81276-5
- 145954 - Ophrys × splendida: 10.1016/S0031-9422(00)81276-5
- 106975 - Opuntia: LTS0094193
- 371859 - Opuntia ficus-indica: 10.1021/JF60218A053
- 371859 - Opuntia ficus-indica: LTS0094193
- 4747 - Orchidaceae: LTS0094193
- 4033 - Oxalidaceae: LTS0094193
- 13625 - Paeonia: LTS0094193
- 40698 - Paeonia anomala: 10.1007/BF00629664
- 40698 - Paeonia anomala: LTS0094193
- 35924 - Paeonia lactiflora:
- 35924 - Paeonia lactiflora: 10.1016/S0031-9422(00)94541-2
- 35924 - Paeonia lactiflora: 10.1271/BBB1961.48.2847
- 35924 - Paeonia lactiflora: LTS0094193
- 45171 - Paeonia suffruticosa: 10.1080/00021369.1983.10866058
- 45171 - Paeonia suffruticosa: LTS0094193
- 24943 - Paeoniaceae: LTS0094193
- 48385 - Perilla: LTS0094193
- 48386 - Perilla frutescens:
- 48386 - Perilla frutescens: 10.1016/0031-9422(83)83016-7
- 48386 - Perilla frutescens: 10.1021/JF00023A054
- 48386 - Perilla frutescens: 10.1080/10412905.1995.9698555
- 48386 - Perilla frutescens: LTS0094193
- 608512 - Perilla frutescens var. hirtella: 10.1080/10412905.1999.9711991
- 608512 - Perilla frutescens var. hirtella: LTS0094193
- 46141 - Petiveria: LTS0094193
- 46142 - Petiveria alliacea: 10.1016/S0031-9422(01)00304-1
- 46142 - Petiveria alliacea: LTS0094193
- 441552 - Petiveriaceae: LTS0094193
- 4042 - Petroselinum: LTS0094193
- 4043 - Petroselinum crispum: 10.1016/S0031-9422(00)80682-2
- 4043 - Petroselinum crispum: LTS0094193
- 663597 - Petroselinum crispum: 10.1016/S0031-9422(00)80682-2
- 90951 - Phallaceae: LTS0094193
- 146780 - Phallus: LTS0094193
- 146781 - Phallus impudicus:
- 146781 - Phallus impudicus: LTS0094193
- 3883 - Phaseolus: LTS0094193
- 3885 - Phaseolus vulgaris: 10.1021/JF60199A053
- 3885 - Phaseolus vulgaris: LTS0094193
- 86858 - Phyla: LTS0094193
- 222877 - Phyla nodiflora: 10.1021/NP50039A037
- 222877 - Phyla nodiflora: LTS0094193
- 1115744 - Physaraceae: LTS0094193
- 5790 - Physarum: LTS0094193
- 5791 - Physarum polycephalum: 10.1248/CPB.32.797
- 5791 - Physarum polycephalum: LTS0094193
- 3525 - Phytolaccaceae: LTS0094193
- 260138 - Pimenta: LTS0094193
- 260139 - Pimenta racemosa: 10.1080/10412905.1991.9697952
- 260139 - Pimenta racemosa: LTS0094193
- 40958 - Pimpinella: LTS0094193
- 271192 - Pimpinella anisum: 10.1016/S0031-9422(98)00022-3
- 271192 - Pimpinella anisum: LTS0094193
- 187844 - Plagiobryum: 10.1016/S0031-9422(00)82268-2
- 187844 - Plagiobryum: LTS0094193
- 156152 - Plantaginaceae: LTS0094193
- 104366 - Pleurotaceae: LTS0094193
- 5320 - Pleurotus: LTS0094193
- 5322 - Pleurotus ostreatus: 10.1021/JF960876I
- 5322 - Pleurotus ostreatus: LTS0094193
- 52847 - Plumeria: LTS0094193
- 62097 - Plumeria rubra: 10.1002/FFJ.2730070108
- 62097 - Plumeria rubra: LTS0094193
- 4479 - Poaceae: LTS0094193
- 144030 - Pogonomyrmex: LTS0094193
- 144042 - Pogonomyrmex rugosus: 10.1007/BF00988325
- 144042 - Pogonomyrmex rugosus: LTS0094193
- 4275 - Polygala: LTS0094193
- 174549 - Polygala senega: 10.1002/FFJ.2730100408
- 174549 - Polygala senega: LTS0094193
- 4274 - Polygalaceae: LTS0094193
- 5317 - Polyporaceae: LTS0094193
- 5637 - Polyporus: LTS0094193
- 38806 - Polyporus tuberaster: 10.1021/JF00047A034
- 38806 - Polyporus tuberaster: LTS0094193
- 3754 - Prunus: LTS0094193
- 36596 - Prunus armeniaca:
- 36596 - Prunus armeniaca: 10.1002/OMS.1210190505
- 36596 - Prunus armeniaca: 10.1021/JF00004A032
- 36596 - Prunus armeniaca: 10.3891/ACTA.CHEM.SCAND.32B-0588
- 36596 - Prunus armeniaca: LTS0094193
- 140311 - Prunus cerasus: 10.1002/PCA.2800040308
- 140311 - Prunus cerasus: LTS0094193
- 3758 - Prunus domestica: 10.1021/JF00004A032
- 3758 - Prunus domestica: LTS0094193
- 3755 - Prunus dulcis: 10.1021/JF60228A025
- 3755 - Prunus dulcis: LTS0094193
- 983189 - Prunus myrtifolia: 10.2135/CROPSCI1968.0011183X000800010040X
- 983189 - Prunus myrtifolia: LTS0094193
- 97307 - Prunus padus: 10.1080/10412905.1990.9697889
- 3760 - Prunus persica: 10.1021/JF00004A032
- 3760 - Prunus persica: LTS0094193
- 114937 - Prunus spinosa: 10.1021/JF00022A034
- 114937 - Prunus spinosa: LTS0094193
- 3759 - Prunus yedoensis: 10.1271/BBB.59.1944
- 3759 - Prunus yedoensis: LTS0094193
- 120289 - Psidium: LTS0094193
- 120290 - Psidium guajava: 10.1016/0031-9422(82)80138-6
- 120290 - Psidium guajava: LTS0094193
- 3766 - Pyrus: LTS0094193
- 3767 - Pyrus pyrifolia: 10.1080/10412905.1992.9698151
- 3767 - Pyrus pyrifolia: LTS0094193
- 40030 - Rhizophora: LTS0094193
- 40031 - Rhizophora mangle: 10.1080/10412905.2001.9699622
- 40031 - Rhizophora mangle: LTS0094193
- 40029 - Rhizophoraceae: LTS0094193
- 202994 - Rhodiola: LTS0094193
- 203015 - Rhodiola rosea: 10.1016/S0031-9422(02)00004-3
- 203015 - Rhodiola rosea: LTS0094193
- 35937 - Robinia: LTS0094193
- 35938 - Robinia pseudoacacia: 10.1039/AN9285300411
- 35938 - Robinia pseudoacacia: LTS0094193
- 3764 - Rosa: LTS0094193
- 74632 - Rosa gallica: 10.1111/J.1600-0536.1991.TB01726.X
- 74632 - Rosa gallica: LTS0094193
- 1826188 - Rosa taiwanensis: 10.1002/JCCS.199500076
- 1826188 - Rosa taiwanensis: LTS0094193
- 3765 - Rosa × damascena: 10.1111/J.1600-0536.1991.TB01726.X
- 3745 - Rosaceae: LTS0094193
- 24966 - Rubiaceae: LTS0094193
- 23513 - Rutaceae: LTS0094193
- 88149 - Saccharina japonica: 10.3390/MOLECULES200712093
- 21880 - Salvia: LTS0094193
- 38869 - Salvia sclarea: 10.1076/PHBI.35.3.218.13295
- 38869 - Salvia sclarea: LTS0094193
- 1142017 - Santolina corsica: 10.1016/J.PHYTOCHEM.2007.04.027
- 23672 - Sapindaceae: LTS0094193
- 3737 - Sapotaceae: LTS0094193
- 218135 - Schedonorus: LTS0094193
- 28983 - Sclerotiniaceae: LTS0094193
- 375856 - Scolochloa: LTS0094193
- 375857 - Scolochloa festucacea: 10.1016/0031-9422(91)84185-U
- 375857 - Scolochloa festucacea: LTS0094193
- 111522 - Sergestidae: LTS0094193
- 343321 - Sergia: LTS0094193
- 589641 - Sergia lucens: 10.1080/00021369.1984.10866348
- 589641 - Sergia lucens: LTS0094193
- 123478 - Simicratea: LTS0094193
- 123479 - Simicratea welwitschii: 10.3109/13880209109082869
- 123479 - Simicratea welwitschii: LTS0094193
- 3727 - Sinapis: LTS0094193
- 3728 - Sinapis alba: 10.1016/0031-9422(88)83085-1
- 3728 - Sinapis alba: LTS0094193
- 4070 - Solanaceae: LTS0094193
- 4107 - Solanum: LTS0094193
- 4081 - Solanum lycopersicum: 10.1021/JF00014A016
- 4081 - Solanum lycopersicum: LTS0094193
- 265416 - Solanum stuckertii: 10.1080/10412905.1997.9700728
- 265416 - Solanum stuckertii: LTS0094193
- 43860 - Spondias: LTS0094193
- 80338 - Spondias mombin: 10.1021/JF00008A025
- 80338 - Spondias mombin: LTS0094193
- 115647 - Streptomyces ansochromogenes: 10.1016/J.BIORTECH.2012.02.059
- 35493 - Streptophyta: LTS0094193
- 39241 - Swertia: LTS0094193
- 137129 - Swertia japonica: 10.1246/BCSJ.56.3477
- 137129 - Swertia japonica: LTS0094193
- 547782 - Symphyotrichum undulatum: 10.1021/JF00034A033
- 178174 - Syzygium: LTS0094193
- 219868 - Syzygium aromaticum: 10.1271/BBB1961.49.1583
- 219868 - Syzygium aromaticum: LTS0094193
- 99105 - Tanacetum: LTS0094193
- 127999 - Tanacetum parthenium: 10.1002/(SICI)1099-1026(199611)11:6<367::AID-FFJ598>3.0.CO;2-R
- 127999 - Tanacetum parthenium: LTS0094193
- 79021 - Thapsia: LTS0094193
- 79022 - Thapsia garganica: 10.1055/S-2006-960216
- 79022 - Thapsia garganica: LTS0094193
- 27065 - Theaceae: LTS0094193
- 3640 - Theobroma: LTS0094193
- 3641 - Theobroma cacao: 10.1021/JF60160A011
- 3641 - Theobroma cacao: LTS0094193
- 39987 - Thymelaeaceae: LTS0094193
- 58023 - Tracheophyta: LTS0094193
- 40144 - Tricholoma: LTS0094193
- 181713 - Tricholoma inamoenum: 10.2307/3807439
- 181713 - Tricholoma inamoenum: LTS0094193
- 40145 - Tricholoma matsutake:
- 40145 - Tricholoma matsutake: 10.1271/BBB1961.45.373
- 40145 - Tricholoma matsutake: LTS0094193
- 5351 - Tricholomataceae: LTS0094193
- 4564 - Triticum: LTS0094193
- 4565 - Triticum aestivum: 10.1016/S0031-9422(00)82634-5
- 4565 - Triticum aestivum: LTS0094193
- 3437 - Umbellularia: LTS0094193
- 3438 - Umbellularia californica: 10.1016/0031-9422(74)85146-0
- 3438 - Umbellularia californica: LTS0094193
- 489357 - Uvariopsis: LTS0094193
- 489326 - Uvariopsis tripetala: 10.1055/S-2006-961495
- 13749 - Vaccinium: LTS0094193
- 472369 - Vaccinium angustifolium: 10.1021/JF00085A053
- 472369 - Vaccinium angustifolium: LTS0094193
- 945837 - Vaccinium ashei: 10.1111/J.1365-2621.1985.TB13419.X
- 945837 - Vaccinium ashei: LTS0094193
- 69266 - Vaccinium corymbosum: 10.1111/J.1365-2621.1985.TB13419.X
- 69266 - Vaccinium corymbosum: LTS0094193
- 13750 - Vaccinium macrocarpon: 10.3891/ACTA.CHEM.SCAND.21-2076
- 13750 - Vaccinium macrocarpon: LTS0094193
- 1493660 - Vaccinium virgatum: 10.1111/J.1365-2621.1985.TB13419.X
- 1493660 - Vaccinium virgatum: LTS0094193
- 180772 - Vaccinium vitis-idaea: 10.3891/ACTA.CHEM.SCAND.21-0945
- 180772 - Vaccinium vitis-idaea: 10.3891/ACTA.CHEM.SCAND.21-2076
- 180772 - Vaccinium vitis-idaea: LTS0094193
- 468162 - Vachellia: LTS0094193
- 72368 - Vachellia farnesiana: LTS0094193
- 21910 - Verbenaceae: LTS0094193
- 33090 - Viridiplantae: LTS0094193
- 3602 - Vitaceae: LTS0094193
- 3603 - Vitis: LTS0094193
- 103349 - Vitis rotundifolia:
- 103349 - Vitis rotundifolia: 10.1021/JF00112A014
- 103349 - Vitis rotundifolia: 10.1111/J.1365-2621.1984.TB13669.X
- 103349 - Vitis rotundifolia: LTS0094193
- 29760 - Vitis vinifera:
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
- 29760 - Vitis vinifera: LTS0094193
- 225838 - Xylopia: LTS0094193
- 1005655 - Xylopia aromatica: 10.1080/10412905.1993.9698250
- 1005655 - Xylopia aromatica: LTS0094193
- 4575 - Zea: LTS0094193
- 4577 - Zea mays:
- 4577 - Zea mays: 10.1021/JF00064A054
- 4577 - Zea mays: 10.1021/JF60218A022
- 4577 - Zea mays: 10.1021/JF60230A020
- 4577 - Zea mays: LTS0094193
- 483714 - Zieria: 10.1016/S0031-9422(00)82268-2
- 483714 - Zieria: LTS0094193
- 1699223 - Zieria compacta: 10.1016/S0031-9422(00)82268-2
- 1699223 - Zieria compacta: LTS0094193
- 483725 - Zieria cytisoides: 10.1016/S0031-9422(00)82268-2
- 483725 - Zieria cytisoides: LTS0094193
- 483731 - Zieria laevigata: 10.1016/S0031-9422(00)82268-2
- 483731 - Zieria laevigata: LTS0094193
- 483732 - Zieria laxiflora: 10.1016/S0031-9422(00)82268-2
- 483732 - Zieria laxiflora: LTS0094193
- 4650 - Zingiber: LTS0094193
- 94328 - Zingiber officinale: 10.1021/JF00097A027
- 94328 - Zingiber officinale: LTS0094193
- 4642 - Zingiberaceae: LTS0094193
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Bixi Zhao, Yuxi Yan, Dechang Cao, Yu Xia. Germinating rice seeds shape rhizospheric bacteria via releasing benzaldehyde.
Plant physiology and biochemistry : PPB.
2024 May; 210(?):108632. doi:
10.1016/j.plaphy.2024.108632
. [PMID: 38657546] - Edmund J Norris, Jedidiah Kline, Jeffrey R Bloomquist. Repellency and Toxicity of Vapor-Active Benzaldehydes against Aedes aegypti.
ACS infectious diseases.
2024 Jan; 10(1):120-126. doi:
10.1021/acsinfecdis.3c00294
. [PMID: 38099713] - Ying-Ze Xiong, Christian Kappel, Laura Hagemann, Friederike Jantzen, Natalia Wozniak, Adrien Sicard, Shuang-Quan Huang, Michael Lenhard. Testing the effect of individual scent compounds on pollinator attraction in nature using quasi-isogenic Capsella lines.
American journal of botany.
2023 Sep; ?(?):. doi:
10.1002/ajb2.16237
. [PMID: 37661924] - Xuejie Li, Wentao Zhang, Xiangquan Zeng, Yu Xi, Yan Li, Bowen Hui, Jian Li. Characterization of the Major Odor-Active Off-Flavor Compounds in Normal and Lipoxygenase-Lacking Soy Protein Isolates by Sensory-Directed Flavor Analysis.
Journal of agricultural and food chemistry.
2023 May; ?(?):. doi:
10.1021/acs.jafc.3c00793
. [PMID: 37199528] - Aurélien Cuchet, Anthony Anchisi, Frédéric Schiets, Elise Carénini, Patrick Jame, Hervé Casabianca. δ18O compound-specific stable isotope assessment: An advanced analytical strategy for sophisticated adulterations detection in essential oils - Application to spearmint, cinnamon, and bitter almond essential oils authentication.
Talanta.
2023 Jan; 252(?):123801. doi:
10.1016/j.talanta.2022.123801
. [PMID: 35969926] - Vitaliy Kirillov, Ashutosh Pathak, Mussa Zholdasbayev, Gayane Atazhanova, Ardak Sapiyeva, Tamara Stikhareva, Mariya Serafimovich, Meirzhan Daulenova. HPLC and GC/MS analysis of Prunus ulmifolia Franch. (syn. Aflatunia ulmifolia (Franch.) Vassilcz.) leaves growing in South-Eastern Kazakhstan.
Natural product research.
2022 Oct; ?(?):1-9. doi:
10.1080/14786419.2022.2137801
. [PMID: 36302154] - Titiya Lookpan, Supayang P Voravuthikunchai, Pornnapa Sitthisuk, Watcharaporn Poorahong, Ramida Watanapokasin, Suda Chakthong. A new alkaloid and a new benzaldehyde derivative from the twig of Zanthoxylum rhetsa (Roxb.) DC.
Natural product research.
2022 Sep; ?(?):1-7. doi:
10.1080/14786419.2022.2127708
. [PMID: 36175218] - Xiaxia Wang, Dinglei Xiang, Ziyi Wang, Zhaoguo Wang, Xue Yang, Shuai Yu, Qiuxia Pang, Sheng Liu, Li Yan. Label-free quantitative proteomics analysis of Humulus scandens (Lour.) Merr. leaves treated by an odor compound of Periploca sepium Bunge.
Ecotoxicology and environmental safety.
2021 Jun; 215(?):112131. doi:
10.1016/j.ecoenv.2021.112131
. [PMID: 33752163] - Aida Dizdarević, Melani Marić, Iram Shahzadi, Nuri Ari Efiana, Barbara Matuszczak, Andreas Bernkop-Schnürch. Imine bond formation as a tool for incorporation of amikacin in self-emulsifying drug delivery systems (SEDDS).
European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.
2021 May; 162(?):82-91. doi:
10.1016/j.ejpb.2021.03.001
. [PMID: 33737147] - Amandine L Flourat, Jeanne Combes, Claire Bailly-Maitre-Grand, Kévin Magnien, Arnaud Haudrechy, Jean-Hugues Renault, Florent Allais. Accessing p-Hydroxycinnamic Acids: Chemical Synthesis, Biomass Recovery, or Engineered Microbial Production?.
ChemSusChem.
2021 Jan; 14(1):118-129. doi:
10.1002/cssc.202002141
. [PMID: 33058548] - Natale Badalamenti, Vincenzo Ilardi, Sergio Rosselli, Maurizio Bruno, Filippo Maggi, Mariarosaria Leporini, Tiziana Falco, Monica R Loizzo, Rosa Tundis. Ferulago nodosa Subsp. geniculata (Guss.) Troia & Raimondo from Sicily (Italy): Isolation of Essential Oil and Evaluation of Its Bioactivity.
Molecules (Basel, Switzerland).
2020 Jul; 25(14):. doi:
10.3390/molecules25143249
. [PMID: 32708773] - Ali Afify, Christopher J Potter. Insect repellents mediate species-specific olfactory behaviours in mosquitoes.
Malaria journal.
2020 Mar; 19(1):127. doi:
10.1186/s12936-020-03206-8
. [PMID: 32228701] - Shashank Sagar Saini, Mariam Gaid, Debabrata Sircar. Benzoate-CoA ligase contributes to the biosynthesis of biphenyl phytoalexins in elicitor-treated pear cell cultures.
Plant cell reports.
2020 Feb; 39(2):207-215. doi:
10.1007/s00299-019-02484-0
. [PMID: 31713663] - Yongwen Lin, Hongchun Ruan, Komivi Senyo Akutse, Baochun Lai, Yizhang Lin, Youming Hou, Fenglin Zhong. Ethylene and Benzaldehyde Emitted from Postharvest Tomatoes Inhibit Botrytis cinerea via Binding to G-Protein Coupled Receptors and Transmitting with cAMP-Signal Pathway of the Fungus.
Journal of agricultural and food chemistry.
2019 Dec; 67(49):13706-13717. doi:
10.1021/acs.jafc.9b05778
. [PMID: 31693347] - Zsófia Lohonyai, József Vuts, Zsolt Kárpáti, Sándor Koczor, Michael J Domingue, József Fail, Michael A Birkett, Miklós Tóth, Zoltán Imrei. Benzaldehyde: an alfalfa-related compound for the spring attraction of the pest weevil Sitona humeralis (Coleoptera: Curculionidae).
Pest management science.
2019 Dec; 75(12):3153-3159. doi:
10.1002/ps.5431
. [PMID: 30927298] - Friederike Jantzen, Joseph H Lynch, Christian Kappel, Jona Höfflin, Oded Skaliter, Natalia Wozniak, Adrien Sicard, Claudia Sas, Funmilayo Adebesin, Jasmin Ravid, Alexander Vainstein, Monika Hilker, Natalia Dudareva, Michael Lenhard. Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella.
The New phytologist.
2019 11; 224(3):1349-1360. doi:
10.1111/nph.16103
. [PMID: 31400223] - Tobie D Lee, Olivia W Lee, Kyle R Brimacombe, Lu Chen, Rajarshi Guha, Sabrina Lusvarghi, Bethilehem G Tebase, Carleen Klumpp-Thomas, Robert W Robey, Suresh V Ambudkar, Min Shen, Michael M Gottesman, Matthew D Hall. A High-Throughput Screen of a Library of Therapeutics Identifies Cytotoxic Substrates of P-glycoprotein.
Molecular pharmacology.
2019 11; 96(5):629-640. doi:
10.1124/mol.119.115964
. [PMID: 31515284] - Shashank S Saini, Deepa Teotia, Mariam Gaid, Debabrata Sircar. A new enzymatic activity from elicitor-treated pear cell cultures converting trans-cinnamic acid to benzaldehyde.
Physiologia plantarum.
2019 Sep; 167(1):64-74. doi:
10.1111/ppl.12871
. [PMID: 30417393] - Simone K Huber, Georg Höfner, Klaus T Wanner. Application of the concept of oxime library screening by mass spectrometry (MS) binding assays to pyrrolidine-3-carboxylic acid derivatives as potential inhibitors of γ-aminobutyric acid transporter 1 (GAT1).
Bioorganic & medicinal chemistry.
2019 07; 27(13):2753-2763. doi:
10.1016/j.bmc.2019.05.001
. [PMID: 31097402] - Felix Kern, Klaus T Wanner. Screening oxime libraries by means of mass spectrometry (MS) binding assays: Identification of new highly potent inhibitors to optimized inhibitors γ-aminobutyric acid transporter 1.
Bioorganic & medicinal chemistry.
2019 04; 27(7):1232-1245. doi:
10.1016/j.bmc.2019.02.015
. [PMID: 30777661] - Tong Liu, Li-Juan Zou, Dong-Wei Tian, Qi-Yan Can, Ming-Liang Zhu, Ming-He Mo, Ke-Qin Zhang. Proteomic changes in Arthrobotrys oligospora conidia in response to benzaldehyde-induced fungistatic stress.
Journal of proteomics.
2019 02; 192(?):358-365. doi:
10.1016/j.jprot.2018.09.016
. [PMID: 30282050] - Feng Jin, Ji Wang, Joe M Regenstein, Fengjun Wang. Effect of Roasting Temperatures on the Properties of Bitter Apricot (Armeniaca sibirica L.) Kernel Oil.
Journal of oleo science.
2018 Jul; 67(7):813-822. doi:
10.5650/jos.ess17212
. [PMID: 29877221] - Manju Kanamala, Brian D Palmer, Hamidreza Ghandehari, William R Wilson, Zimei Wu. PEG-Benzaldehyde-Hydrazone-Lipid Based PEG-Sheddable pH-Sensitive Liposomes: Abilities for Endosomal Escape and Long Circulation.
Pharmaceutical research.
2018 May; 35(8):154. doi:
10.1007/s11095-018-2429-y
. [PMID: 29855807] - Teng Guo, Xueshuang Li, Jianquan Li, Zhen Peng, Li Xu, Junguo Dong, Ping Cheng, Zhen Zhou. On-line quantification and human health risk assessment of organic by-products from the removal of toluene in air using non-thermal plasma.
Chemosphere.
2018 Mar; 194(?):139-146. doi:
10.1016/j.chemosphere.2017.11.173
. [PMID: 29202266] - Hyo Hee Yang, Kyung-Eon Oh, Yang Hee Jo, Jong Hoon Ahn, Qing Liu, Ayman Turk, Jae Young Jang, Bang Yeon Hwang, Ki Yong Lee, Mi Kyeong Lee. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay.
Bioorganic & medicinal chemistry.
2018 01; 26(2):509-515. doi:
10.1016/j.bmc.2017.12.011
. [PMID: 29254897] - Sergio A Rodriguez, O A Pinto, Axel Hollmann. Interaction of semiochemicals with model lipid membranes: A biophysical approach.
Colloids and surfaces. B, Biointerfaces.
2018 Jan; 161(?):413-419. doi:
10.1016/j.colsurfb.2017.11.002
. [PMID: 29121614] - Yi-Tien Chiu, Hsin-Chun Chen, Chen Chang. The Variation of Oncidium Rosy Sunset Flower Volatiles with Daily Rhythm, Flowering Period, and Flower Parts.
Molecules (Basel, Switzerland).
2017 Sep; 22(9):. doi:
10.3390/molecules22091468
. [PMID: 28869565] - Kiran Kamireddy, Pradeep Matam, Priyanka P S, Giridhar Parvatam. Biochemical characterization of a key step involved in 2H4MB production in Decalepis hamiltonii.
Journal of plant physiology.
2017 Jul; 214(?):74-80. doi:
10.1016/j.jplph.2017.04.006
. [PMID: 28460278] - Faheem Uddin Rajer, Huijun Wu, Yongli Xie, Shanshan Xie, Waseem Raza, Hafiz Abdul Samad Tahir, Xuewen Gao. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato.
Microbiology (Reading, England).
2017 04; 163(4):523-530. doi:
10.1099/mic.0.000451
. [PMID: 28418289] - Claudia Sas, Frank Müller, Christian Kappel, Tyler V Kent, Stephen I Wright, Monika Hilker, Michael Lenhard. Repeated Inactivation of the First Committed Enzyme Underlies the Loss of Benzaldehyde Emission after the Selfing Transition in Capsella.
Current biology : CB.
2016 12; 26(24):3313-3319. doi:
10.1016/j.cub.2016.10.026
. [PMID: 27916528] - Sang Mi Lee, Jieun Oh, Byung-Serk Hurh, Gwi-Hwa Jeong, Young-Keum Shin, Young-Suk Kim. Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.
Journal of food science.
2016 Dec; 81(12):C2915-C2922. doi:
10.1111/1750-3841.13547
. [PMID: 27925257] - Solange C Martins, Danielle Lazarin-Bidóia, Vânia C Desoti, Hugo Falzirolli, Cleuza C da Silva, Tania Ueda-Nakamura, Sueli de O Silva, Celso V Nakamura. 1,3,4-Thiadiazole derivatives of R-(+)-limonene benzaldehyde-thiosemicarbazones cause death in Trypanosoma cruzi through oxidative stress.
Microbes and infection.
2016 Dec; 18(12):787-797. doi:
10.1016/j.micinf.2016.07.007
. [PMID: 27484335] - Kun Wang, Susan D Arntfield. Probing the molecular forces involved in binding of selected volatile flavour compounds to salt-extracted pea proteins.
Food chemistry.
2016 Nov; 211(?):235-42. doi:
10.1016/j.foodchem.2016.05.062
. [PMID: 27283627] - Md Iqbal Alam, Mohammed A Alam, Ozair Alam, Amit Nargotra, Subhash Chandra Taneja, Surrinder Koul. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.
European journal of medicinal chemistry.
2016 May; 114(?):209-19. doi:
10.1016/j.ejmech.2016.03.008
. [PMID: 26986086] - Jia-Yu Zhou, Xia Li, Jiao-Yan Zheng, Chuan-Chao Dai. Volatiles released by endophytic Pseudomonas fluorescens promoting the growth and volatile oil accumulation in Atractylodes lancea.
Plant physiology and biochemistry : PPB.
2016 Apr; 101(?):132-140. doi:
10.1016/j.plaphy.2016.01.026
. [PMID: 26874622] - Mahmoud H El-Maghrabey, Naoya Kishikawa, Kaname Ohyama, Takahiro Imazato, Yukitaka Ueki, Naotaka Kuroda. Determination of human serum semicarbazide-sensitive amine oxidase activity via flow injection analysis with fluorescence detection after online derivatization of the enzymatically produced benzaldehyde with 1,2-diaminoanthraquinone.
Analytica chimica acta.
2015 Jun; 881(?):139-47. doi:
10.1016/j.aca.2015.04.006
. [PMID: 26041530] - Lei Xia, Yu-Fen Xia, Li-Rong Huang, Xiao Xiao, Hua-Yong Lou, Tang-Jingjun Liu, Wei-Dong Pan, Heng Luo. Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure-microbicidal activity relationship.
European journal of medicinal chemistry.
2015 Jun; 97(?):83-93. doi:
10.1016/j.ejmech.2015.04.042
. [PMID: 25982329] - Yan Zou, Lei Zhang, Jie-kun Xu, Qian Cheng, Xian-sheng Ye, Ping Li, Wei-ku Zhang, Yong-ji Li. [A new benzaldehyde from aerial part of Rehmannia glutinosa].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2015 Apr; 40(7):1316-9. doi:
"
. [PMID: 26281554] - Olga Sosedov, Andreas Stolz. Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis.
Applied microbiology and biotechnology.
2015 Mar; 99(6):2623-35. doi:
10.1007/s00253-014-6061-4
. [PMID: 25248440] - Bruno Fernandes, Ana C Correia, Fernanda Cosme, Fernando M Nunes, António M Jordão. Volatile components of vine leaves from two Portuguese grape varieties (Vitis vinifera L.), Touriga Nacional and Tinta Roriz, analysed by solid-phase microextraction.
Natural product research.
2015; 29(1):37-45. doi:
10.1080/14786419.2014.957697
. [PMID: 25226431] - Boshra Azadi, Yousef Sohrabi. Chemical composition of Silene morganae Freyn volatile oil.
Natural product research.
2015; 29(9):791-4. doi:
10.1080/14786419.2014.980251
. [PMID: 25422069] - Ji-Yeon Yang, Min-Gi Kim, Jun-Hwan Park, Seong-Tshool Hong, Hoi-Seon Lee. Evaluation of benzaldehyde derivatives from Morinda officinalis as anti-mite agents with dual function as acaricide and mite indicator.
Scientific reports.
2014 Dec; 4(?):7149. doi:
10.1038/srep07149
. [PMID: 25434408] - Tae Young Jang, Chang-Shin Park, Kyu-Sung Kim, Min-Jeong Heo, Young Hyo Kim. Benzaldehyde suppresses murine allergic asthma and rhinitis.
International immunopharmacology.
2014 Oct; 22(2):444-50. doi:
10.1016/j.intimp.2014.07.029
. [PMID: 25107441] - Dan Li, Elizabeth M Ellis. Aldo-keto reductase 7A5 (AKR7A5) attenuates oxidative stress and reactive aldehyde toxicity in V79-4 cells.
Toxicology in vitro : an international journal published in association with BIBRA.
2014 Jun; 28(4):707-14. doi:
10.1016/j.tiv.2014.02.010
. [PMID: 24590062] - Jian-Fan Sun, Xiuping Lin, Xue-Feng Zhou, Junting Wan, Tianyu Zhang, Bin Yang, Xian-Wen Yang, Zhengchao Tu, Yonghong Liu. Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum.
The Journal of antibiotics.
2014 Jun; 67(6):451-7. doi:
10.1038/ja.2014.24
. [PMID: 24690916] - Kedar Rokade, Gajanan Mali. Biodegradation of benzyl benzoate by Pseudomonas desmolyticum NCIM 2112.
World journal of microbiology & biotechnology.
2014 Mar; 30(3):827-33. doi:
10.1007/s11274-013-1484-0
. [PMID: 24146308] - Sota Nosaka, Mitsuo Miyazawa. Characterization of volatile components and odor-active compounds in the oil of edible mushroom Boletopsis leucomelas.
Journal of oleo science.
2014; 63(6):577-83. doi:
10.5650/jos.ess13215
. [PMID: 24881770] - Fatma Hadrich, Slim Cher, Youssef Talel Gargouri, Sayari Adel. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts.
Journal of oleo science.
2014; 63(5):515-25. doi:
10.5650/jos.ess13163
. [PMID: 24770478] - Matthias Glaser, Peter Iveson, Susan Hoppmann, Bård Indrevoll, Anthony Wilson, Joseph Arukwe, Antonios Danikas, Rajiv Bhalla, Duncan Hiscock. Three methods for 18F labeling of the HER2-binding affibody molecule Z(HER2:2891) including preclinical assessment.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine.
2013 Nov; 54(11):1981-8. doi:
10.2967/jnumed.113.122465
. [PMID: 24115530] - Raúl Muñoz, Theo S O Souza, Lina Glittmann, Rebeca Pérez, Guillermo Quijano. Biological anoxic treatment of O₂-free VOC emissions from the petrochemical industry: a proof of concept study.
Journal of hazardous materials.
2013 Sep; 260(?):442-50. doi:
10.1016/j.jhazmat.2013.05.051
. [PMID: 23811365] - Jiasheng Wang, Xin Li, Shufen Zhang, Rongwen Lu. Facile synthesis of ultrasmall monodisperse 'raisin-bun'-type MoO3/SiO2 nanocomposites with enhanced catalytic properties.
Nanoscale.
2013 Jun; 5(11):4823-8. doi:
10.1039/c3nr01097j
. [PMID: 23613166] - Vilma Kraujalytė, Erich Leitner, Petras Rimantas Venskutonis. Characterization of Aronia melanocarpa volatiles by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation/extraction (SDE), and gas chromatography-olfactometry (GC-O) methods.
Journal of agricultural and food chemistry.
2013 May; 61(20):4728-36. doi:
10.1021/jf400152x
. [PMID: 23662795] - Tom Craig, Andrew J Daugulis. Polymer characterization and optimization of conditions for the enhanced bioproduction of benzaldehyde by Pichia pastoris in a two-phase partitioning bioreactor.
Biotechnology and bioengineering.
2013 Apr; 110(4):1098-105. doi:
10.1002/bit.24778
. [PMID: 23124524] - Daihua Hu, Juntao Feng, Zhihui Wang, Hua Wu, Xing Zhang. Effect of nine plant volatiles in the field on the sex pheromones of Leguminivora glycinivorella.
Natural product communications.
2013 Mar; 8(3):393-6. doi:
"
. [PMID: 23678819] - Pierluigi Caboni, Nadhem Aissani, Tiziana Cabras, Andrea Falqui, Roberto Marotta, Barbara Liori, Nikoletta Ntalli, Giorgia Sarais, Nicola Sasanelli, Graziella Tocco. Potent nematicidal activity of phthalaldehyde, salicylaldehyde, and cinnamic aldehyde against Meloidogyne incognita.
Journal of agricultural and food chemistry.
2013 Feb; 61(8):1794-803. doi:
10.1021/jf305164m
. [PMID: 23379671] - Q L Ma, N Hamid, A E D Bekhit, J Robertson, T F Law. Evaluation of pre-rigor injection of beef with proteases on cooked meat volatile profile after 1 day and 21 days post-mortem storage.
Meat science.
2012 Dec; 92(4):430-9. doi:
10.1016/j.meatsci.2012.05.006
. [PMID: 22682685] - Shinyoung Lee, Yasuhisa Kaminaga, Bruce Cooper, Eran Pichersky, Natalia Dudareva, Clint Chapple. Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis.
The Plant journal : for cell and molecular biology.
2012 Nov; 72(3):411-22. doi:
10.1111/j.1365-313x.2012.05096.x
. [PMID: 22762247] - Akbar Esmaeili. Biological activities of Eremostachys laevigata Bunge. grown in Iran.
Pakistan journal of pharmaceutical sciences.
2012 Oct; 25(4):803-8. doi:
"
. [PMID: 23009997] - Raz Krizevski, Einat Bar, O R Shalit, Asaf Levy, Jillian M Hagel, Korey Kilpatrick, Frédéric Marsolais, Peter J Facchini, Shimon Ben-Shabat, Yaron Sitrit, Efraim Lewinsohn. Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp.
Phytochemistry.
2012 Sep; 81(?):71-9. doi:
10.1016/j.phytochem.2012.05.018
. [PMID: 22727117] - In Hee Cho, Hyun Jeong Lee, Young-Suk Kim. Differences in the volatile compositions of ginseng species (Panax sp.).
Journal of agricultural and food chemistry.
2012 Aug; 60(31):7616-22. doi:
10.1021/jf301835v
. [PMID: 22804575] - Nicholas G Spiropulos, Jennifer M Heemstra. Templating effect in DNA proximity ligation enables use of non-bioorthogonal chemistry in biological fluids.
Artificial DNA, PNA & XNA.
2012 Jul; 3(3):123-8. doi:
10.4161/adna.23842
. [PMID: 23370267] - Philip E Otienoburu, Babak Ebrahimi, P Larry Phelan, Woodbridge A Foster. Analysis and optimization of a synthetic milkweed floral attractant for mosquitoes.
Journal of chemical ecology.
2012 Jul; 38(7):873-81. doi:
10.1007/s10886-012-0150-6
. [PMID: 22711028] - Ahmed M Saveer, Sophie H Kromann, Göran Birgersson, Marie Bengtsson, Tobias Lindblom, Anna Balkenius, Bill S Hansson, Peter Witzgall, Paul G Becher, Rickard Ignell. Floral to green: mating switches moth olfactory coding and preference.
Proceedings. Biological sciences.
2012 Jun; 279(1737):2314-22. doi:
10.1098/rspb.2011.2710
. [PMID: 22319127] - Alex Van Moerkercke, Carlos S Galván-Ampudia, Julian C Verdonk, Michel A Haring, Robert C Schuurink. Regulators of floral fragrance production and their target genes in petunia are not exclusively active in the epidermal cells of petals.
Journal of experimental botany.
2012 May; 63(8):3157-71. doi:
10.1093/jxb/ers034
. [PMID: 22345641] - Raquel Sánchez-Pérez, Fara Sáez Belmonte, Jonas Borch, Federico Dicenta, Birger Lindberg Møller, Kirsten Jørgensen. Prunasin hydrolases during fruit development in sweet and bitter almonds.
Plant physiology.
2012 Apr; 158(4):1916-32. doi:
10.1104/pp.111.192021
. [PMID: 22353576] - Amal Agila, Sheryl Barringer. Effect of roasting conditions on color and volatile profile including HMF level in sweet almonds (Prunus dulcis).
Journal of food science.
2012 Apr; 77(4):C461-8. doi:
10.1111/j.1750-3841.2012.02629.x
. [PMID: 22429278] - M I Rincon-Delgadillo, A Lopez-Hernandez, I Wijaya, S A Rankin. Diacetyl levels and volatile profiles of commercial starter distillates and selected dairy foods.
Journal of dairy science.
2012 Mar; 95(3):1128-39. doi:
10.3168/jds.2011-4834
. [PMID: 22365196] - Kyung Hye Seo, Ningning Zhuang, Cong Chen, Jae-Young Song, Hyung-Lyun Kang, Kwang-Ho Rhee, Kon Ho Lee. Unusual NADPH conformation in the crystal structure of a cinnamyl alcohol dehydrogenase from Helicobacter pylori in complex with NADP(H) and substrate docking analysis.
FEBS letters.
2012 Feb; 586(4):337-43. doi:
10.1016/j.febslet.2012.01.020
. [PMID: 22269576] - Nguyen Xuan Nhiem, Vu Kim Thu, Phan Van Kiem, Chau Van Minh, Bui Huu Tai, Tran Hong Quang, Nguyen Xuan Cuong, Pham Hai Yen, Hye-Jin Boo, Jung-Il Kang, Hee-Kyoung Kang, Young Ho Kim. Cytotoxic oleane-type triterpene saponins from Glochidion eriocarpum.
Archives of pharmacal research.
2012 Jan; 35(1):19-26. doi:
10.1007/s12272-012-0102-2
. [PMID: 22297739] - Bluma Linkowski Faintuch, Erica A Oliveira, Eutimio G F Nunez, Ana M Moro, P K Nanda, Charles J Smith. Comparison of two peptide radiotracers for prostate carcinoma targeting.
Clinics (Sao Paulo, Brazil).
2012; 67(2):163-70. doi:
10.6061/clinics/2012(02)12
. [PMID: 22358242] - Eun-Young Jeong, Kyoung-Shik Cho, Hoi-Seon Lee. Food protective effects of Periploca sepium oil and its active component against stored food mites.
Journal of food protection.
2012 Jan; 75(1):118-22. doi:
10.4315/0362-028x.jfp-11-315
. [PMID: 22221363] - Colm Carraher, Astrid Authier, Bernd Steinwender, Richard D Newcomb. Sequence comparisons of odorant receptors among tortricid moths reveal different rates of molecular evolution among family members.
PloS one.
2012; 7(6):e38391. doi:
10.1371/journal.pone.0038391
. [PMID: 22701634] - Giulietta Sinigaglia, Massimiliano Magro, Giovanni Miotto, Sara Cardillo, Enzo Agostinelli, Radek Zboril, Eris Bidollari, Fabio Vianello. Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles.
International journal of nanomedicine.
2012; 7(?):2249-59. doi:
10.2147/ijn.s28237
. [PMID: 22619559] - Yong Nie, Yue-Qin Tang, Yan Li, Chang-Qiao Chi, Man Cai, Xiao-Lei Wu. The genome sequence of Polymorphum gilvum SL003B-26A1(T) reveals its genetic basis for crude oil degradation and adaptation to the saline soil.
PloS one.
2012; 7(2):e31261. doi:
10.1371/journal.pone.0031261
. [PMID: 22359583] - Jong H Kim, Kathleen L Chan, Natália C G Faria, M de L Martins, Bruce C Campbell. Targeting the oxidative stress response system of fungi with redox-potent chemosensitizing agents.
Frontiers in microbiology.
2012; 3(?):88. doi:
10.3389/fmicb.2012.00088
. [PMID: 22438852] - Jiao Yin, Honglin Feng, Hongyan Sun, Jinghui Xi, Yazhong Cao, Kebin Li. Functional analysis of general odorant binding protein 2 from the meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae).
PloS one.
2012; 7(3):e33589. doi:
10.1371/journal.pone.0033589
. [PMID: 22479417] - Vitaly Dzhavakhiya, Larisa Shcherbakova, Yulia Semina, Natalia Zhemchuzhina, Bruce Campbell. Chemosensitization of plant pathogenic fungi to agricultural fungicides.
Frontiers in microbiology.
2012; 3(?):87. doi:
10.3389/fmicb.2012.00087
. [PMID: 22408641] - Martin Pareja, Erika Qvarfordt, Ben Webster, Patrick Mayon, John Pickett, Michael Birkett, Robert Glinwood. Herbivory by a Phloem-feeding insect inhibits floral volatile production.
PloS one.
2012; 7(2):e31971. doi:
10.1371/journal.pone.0031971
. [PMID: 22384116] - Einar J Stauber, Petrissa Kuczka, Maike van Ohlen, Birgit Vogt, Tim Janowitz, Markus Piotrowski, Till Beuerle, Ute Wittstock. Turning the 'mustard oil bomb' into a 'cyanide bomb': aromatic glucosinolate metabolism in a specialist insect herbivore.
PloS one.
2012; 7(4):e35545. doi:
10.1371/journal.pone.0035545
. [PMID: 22536404] - Jittra Suthiwong, Kitisak Poopasit, Chavi Yenjai. A new phenolic compound from the stem of Hymenocardia wallichii.
Journal of Asian natural products research.
2012; 14(5):482-5. doi:
10.1080/10286020.2012.669377
. [PMID: 22423644] - Javier Carrera, Asun Fernández Del Carmen, Rafael Fernández-Muñoz, Jose Luis Rambla, Clara Pons, Alfonso Jaramillo, Santiago F Elena, Antonio Granell. Fine-tuning tomato agronomic properties by computational genome redesign.
PLoS computational biology.
2012; 8(6):e1002528. doi:
10.1371/journal.pcbi.1002528
. [PMID: 22685389] - Bruce C Campbell, Kathleen L Chan, Jong H Kim. Chemosensitization as a means to augment commercial antifungal agents.
Frontiers in microbiology.
2012; 3(?):79. doi:
10.3389/fmicb.2012.00079
. [PMID: 22393330] - Li Liu, Hongyue Ma, Yuping Tang, Wenxing Chen, Yin Lu, Jianming Guo, Jin-Ao Duan. Discovery of estrogen receptor α modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells.
Bioorganic & medicinal chemistry letters.
2012 Jan; 22(1):154-63. doi:
10.1016/j.bmcl.2011.11.041
. [PMID: 22137340] - Elizandra Aparecida Britta, Ana Paula Barbosa Silva, Tânia Ueda-Nakamura, Benedito Prado Dias-Filho, Cleuza Conceição Silva, Rosana Lázara Sernaglia, Celso Vataru Nakamura. Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis.
PloS one.
2012; 7(8):e41440. doi:
10.1371/journal.pone.0041440
. [PMID: 22870222] - David A Johnston, Rupendra Mukerjea, John F Robyt. Preparation and characterization of new and improved soluble-starches, -amylose, and -amylopectin by reaction with benzaldehyde/zinc chloride.
Carbohydrate research.
2011 Dec; 346(17):2777-84. doi:
10.1016/j.carres.2011.10.003
. [PMID: 22055814] - F L Fernandes, M C Picanço, S O Campos, C S Bastos, M Chediak, R N C Guedes, R S Silva. Economic injury level for the coffee berry borer (Coleoptera: Curculionidae: Scolytinae) using attractive traps in Brazilian coffee fields.
Journal of economic entomology.
2011 Dec; 104(6):1909-17. doi:
10.1603/ec11032
. [PMID: 22299352] - Manoj Agrawal, Rachel Ruizhen Chen. Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4.
Biotechnology letters.
2011 Nov; 33(11):2127-33. doi:
10.1007/s10529-011-0677-6
. [PMID: 21720846] - Shih-Shen Chou Lin, Tsong-Ming Lu, Pei-Chun Chao, Ya-Yun Lai, Hsiu-Ting Tsai, Chung-Shih Chen, Yi-Pang Lee, Shu-Chen Chen, Ming-Chih Chou, Chi-Chiang Yang. In vivo cytokine modulatory effects of cinnamaldehyde, the major constituent of leaf essential oil from Cinnamomum osmophloeum Kaneh.
Phytotherapy research : PTR.
2011 Oct; 25(10):1511-8. doi:
10.1002/ptr.3419
. [PMID: 21394803] - Zhoutong Sun, Yuanyuan Ning, Lixia Liu, Yingmiao Liu, Bingbing Sun, Weihong Jiang, Chen Yang, Sheng Yang. Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid.
Microbial cell factories.
2011 Sep; 10(?):71. doi:
10.1186/1475-2859-10-71
. [PMID: 21910908] - Georg E Matt, Penelope J E Quintana, Hugo Destaillats, Lara A Gundel, Mohamad Sleiman, Brett C Singer, Peyton Jacob, Neal Benowitz, Jonathan P Winickoff, Virender Rehan, Prue Talbot, Suzaynn Schick, Jonathan Samet, Yinsheng Wang, Bo Hang, Manuela Martins-Green, James F Pankow, Melbourne F Hovell. Thirdhand tobacco smoke: emerging evidence and arguments for a multidisciplinary research agenda.
Environmental health perspectives.
2011 Sep; 119(9):1218-26. doi:
10.1289/ehp.1103500
. [PMID: 21628107] - M A D Listiyani, R E Campbell, R E Miracle, L O Dean, M A Drake. Influence of bleaching on flavor of 34\% whey protein concentrate and residual benzoic acid concentration in dried whey proteins.
Journal of dairy science.
2011 Sep; 94(9):4347-59. doi:
10.3168/jds.2011-4341
. [PMID: 21854907] - Nora C Lawo, Georg J F Weingart, Rainer Schuhmacher, Astrid Forneck. The volatile metabolome of grapevine roots: first insights into the metabolic response upon phylloxera attack.
Plant physiology and biochemistry : PPB.
2011 Sep; 49(9):1059-63. doi:
10.1016/j.plaphy.2011.06.008
. [PMID: 21764593] - Chanikan Sonklin, Natta Laohakunjit, Orapin Kerdchoechuen. Physicochemical and flavor characteristics of flavoring agent from mungbean protein hydrolyzed by bromelain.
Journal of agricultural and food chemistry.
2011 Aug; 59(15):8475-83. doi:
10.1021/jf202006a
. [PMID: 21739999] - Ilka Nacif Abreu, Maria Ahnlund, Thomas Moritz, Benedicte Riber Albrectsen. UHPLC-ESI/TOFMS determination of salicylate-like phenolic gycosides in Populus tremula leaves.
Journal of chemical ecology.
2011 Aug; 37(8):857-70. doi:
10.1007/s10886-011-9991-7
. [PMID: 21748301] - Yasuhisa Asano, Mohammad Dadashipour, Mizue Yamazaki, Nobutaka Doi, Hidenobu Komeda. Functional expression of a plant hydroxynitrile lyase in Escherichia coli by directed evolution: creation and characterization of highly in vivo soluble mutants.
Protein engineering, design & selection : PEDS.
2011 Aug; 24(8):607-16. doi:
10.1093/protein/gzr030
. [PMID: 21729945] - Zhexuan Lin, Hui Li, Hongjun Luo, Yuan Zhang, Wenhong Luo. Benzylamine and methylamine, substrates of semicarbazide-sensitive amine oxidase, attenuate inflammatory response induced by lipopolysaccharide.
International immunopharmacology.
2011 Aug; 11(8):1079-89. doi:
10.1016/j.intimp.2011.03.002
. [PMID: 21414430] - Manal K Abdel-Rahman. Can apricot kernels fatty acids delay the atrophied hepatocytes from progression to fibrosis in dimethylnitrosamine (DMN)-induced liver injury in rats?.
Lipids in health and disease.
2011 Jul; 10(?):114. doi:
10.1186/1476-511x-10-114
. [PMID: 21736706] - Marisa Canzoneri, Maurizio Bruno, Sergio Rosselli, Alessandra Russo, Venera Cardile, Carmen Formisano, Daniela Rigano, Felice Senatore. Chemical composition and biological activity of Salvia verbenaca essential oil.
Natural product communications.
2011 Jul; 6(7):1023-6. doi:
NULL
. [PMID: 21834249] - Linda Wildling, Barbara Unterauer, Rong Zhu, Anne Rupprecht, Thomas Haselgrübler, Christian Rankl, Andreas Ebner, Doris Vater, Philipp Pollheimer, Elena E Pohl, Peter Hinterdorfer, Hermann J Gruber. Linking of sensor molecules with amino groups to amino-functionalized AFM tips.
Bioconjugate chemistry.
2011 Jun; 22(6):1239-48. doi:
10.1021/bc200099t
. [PMID: 21542606]