Classification Term: 3455

Benzoyl derivatives (ontology term: CHEMONTID:0000321)

Organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-)." []

found 36 associated metabolites at sub_class metabolite taxonomy ontology rank level.

Ancestor: Benzene and substituted derivatives

Child Taxonomies: 1-benzoylpiperidines, Benzoylpyrazoles

3-Methylbenzaldehyde

3-methylbenzaldehyde;3-Methylbenzaldehyde, stab. with 0.1\\% hydroquinone

C8H8O (120.0575)


3-Methylbenzaldehyde, also known as 3-tolylaldehyde, belongs to the class of organic compounds known as benzoyl derivatives. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 3-Methylbenzaldehyde exists in all living organisms, ranging from bacteria to humans. 3-Methylbenzaldehyde is a sweet, benzaldehyde, and cherry tasting compound. 3-Methylbenzaldehyde has been detected, but not quantified, in several different foods, such as sweet cherries, alcoholic beverages, garden tomato, coffee and coffee products, and tea. This could make 3-methylbenzaldehyde a potential biomarker for the consumption of these foods. A tolualdehyde compound with the methyl substituent at the 3-position. M-tolualdehyde is a tolualdehyde compound with the methyl substituent at the 3-position. It has a role as a plant metabolite. 3-Methylbenzaldehyde is a natural product found in Aloe africana, Cichorium endivia, and other organisms with data available. Flavouring ingredient. Component of FEMA 3068; see further under 4-Methylbenzaldehyde BHW21-S. 3-Methylbenzaldehyde is found in many foods, some of which are coffee and coffee products, nuts, tea, and garden tomato. A tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive. m-Tolualdehyde (3-Methylbenzaldehyde) is a tolualdehyde compound with the methyl substituent at the 3-position. m-Tolualdehyde can be used as a food additive.

   

Phenylglyoxylic acid

Phenylglyoxylic acid, potassium salt

C8H6O3 (150.0317)


Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394). For the biological monitoring of workers exposure to solvent used in industry, its concentration is measured in human urine samples. (PMID 2739101). Phenylglyoxylic acid is one of the major urinary metabolites of toluene, o-, m- and p-xylenes, styrene and ethylbenzene. (PMID 3782394) D000890 - Anti-Infective Agents > D000892 - Anti-Infective Agents, Urinary > D008333 - Mandelic Acids KEIO_ID B041 Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1]. Phenylglyoxylic acid (Benzoylformic acid) is a metabolite of ethylbenzene and styrene (EB/S) and can be used as a biomarker of exposure to EB/S in human[1].

   

4-Methoxybenzaldehyde

4-anisaldehyde, 1,2,3,4,5,6-(14)C6-labeled

C8H8O2 (136.0524)


4-Methoxybenzaldehyde, also known as 4-anisaldehyde or p-formylanisole, belongs to the class of organic compounds known as benzoyl derivatives, with the chemical formula CH3OC6H4CHO. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Anisaldehyde is prepared commercially by oxidation of 4-methoxytoluene (p-cresyl methyl ether) using manganese dioxide to convert a methyl group to the aldehyde group. 4-Methoxybenzaldehyde is a sweet, almond, and anise tasting compound. 4-Methoxybenzaldehyde can be found, on average, in the highest concentration within a few different foods, such as cumins, star anises, and fennels. 4-Methoxybenzaldehyde has also been detected, but not quantified, in several different foods, such as cornmints, anises, herbs and spices, tarragons, and tea. The related ortho isomer has a scent of licorice. It is a colorless liquid with a strong aroma. A solution of para-anisaldehyde in acid and ethanol is a useful stain in thin layer chromatography. Different chemical compounds on the plate can give different colors, allowing easy distinction. It is used as an intermediate in the synthesis of other compounds important in pharmaceuticals and perfumery. Found in anise oil, fennel and vanilla. Flavouring ingredient 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1]. 4-Methoxybenzaldehyde is a naturally occurring fragrant phenolic compound. 4-Methoxybenzaldehyde has been found in many plant species including horseradish, anise, star anise. 4-Methoxybenzaldehyde is a possible neurotoxicant and it has shown effects that include mortality, attractancy, and interference with host seeking [1].

   

Benzaldehyde

benzaldehyde

C7H6O (106.0419)


Benzaldehyde is occasionally found as a volatile component of urine. Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5\\\% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products. (PMID:16835129, Int J Toxicol. 2006;25 Suppl 1:11-27.). Benzaldehyde, a volatile organic compound, is naturally present in a variety of plants, particularly in certain fruits, nuts, and flowers. It plays a significant role in the aromatic profiles of these plants. For instance, benzaldehyde is a primary component of bitter almond oil, which was one of its earliest known natural sources. Besides bitter almonds, it is also found in fruits like cherries, peaches, and plums, as well as in flowers such as jasmine. In the food industry, benzaldehyde is occasionally used as a food additive to impart specific flavors. This prevalence in plants highlights that benzaldehyde is not only an industrial chemical but also a naturally occurring compound in the plant kingdom. Its presence in these natural sources underscores its significance in both nature and industry. Found in plants, especies in almond kernelsand is) also present in strawberry jam, leek, crispbread, cheese, black tea and several essential oils. Parent and derivs. (e.g. glyceryl acetal) are used as flavourings

   

4-Chlorobenzaldehyde

4-chlorobenzaldehyde

C7H5ClO (140.0029)


   

4-Methylbenzaldehyde

Para-methylbenzaldehyde

C8H8O (120.0575)


4-Methylbenzaldehyde, also known as p-toluylaldehyde or p-formyltoluene, belongs to the class of organic compounds known as benzoyl derivatives. A tolualdehyde compound with the methyl substituent at the 4-position. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 4-Methylbenzaldehyde is a cherry and fruity tasting compound. 4-Methylbenzaldehyde has been detected, but not quantified, in several different foods, such as caraway, sweet cherries, tea, nuts, and coffee and coffee products. Component of *FEMA 3068* together with the o- and m-isomers. Flavouring ingredient. Methylbenzaldehydes are present in roasted nuts, cooked beef, cider, tomato, coffee, tea and elderberry juice. 4-Methylbenzaldehyde is found in many foods, some of which are tea, caraway, nuts, and garden tomato. p-Tolualdehyde is an endogenous metabolite. p-Tolualdehyde is an endogenous metabolite.

   

2-Methylbenzaldehyde

2-Methyl-benzaldehyde

C8H8O (120.0575)


Component of FEMA 3068. Flavouring ingredient (see further under 4-Methylbenzaldehyde BHW21-S). 2-Methylbenzaldehyde is found in many foods, some of which are alcoholic beverages, soft-necked garlic, animal foods, and caraway. 2-Methylbenzaldehyde is found in alcoholic beverages. 2-Methylbenzaldehyde is a component of FEMA 3068. 2-Methylbenzaldehyde is a flavouring ingredient (see further under 4-Methylbenzaldehyde BHW21-S

   

Capillin

2,4-Hexadiyn-1-one, 1-phenyl- (9ci)

C12H8O (168.0575)


Capillin is found in herbs and spices. Capillin is a constituent of essential oil from Artemisia dracunculus (tarragon). Constituent of essential oil from Artemisia dracunculus (tarragon). Capillin is found in herbs and spices.

   

2,4,5-Trimethoxybenzaldehyde

InChI=1/C10H12O4/c1-12-8-5-10(14-3)9(13-2)4-7(8)6-11/h4-6H,1-3H

C10H12O4 (196.0736)


2,4,5-Trimethoxybenzaldehyde, also known as TMBZ or asaraldehyde, belongs to the class of organic compounds known as benzoyl derivatives. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 2,4,5-Trimethoxybenzaldehyde has been detected, but not quantified, in several different foods, such as carrots, herbs and spices, root vegetables, and wild carrots. This could make 2,4,5-trimethoxybenzaldehyde a potential biomarker for the consumption of these foods. 2,4,5-trimethoxybenzaldehyde is a beige powder. (NTP, 1992) 2,4,5-trimethoxybenzaldehyde is a carbonyl compound. 2,4,5-Trimethoxybenzaldehyde is a natural product found in Mosla scabra, Alpinia flabellata, and other organisms with data available. Constituent of bitter principle of carrot seeds (Daucus carota) and sweetflag (Acorus calamus). 2,4,5-Trimethoxybenzaldehyde is found in many foods, some of which are root vegetables, wild carrot, herbs and spices, and carrot. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1]. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1].

   

2-Methoxybenzaldehyde

o-Anisaldehyde, United States Pharmacopeia (USP) Reference Standard

C8H8O2 (136.0524)


2-Methoxybenzaldehyde is found in Chinese cinnamon. 2-Methoxybenzaldehyde is present in cinnamon (Cinnamomum zeylanicum). 2-Methoxybenzaldehyde is a flavouring ingredient. Anisaldehyde, or anisic aldehyde, is an organic compound that consists of a benzene ring substituted with an aldehyde and a methoxy group. It is a clear colorless liquid with a strong aroma. It comes in 3 varieties, ortho, meta, and para in which the two functional groups (methoxy and aldehyde) are alpha, beta, and gamma, respectively to each other. The unmodified term anisaldehyde generally refers to the para isomer. Anisaldehyde is found in anise, from which it gets its name. It is similar in structure to vanillin. (Wikipedia). Present in cinnamon (Cinnamomum zeylanicum). Flavouring ingredient 2-Methoxybenzaldehyde is a carbonyl compound. 2-Methoxybenzaldehyde (o-Anisaldehyde), isolated from cinnamon essential oil (CEO), exists antibacterial and antifungal activity[1]. 2-Methoxybenzaldehyde (o-Anisaldehyde), isolated from cinnamon essential oil (CEO), exists antibacterial and antifungal activity[1].

   

3-Methoxybenzaldehyde

InChI=1/C8H8O2/c1-10-8-4-2-3-7(5-8)6-9/h2-6H,1H

C8H8O2 (136.0524)


3-Methoxybenzaldehyde is found in cloves. Anisaldehyde, or anisic aldehyde, is an organic compound that consists of a benzene ring substituted with an aldehyde and a methoxy group. It is a clear colorless liquid with a strong aroma. It comes in 3 varieties, ortho, meta, and para in which the two functional groups (methoxy and aldehyde) are alpha, beta, and gamma, respectively to each other. The unmodified term anisaldehyde generally refers to the para isomer. Anisaldehyde is found in anise, from which it gets its name. It is similar in structure to vanillin. (Wikipedia Anisaldehyde, or anisic aldehyde, is an organic compound that consists of a benzene ring substituted with an aldehyde and a methoxy group. It is a clear colorless liquid with a strong aroma. It comes in 3 varieties, ortho, meta, and para in which the two functional groups (methoxy and aldehyde) are alpha, beta, and gamma, respectively to each other. The unmodified term anisaldehyde generally refers to the para isomer. Anisaldehyde is found in anise, from which it gets its name. It is similar in structure to vanillin. 3-methoxybenzaldehyde is a member of the class of benzaldehydes in which the hydrogen at position 3 of benzaldehyde has been replaced by a methoxy group. It has a role as a Brassica napus metabolite. It is a member of benzaldehydes and a monomethoxybenzene. 3-Methoxybenzaldehyde is a natural product found in Syzygium aromaticum with data available. A member of the class of benzaldehydes in which the hydrogen at position 3 of benzaldehyde has been replaced by a methoxy group. m-Anisaldehyde is an endogenous metabolite. m-Anisaldehyde is an endogenous metabolite.

   

4-Ethylbenzaldehyde

InChI=1/C9H10O/c1-2-8-3-5-9(7-10)6-4-8/h3-7H,2H2,1H

C9H10O (134.0732)


Present in roasted chicken, cider, tea and roasted peanuts. Flavouring ingredient. 4-Ethylbenzaldehyde is found in many foods, some of which are nuts, alcoholic beverages, tea, and animal foods. 4-Ethylbenzaldehyde is found in alcoholic beverages. 4-Ethylbenzaldehyde is present in roasted chicken, cider, tea and roasted peanuts. 4-Ethylbenzaldehyde is a flavouring ingredien 4-Ethylbenzaldehyde is a carbonyl compound. 4-Ethylbenzaldehyde is a natural product found in Illicium verum, Tanacetum parthenium, and other organisms with data available. 4-Ethylbenzaldehyde is an endogenous metabolite. 4-Ethylbenzaldehyde is an endogenous metabolite.

   

2,4-Dimethylbenzaldehyde

2,4-Dimethylbenzenecarboxaldehyde

C9H10O (134.0732)


2,4-Dimethylbenzaldehyde is a flavouring ingredien Flavouring ingredient

   

2,4,6-Trimethylbenzaldehyde

2-Formyl-1,3,5-trimethylbenzene

C10H12O (148.0888)


2,4,6-Trimethylbenzaldehyde is found in herbs and spices. 2,4,6-Trimethylbenzaldehyde is a constituent of false coriander (Eryngium foetidum) and saffron

   

1-Phenyl-2,4-pentadiyn-1-one

1-phenylpenta-2,4-diyn-1-one

C11H6O (154.0419)


1-Phenyl-2,4-pentadiyn-1-one is found in herbs and spices. 1-Phenyl-2,4-pentadiyn-1-one is isolated from Chrysanthemum coronarium (chop-suey greens). Isolated from Chrysanthemum coronarium (chop-suey greens). 1-Phenyl-2,4-pentadiyn-1-one is found in herbs and spices.

   

Methyl Phenylglyoxalate

alpha-Oxobenzeneacetic acid methyl ester

C9H8O3 (164.0473)


Methyl Phenylglyoxalate, also known as a-Oxobenzeneacetate methyl ester or Benzoylformic acid methyl ester, is classified as a benzoyl derivative or a Benzoyl derivative derivative. Benzoyl derivatives are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Methyl Phenylglyoxalate is considered to be practically insoluble (in water) and basic

   

2,3,6-Trimethylbenzaldehyde

2,3,6-trimethylbenzaldehyde

C10H12O (148.0888)


2,3,6-Trimethylbenzaldehyde is found in herbs and spices. 2,3,6-Trimethylbenzaldehyde is a constituent of Eryngium foetidum (culantro)

   

APGPR Enterostatin

(2S)-2-({[(2S)-1-[2-({[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)acetyl]pyrrolidin-2-yl](hydroxy)methylidene}amino)-5-carbamimidamidopentanoate

C21H36N8O6 (496.2758)


Enterostatin APGPR (Ala-Pro-Gly-Pro-Arg) is a pentapeptide released from procolipase during fat digestion. In addition to the pancreas, enterostatin-immunoreactive cells are also present in the antrum and proximal small intestine. Enterostatin selectively reduces fat intake, decreases insulin secretion, and also increases energy expenditure by activating brown adipose tissue during high-fat feeding. Enterostatins are pentapeptides derived from the NH2-terminus of procolipase after tryptic cleavage and belong to the family of gut-brain peptides. Enterostatin is generated by the action of trypsin on procolipase in the intestinal lumen. Its structure is highly conserved in evolution, with an amino acid sequence of XPXPR. Three enterostatin sequences, Val-Pro-Asp-Pro-Arg (VPDPR), Val-Pro-Gly-Pro-Arg (VPGPR), and Ala-Pro-Gly-Pro-Arg (APGPR), have been studied extensively and shown to be almost equally effective in their ability to decrease dietary fat preference. Enterostatins are selective inhibitors of appetite, particularly of fat intake. Hyperenterostatinemia in obesity is probably secondary to enterostatin resistance; therefore, the regulatory system is producing more enterostatin to counteract the resistance. This is very similar to hyperinsulinemia and hyperleptinemia in obesity. The diminution in the meal-induced secretion of enterostatin in obesity suggests a delay in the appearance of satiety, leading to increased caloric intake. In rats enterostatin decreases body weight by decreasing fat-calorie intake and increasing the sympathetic firing rate of the nerves in interscapular brown adipose tissue. Enterostatin levels are elevated in the plasma of obese women, and enterostatin secretion is diminished after satiety. Oral administration of enterostatin, however, has no effect on food intake, energy expenditure, or body weight in subjects with a preference for a high-fat diet experiencing a negative energy and fat balance, and the physiology of enterostatin in humans remains to be defined. (PMID: 10084574, 9526102, 8886249) [HMDB] Enterostatin APGPR (Ala-Pro-Gly-Pro-Arg) is a pentapeptide released from procolipase during fat digestion. In addition to the pancreas, enterostatin-immunoreactive cells are also present in the antrum and proximal small intestine. Enterostatin selectively reduces fat intake, decreases insulin secretion, and also increases energy expenditure by activating brown adipose tissue during high-fat feeding. Enterostatins are pentapeptides derived from the NH2-terminus of procolipase after tryptic cleavage and belong to the family of gut-brain peptides. Enterostatin is generated by the action of trypsin on procolipase in the intestinal lumen. Its structure is highly conserved in evolution, with an amino acid sequence of XPXPR. Three enterostatin sequences, Val-Pro-Asp-Pro-Arg (VPDPR), Val-Pro-Gly-Pro-Arg (VPGPR), and Ala-Pro-Gly-Pro-Arg (APGPR), have been studied extensively and shown to be almost equally effective in their ability to decrease dietary fat preference. Enterostatins are selective inhibitors of appetite, particularly of fat intake. Hyperenterostatinemia in obesity is probably secondary to enterostatin resistance; therefore, the regulatory system is producing more enterostatin to counteract the resistance. This is very similar to hyperinsulinemia and hyperleptinemia in obesity. The diminution in the meal-induced secretion of enterostatin in obesity suggests a delay in the appearance of satiety, leading to increased caloric intake. In rats enterostatin decreases body weight by decreasing fat-calorie intake and increasing the sympathetic firing rate of the nerves in interscapular brown adipose tissue. Enterostatin levels are elevated in the plasma of obese women, and enterostatin secretion is diminished after satiety. Oral administration of enterostatin, however, has no effect on food intake, energy expenditure, or body weight in subjects with a preference for a high-fat diet experiencing a negative energy and fat balance, and the physiology of enterostatin in humans remains to be defined. (PMID: 10084574, 9526102, 8886249). Enterostatin, human, mouse, rat is a pentapeptide that reduces fat intake. Enterostatin, human, mouse, rat is a pentapeptide that reduces fat intake.

   

4-Ethoxy-3-methoxybenzaldehyde

4-Ethoxy-3-methoxy-benzaldehyde

C10H12O3 (180.0786)


4-Ethoxy-3-methoxybenzaldehyde is isolated from storax. 4-Ethoxy-3-methoxybenzaldehyde is a flavouring. 4-Ethoxy-3-methoxybenzaldehyde is a stabilise

   

Duryl aldehyde

2,4,5-Trimethyl-benzaldehyde

C10H12O (148.0888)


Duryl aldehyde is found in herbs and spices. Duryl aldehyde is a constituent of Eryngium foetidum (culantro) and Foeniculum vulgare (fennel)

   

3,4,5-Trimethylbenzaldehyde

3,4,5-trimethylbenzaldehyde

C10H12O (148.0888)


3,4,5-Trimethylbenzaldehyde is found in alcoholic beverages. 3,4,5-Trimethylbenzaldehyde is a constituent of hop oil (Humulus lupulus)

   

Ethyl Phenylglyoxylate

Phenyl glyoxylic acid ethyl ester

C10H10O3 (178.063)


Ethyl Phenylglyoxylate, also known as Ethyl 2-oxo-2-phenylacetate or Ethyl benzoylformate, is classified as a benzoyl derivative or a Benzoyl derivative derivative. Benzoyl derivatives are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). Ethyl Phenylglyoxylate is considered to be practically insoluble (in water) and basic

   

Acrylophenone

1-phenylprop-2-en-1-one

C9H8O (132.0575)


   

2-(Dimethylaminomethyl)-1-phenyl-prop-2-en-1-one

2-[(dimethylamino)methyl]-1-phenylprop-2-en-1-one

C12H15NO (189.1154)


   

2,5-Difluorobenzaldehyde

2,5-difluorobenzaldehyde

C7H4F2O (142.023)


   

3-Methoxy-4-[2-(4-methylpiperazin-1-yl)ethoxy]benzaldehyde

3-methoxy-4-[2-(4-methylpiperazin-1-yl)ethoxy]benzaldehyde

C15H22N2O3 (278.163)


   

2-(Diethylamino)benzaldehyde

2-(diethylamino)benzaldehyde

C11H15NO (177.1154)


   

4-(Diethylamino)benzaldehyde

4-(N,N-Diethylamino)benzaldehyde

C11H15NO (177.1154)


4-Diethylaminobenzaldehyde is a reversible aldehyde dehydrogenases (ALDHs) inhibitor, with a Ki of 4 nM for ALDH1. 4-Diethylaminobenzaldehyde displays potent anti-androgenic effect (IC50= 1.71μM)[1][2].

   

4-(Dimethylamino)benzaldehyde

4-(Dimethylamino)benzaldehyde, hydrochloride

C9H11NO (149.0841)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents

   

Dimethane sulfonate

2-[(4-Formyl-3-methylphenyl)[2-(methanesulphonyloxy)ethyl]amino]ethyl methanesulphonic acid

C14H21NO7S2 (379.0759)


   

o-Phthalaldehyde

1,2-Benzenedicarboxaldehyde

C8H6O2 (134.0368)


   

Pentafluorobenzaldehyde

2,3,4,5,6-pentafluorobenzaldehyde

C7HF5O (195.9948)


   

Phenacyl

2-oxo-2-phenylethyl

C8H7O (119.0497)


   

p-Aminobenzaldehyde

4-aminobenzaldehyde

C7H7NO (121.0528)


P-aminobenzaldehyde belongs to benzoyl derivatives class of compounds. Those are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). P-aminobenzaldehyde is slightly soluble (in water) and a strong basic compound (based on its pKa). P-aminobenzaldehyde can be found in a number of food items such as pepper (c. annuum), yellow bell pepper, orange bell pepper, and green bell pepper, which makes P-aminobenzaldehyde a potential biomarker for the consumption of these food products.

   

Tolualdehydes (mixed o-, m-, p-)

2-methylbenzaldehyde; 3-methylbenzaldehyde; 4-methylbenzaldehyde

C24H24O3 (360.1725)


It is used as a food additive .

   

3-chlorobenzaldehyde

3-Chlorobenzaldehyde

C7H5ClO (140.0029)


3-chlorobenzaldehyde belongs to benzoyl derivatives class of compounds. Those are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 3-chlorobenzaldehyde is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 3-chlorobenzaldehyde can be found in a number of food items such as calabash, black raspberry, ginger, and tartary buckwheat, which makes 3-chlorobenzaldehyde a potential biomarker for the consumption of these food products.