Demethoxyyangonin

2H-Pyran-2-one, 4-methoxy-6-(2-phenylethenyl)-, (E)- (9CI)

C14H12O3 (228.0786)


5,6-Dehydrokawain is an aromatic ether and a member of 2-pyranones. Desmethoxyyangonin is a natural product found in Alpinia blepharocalyx, Alpinia rafflesiana, and other organisms with data available. See also: Piper methysticum root (part of). 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in beverages. 5,6-Dihydro-5-hydroxy-6-methyl-2H-pyran-2-one is found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damag Found in kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.

   

Dihydromethysticin

2H-Pyran-2-one, 6-[2-(1,3-benzodioxol-5-yl)ethyl]-5,6-dihydro-4-methoxy-, (6S)-

C15H16O5 (276.0998)


Dihydromethysticin is found in beverages. Dihydromethysticin is isolated from Piper methysticum (kava). FDA advises against use of kava in food due to potential risk of severe liver damage (2002) Dihydromethysticin is one of the six major kavalactones found in the kava plant Dihydromethysticin is a member of 2-pyranones and an aromatic ether. Dihydromethysticin is a natural product found in Piper methysticum, Piper majusculum, and Aniba hostmanniana with data available. Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23. Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23.

   

3,7-Dimethyl-1,6-octadien-3-ol

Linalool, certified reference material, TraceCERT(R)

C10H18O (154.1358)


3,7-Dimethyl-1,6-octadien-3-ol, also known simply as linalool is a naturally occurring terpene alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Linalool has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. There are two stereoisomers of Linalool ‚Äö√Ñ√¨ (S)-linalool and (R)-linalool. Linalool is used as a scent in 60\\\\\% to 80\\\\\% of perfumed hygiene products and cleaning agents including soaps, detergents, shampoos, and lotions. Linalool is also used by pest professionals as a flea, fruit fly, and cockroach insecticide. Linalool is found in more than 200 different species of plants, including many flowers and spice plants. (S)-linalool is found, for example, as a major constituent of the essential oils of coriander (Coriandrum sativum L.), cymbopogon (Cymbopogon martini var. martinii), and sweet orange (Citrus sinensis) flowers. (R)-linalool is present in lavender (Lavandula officinalis), bay laurel (Laurus nobilis), and sweet basil (Ocimum basilicum), among others. Linalool is also found in plants from the Lamiaceae family (mint and other herbs), Lauraceae (laurels, cinnamon, rosewood), Cinnamomum tamala, Solidago Meyen, Artemisia vulgaris (mugwort), Humulus lupulus. Linalool is also one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Like the majority of monoterpenes, linalool starts with the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl pyrophosphate (GPP) (PMID:7640522 ). Linalool is then synthesized with the aid of linalool synthase (LIS) (PMID:12572612 ). Linalool has a citrus, floral, rose, woody aroma and a citrus, orange, waxy taste. Linalool is found in a few different foods and spices, such as spearmints, corianders, common thymes, limes, grapes, lemons, grapefruit, oranges, pineapples, blackcurrants, basil, and common oregano. This could make, Linalool a potential biomarker for the consumption of these foods. Linalool is also synthesized, de novo, by yeast (C. cerevisiae) and may contribute to the floral tones found in some wines (PMID:15668008 ). Linalool is a monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. It has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. It is a tertiary alcohol and a monoterpenoid. Linalool is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. 3,7-Dimethyl-1,6-octadien-3-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon Leaf Oil (part of); Clary Sage Oil (part of); Cannabis sativa subsp. indica top (part of) ... View More ... A monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. Flavouring agent. Widespread natural occurrence as the optically active and racemic forms in over 200 essential oilsand is) also present in numerous fruits. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2]. Linalool is a natural monoterpene which is a competitive NMDA receptor antagonist. Linalool is orally active and crosses the blood-brain barrier. Linalool has anticancer, antibacterial, anti-inflammatory, neuroprotective, anxiolytic, antidepressant, anti-stress, cardioprotective, hepatoprotective, nephroprotective and pulmonary protective activities[1][2][3][4][5]. Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

(-)-beta-Pinene

Bicyclo(3.1.1)heptane, 6,6-dimethyl-2-methylene-, (1S,5S)-

C10H16 (136.1252)


(-)-beta-pinene is the (1S,5S)-enantiomer of beta-pinene. It is an enantiomer of a (+)-beta-pinene. (-)-beta-Pinene is a natural product found in Curcuma amada, Molopospermum peloponnesiacum, and other organisms with data available. Flavouring ingredient. (-)-beta-Pinene is found in many foods, some of which are almond, hyssop, sweet bay, and common sage. (-)-beta-Pinene is found in almond. (-)-beta-Pinene is a flavouring ingredient. The (1S,5S)-enantiomer of beta-pinene. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

Rhamnocitrin

3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxychromen-4-one

C16H12O6 (300.0634)


Rhamnocitrin, also known as 3,4,5-trihydroxy-7-methoxyflavone or 7-methylkaempferol, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, rhamnocitrin is considered to be a flavonoid lipid molecule. Rhamnocitrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Rhamnocitrin can be found in cloves and lemon balm, which makes rhamnocitrin a potential biomarker for the consumption of these food products. Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol. Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2]. Rhamnocitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=569-92-6 (retrieved 2024-12-30) (CAS RN: 569-92-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

(S)-Reticuline

7-ISOQUINOLINOL, 1,2,3,4-TETRAHYDRO-1-((3-HYDROXY-4-METHOXYPHENYL)METHYL)-6-METHOXY-2-METHYL-, (1S)-

C19H23NO4 (329.1627)


(S)-Reticuline is an endogenous precursor of morphine (PMID: 15383669). (S)-Reticuline is a key intermediate in the synthesis of morphine, the major active metabolite of the opium poppy. "Endogenous morphine" has been long isolated and authenticated by mass spectrometry in trace amounts from animal- and human-specific tissue or fluids (PMID: 15874902). Human neuroblastoma cells (SH-SY5Y) were shown capable of synthesizing morphine as well. (S)-Reticuline undergoes a change of configuration at C-1 during its transformation into salutaridinol and thebaine. From thebaine, there is a bifurcate pathway leading to morphine proceeding via codeine or oripavine, in both plants and mammals (PMID 15937106). (S)-reticuline is the (S)-enantiomer of reticuline. It has a role as an EC 2.1.1.116 [3-hydroxy-N-methyl-(S)-coclaurine 4-O-methyltransferase] inhibitor. It is a conjugate base of a (S)-reticulinium(1+). It is an enantiomer of a (R)-reticuline. Reticuline is a natural product found in Fumaria capreolata, Berberis integerrima, and other organisms with data available. See also: Peumus boldus leaf (part of). Alkaloid from Papaver somniferum (opium poppy) and Annona reticulata (custard apple) The (S)-enantiomer of reticuline.

   

Myristicin

1-Methoxy-2,3-methylenedioxy-5-(2-propenyl)benzene

C11H12O3 (192.0786)


Myristicin is an organic molecular entity. It has a role as a metabolite. Myristicin is a natural product found in Chaerophyllum azoricum, Peperomia bracteata, and other organisms with data available. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase.Myristicin has been shown to exhibit apoptotic and hepatoprotective functions (A7836, A7837).Myristicin belongs to the family of Benzodioxoles. These are organic compounds containing a benzene ring fused to either isomers of dioxole. Myristicin is found in anise. Myristicin is a constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicin, 3-methoxy,4,5-methylendioxy-allylbenzene, is a natural organic compound present in the essential oil of nutmeg and to a lesser extent in other spices such as parsley and dill. Myristicin is a naturally occurring insecticide and acaricide with possible neurotoxic effects on dopaminergic neurons[citation needed]. It has hallucinogenic properties at doses much higher than used in cooking. Myristicin is a weak inhibitor of monoamine oxidase Constituent of dill, nutmeg, parsley and many other essential oils. May be responsible for psychotic effects of nutmeg at large doses Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].

   

Coclaurine

(1S)-1-[(4-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

C17H19NO3 (285.1365)


(S)-coclaurine is the (S)-enantiomer of coclaurine. It is a conjugate base of a (S)-coclaurinium. It is an enantiomer of a (R)-coclaurine. Coclaurine is a natural product found in Delphinium pentagynum, Damburneya salicifolia, and other organisms with data available. Coclaurine, also known as (r,s)-coclaurine or machiline, is a member of the class of compounds known as benzylisoquinolines. Benzylisoquinolines are organic compounds containing an isoquinoline to which a benzyl group is attached. Coclaurine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Coclaurine can be found in custard apple and soursop, which makes coclaurine a potential biomarker for the consumption of these food products. Coclaurine is a nicotinic acetylcholine receptor antagonist which has been isolated from a variety of plant sources including Nelumbo nucifera, Sarcopetalum harveyanum, Ocotea duckei, and others. It belongs to the class of tetrahydroisoquinoline alkaloids. Dimerization of coclaurine leads to the biscoclaurine alkaloids such as cepharanthine .

   

Armepavine

Phenol, 4-((1,2,3,4-tetrahydro-6,7-dimethoxy-2-methyl-1-isoquinolinyl)methyl)-, (R)-

C19H23NO3 (313.1678)


Armepavine is a member of isoquinolines. (-)-Armepavine is a natural product found in Berberis integerrima, Aconitum variegatum, and other organisms with data available. Armepavine, an active compound from Nelumbo nucifera, exerts not only anti-inflammatory effects on human peripheral blood mononuclear cells, but also immunosuppressive effects on T lymphocytes and on lupus nephritic mice. Armepavine inhibits TNF-α-induced MAPK and NF-κB signaling cascades[1]. Armepavine, an active compound from Nelumbo nucifera, exerts not only anti-inflammatory effects on human peripheral blood mononuclear cells, but also immunosuppressive effects on T lymphocytes and on lupus nephritic mice. Armepavine inhibits TNF-α-induced MAPK and NF-κB signaling cascades[1].

   

gamma-Asarone

1,2,4-trimethoxy-5-prop-2-enylbenzene

C12H16O3 (208.1099)


2,4,5-Trimethoxy-1-allylbenzene is a benzenetriol. gamma-Asarone is a natural product found in Blumea mollis, Asarum yakusimense, and other organisms with data available. gamma-Asarone is found in herbs and spices. gamma-Asarone is a constituent of Acorus calamus (sweet flag) D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D009676 - Noxae > D002273 - Carcinogens D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents

   

Octacosanoic acid

Octacosanoic acid, puriss., synthetic, >=98.5\\% (GC)

C28H56O2 (424.428)


Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID:2474624). Octacosanoic acid is a higher aliphatic primary acids purified from sugar-cane (Saccharum officinarum L.) wax that has been shown to inhibit platelet aggregation induced ex vivo by addition of agonists to platelet-rich plasma (PRP) of rats, guinea pigs, and healthy human volunteers. (PMID:5099499). Octacosanoic acid is formed from octacosanol via beta-oxidation. (PMID:15847942). Octacosanoic acid is a straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. It has a role as a plant metabolite. It is a straight-chain saturated fatty acid and an ultra-long-chain fatty acid. It is a conjugate acid of an octacosanoate. Octacosanoic acid is a natural product found in Lysimachia patungensis, Rhizophora apiculata, and other organisms with data available. A straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID: 2474624)

   

Isoteolin

(6aS)-2,10-dimethoxy-6-methyl-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-1,9-diol

C19H21NO4 (327.1471)


Isoboldine is an aporphine alkaloid. (+)-Isoboldine is a natural product found in Fumaria capreolata, Thalictrum foetidum, and other organisms with data available. See also: Peumus boldus leaf (part of).

   

(+)-alpha-Pinene

(R)-(+)--Pinene;(+)--Pinene; (1R)-(+)--Pinene; (1R)--Pinene; (1R,5R)-(+)--Pinene

C10H16 (136.1252)


alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].

   

2,6-Dihydroxybenzoic acid

2,6-Dihydroxybenzoic acid (acd/name 4.0)

C7H6O4 (154.0266)


2,6-dihydroxybenzoic acid, also known as gamma-resorcylic acid or 6-hydroxysalicylic acid, is a member of the class of compounds known as salicylic acids. Salicylic acids are ortho-hydroxylated benzoic acids. 2,6-dihydroxybenzoic acid is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 2,6-dihydroxybenzoic acid can be found in beer and olive, which makes 2,6-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 2,6-dihydroxybenzoic acid can be found primarily in blood and urine. 2,6-Dihydroxybenzoic acid (γ-resorcylic acid) is a dihydroxybenzoic acid. It is a very strong acid due to its intramolecular hydrogen bonding . 2,6-dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

Eugenol

2-methoxy-4-prop-2-enylphenol

C10H12O2 (164.0837)


Eugenol appears as clear colorless pale yellow or amber-colored liquid. Odor of cloves. Spicy pungent taste. (NTP, 1992) Eugenol is a phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. It has a role as an allergen, a human blood serum metabolite, a sensitiser, a volatile oil component, a flavouring agent, an EC 1.4.3.4 (monoamine oxidase) inhibitor, a radical scavenger, an antibacterial agent, an antineoplastic agent, an apoptosis inducer, an anaesthetic, an analgesic, a voltage-gated sodium channel blocker, a NF-kappaB inhibitor and an anti-inflammatory agent. It is a phenylpropanoid, a monomethoxybenzene, a member of phenols and an alkenylbenzene. It is functionally related to a guaiacol. Eugenol is a naturally occurring phenolic molecule found in several plants such as cinnamon, clove, and bay leaves. It has been used as a topical antiseptic as a counter-irritant and in dental preparations with zinc oxide for root canal sealing and pain control. Although not currently available in any FDA-approved products (including OTC), eugenol has been found to have anti-inflammatory, neuroprotective, antipyretic, antioxidant, antifungal and analgesic properties. Its exact mechanism of action is unknown, however, it has been shown to interfere with action potential conduction. There are a number of unapproved OTC products available containing eugenol that advertise its use for the treatment of toothache. Eugenol is a Standardized Chemical Allergen. The physiologic effect of eugenol is by means of Increased Histamine Release, and Cell-mediated Immunity. Eugenol, also called clove oil, is an aromatic oil extracted from cloves that is used widely as a flavoring for foods and teas and as an herbal oil used topically to treat toothache and more rarely to be taken orally to treat gastrointestinal and respiratory complaints. Eugenol in therapeutic doses has not been implicated in causing serum enzyme elevations or clinically apparent liver injury, but ingestions of high doses, as with an overdose, can cause severe liver injury. Eugenol is a natural product found in Dahlia sherffii, Elettaria cardamomum, and other organisms with data available. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. Eugenol is a member of the allylbenzene class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like odor. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). 4-Allyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. A cinnamate derivative of the shikimate pathway found in CLOVE OIL and other PLANTS. See also: Cinnamon (part of); Clove Oil (part of); Cinnamon Leaf Oil (part of) ... View More ... Eugenol is an allyl chain-substituted guaiacol. Eugenol is a member of the phenylpropanoids class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like aroma. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. It is a key ingredient in Indonesian kretek (clove) cigarettes. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from phenol or from lignin. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Eugenol has a very widespread occurrence in essential oils. Major component of clove oil. Also found in citrus and thyme oils. It is found in foods such as apple, apricot, banana and cherry fruits. Eugenol or 4-allyl-2-methoxyphenol is classified as a phenylpropanoid, formally derived from guaiacol, with an allyl chain positioned para to the hydroxy group. It is soluble in water, alcohol, chloroform, ether and oils. Eugenol is a neutral compound. It is biosynthesized from tyrosine. Eugenol is widely distributed in plants. It is a clear to pale yellow oily liquid extracted from clove oil, nutmeg, cinnamon, basil and bay leaf. It has a pleasant, spicy, clove-like odor with a spicy pungent taste. Eugenol is found in highest concentrations in cloves, allspices, and carrots and in lower concentrations in walnuts, ceylon cinnamons, and wild carrots. Eugenol has also been detected in shea tree, passion fruits, winged beans, fireweeds, and gingers, making it a potential biomarker for the consumption of these foods. Eugenol is used in perfumeries, flavorings and essential oils. It was first used for the manufacture of vanillin (https://doi.org/10.1021/ed054p776), though most vanillin is now produced from petrochemicals or from by-products of paper manufacture. Eugenol is hepatotoxic, meaning it may cause damage to the liver, if consumed in high doses. Eugenol has local antiseptic and anaesthetic properties (PMID:15089054 ; PMID:935250 ) and acts as positive allosteric modulators of the GABA-A receptor. It has high antioxidant, anti-proliferative, and anti-inflammatory activities with potential roles in alleviating and preventing cancer and inflammatory reactions (PMID:27771920 ). A phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents [Raw Data] CB226_Eugenol_pos_10eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_20eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_40eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_50eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_30eV_CB000079.txt Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

Safrole

4-Allyl-1,2-(methylenedioxy)benzene, 8ci

C10H10O2 (162.0681)


Safrole, also known as shikimol, is a colorless or slightly yellow oily liquid. It is typically extracted from the root-bark or the fruit of sassafras plants in the form of sassafras oil, or synthesized from other related methylenedioxy compounds. It is the principal component of brown camphor oil, and is found in small amounts in a wide variety of plants, where it functions as a natural pesticide. Safrole is found in anise and nutmeg. Banned by FDA for use in food. Safrole is formerly used as a food flavour It is a precursor in the synthesis of the insecticide synergist piperonyl butoxide and the recreational drug MDMA ("Ecstacy"). Safrole is a natural plant constituent, found in oil of sassafras and certain other essential oils. It is a member of the methylenedioxybenzene group of compounds, many of which (e.g. piperonyl butoxide) are extensively used as insecticide synergists. Safrole is a major source of human exposure to safrole is through consumption of spices, such as nutmeg, cinnamon and black pepper, in which safrole is a constituent. Safrole is also present in root beer, and has been used as an additive in chewing gum, toothpaste, soaps and certain pharmaceutical preparations. Safrole is a weak hepatocarcinogen and it is a matter of considerable interest whether the ally1 moiety or the methylenedioxy group, or both, are involved in the mechanism of its carcinogenesis. Safrole is extensively metabolized, giving rise to a large number of metabolites. Metabolism involves essentially two major routes, oxidation of the ally1 side chain, and oxidation of the methylenedioxy group with subsequent cleavage to form the catechol. Safrole undergoes oxidation of the allylic group to yield the 2, 3-epoxide (safrole epoxide). The dihydrodiol is one of the metabolites of safrole, and presumably arises from the hydration of the 2, 3-epoxide. The principal route of metabolism of safrole is through cleavage of the methylenedioxy group, the major metabolites being allylcatechol and its isomer, propenylcatechol. Eugenol and its isomer I-methoxy- 2-hydroxy-4-allylbenzene have been detected as minor metabolites in rat, mouse and human (PMID:6719936). The Ocotea cymbarum oil made of the Ocotea pretiosa, a plant growing in Brazil, and sassafras oil made of Sassafras albidum, a tree growing in eastern North America, are the main natural sources for safrole. It has a characteristic "candy-shop" aroma Occurs in nutmeg. Banned by FDA for use in food. Formerly used as a food flavour

   

Phenylacetaldehyde

2-phenylacetaldehyde

C8H8O (120.0575)


Phenylacetaldehyde is one important oxidation-related aldehyde. Exposure to styrene gives phenylacetaldehyde as a secondary metabolite. Styrene has been implicated as reproductive toxicant, neurotoxicant, or carcinogen in vivo or in vitro. Phenylacetaldehyde could be formed by diverse thermal reactions during the cooking process together with C8 compounds is identified as a major aroma- active compound in cooked pine mushroom. Phenylacetaldehyde is readily oxidized to phenylacetic acid. Therefore will eventually be hydrolyzed and oxidized to yield phenylacetic acid that will be excreted primarily in the urine in conjugated form. (PMID: 16910727, 7818768, 15606130). Found in some essential oils, e.g. Citrus subspecies, Tagetes minuta (Mexican marigold) and in the mushroom Phallus impudicus (common stinkhorn). Flavouring ingredient COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Benzyl benzoate

Benzyl benzoate, Pharmaceutical Secondary Standard; Certified Reference Material

C14H12O2 (212.0837)


Benzyl benzoate, also known as benylate or benylic acid, belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid. Benzyl benzoate is an extremely weak basic (essentially neutral) compound (based on its pKa). Benzyl benzoate is a faint, sweet, and almond tasting compound. Outside of the human body, benzyl benzoate is found, on average, in the highest concentration within Ceylon cinnamon. Benzyl benzoate has also been detected, but not quantified in, several different foods, such as fennels, garden tomato, annual wild rice, amaranths, and horseradish tree. This could make benzyl benzoate a potential biomarker for the consumption of these foods. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite Sarcoptes scabiei. It is characterized by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and is therefore useful in the treatment of scabies. It is also used to treat lice infestations of the head and body. Benzyl benzoate is a benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. It has a role as a scabicide, an acaricide and a plant metabolite. It is a benzyl ester and a benzoate ester. It is functionally related to a benzoic acid. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite sarcoptes scabiei. It is characterised by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and so is useful in the treatment of scabies. It is also used to treat lice infestation of the head and body. Benzyl benzoate is not the treatment of choice for scabies due to its irritant properties. Benzyl benzoate is a natural product found in Lonicera japonica, Populus tremula, and other organisms with data available. See also: ... View More ... P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides A benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. Contained in Peru balsam and Tolu balsam. Isolated from other plants e.g. Jasminum subspecies, ylang-ylang oil. It is used in food flavouring C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01138 Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   

Pinostrobin

(2R)-5-hydroxy-7-methoxy-2-phenyl-3,4-dihydro-2H-1-benzopyran-4-one

C16H14O4 (270.0892)


A monohydroxyflavanone that is (2S)-flavanone substituted by a hydroxy group at position 5 and a methoxy group at position 7 respectively. Pinostrobin is a natural product found in Uvaria chamae, Zuccagnia punctata, and other organisms with data available.

   

Benzaldehyde

benzaldehyde

C7H6O (106.0419)


Benzaldehyde is occasionally found as a volatile component of urine. Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5\\\% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products. (PMID:16835129, Int J Toxicol. 2006;25 Suppl 1:11-27.). Benzaldehyde, a volatile organic compound, is naturally present in a variety of plants, particularly in certain fruits, nuts, and flowers. It plays a significant role in the aromatic profiles of these plants. For instance, benzaldehyde is a primary component of bitter almond oil, which was one of its earliest known natural sources. Besides bitter almonds, it is also found in fruits like cherries, peaches, and plums, as well as in flowers such as jasmine. In the food industry, benzaldehyde is occasionally used as a food additive to impart specific flavors. This prevalence in plants highlights that benzaldehyde is not only an industrial chemical but also a naturally occurring compound in the plant kingdom. Its presence in these natural sources underscores its significance in both nature and industry. Found in plants, especies in almond kernelsand is) also present in strawberry jam, leek, crispbread, cheese, black tea and several essential oils. Parent and derivs. (e.g. glyceryl acetal) are used as flavourings

   

(+)-1(10),4-Cadinadiene

1,2,3,5,6,8a-hexahydro-4,7-Dimethyl-1-(1-methylethyl)-(1S,8ar)-naphthalene

C15H24 (204.1878)


Constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag. (+)-1(10),4-Cadinadiene is found in many foods, some of which are common pea, asparagus, sweet potato, and dill. (+)-1(10),4-Cadinadiene is found in allspice. (+)-1(10),4-Cadinadiene is a constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag

   
   

(-)-Apoglaziovine

(-)-Apoglaziovine

C18H19NO3 (297.1365)


   

Suavedol

Spiro[2,5-cyclohexadiene-1,7(1H)-cyclopent[ij]isoquinolin]-4-one,2,3,8,8a-tetrahydro-6-hydroxy-5-methoxy-1-methyl-

C18H19NO3 (297.1365)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent

   

alpha-Terpineol

2-(4-Methylcyclohex-3-enyl)propan-2-ol (alpha-terpineol)

C10H18O (154.1358)


alpha-Terpineol (CAS: 98-55-5) is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers of terpineol, alpha-, beta-, and gamma-terpineol, with the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. Terpineol has a pleasant odour similar to lilac and is a common ingredient in perfumes, cosmetics, and flavours. alpha-Terpineol is occasionally found as a volatile component in urine. It is a water-soluble component of Melaleuca alternifolia Cheel, the tea tree oil (TTO). alpha-Terpineol is a likely mediator of the in vitro and in vivo activity of the TTO as an agent that could control C. albicans vaginal infections. Purified alpha-terpineol can suppress pro-inflammatory mediator production by activated human monocytes. alpha-Terpineol is able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumour cells (PMID:5556886, 17083732, 11131302, 15009716). Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (R)-alpha-Terpineol is found in many foods, some of which are mentha (mint), sweet marjoram, lovage, and cardamom. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Galangin trimethyl ether

Galangin 3,5,7-trimethyl ether

C18H16O5 (312.0998)


   
   

Dillapiol

1,3-Benzodioxole, 4,5-dimethoxy-6-(2-propenyl)- (9ci)

C12H14O4 (222.0892)


Dillapiol is found in coriander. Dillapiol is a constituent of Japanese, Indian (Anethum sowa) and European (Anethum graveolens) dill oils and Piper species Also from seeds of Bunium persicum (black caraway) Dillapiole is an organic chemical compound and essential oil commonly extracted from dill weed, though can be found in a variety of other plants Constituent of Japanese, Indian (Anethum sowa) and European (Anethum graveolens) dill oils and Piper subspecies Also from seeds of Bunium persicum (black caraway)

   

Elemicin

4-(2-Ethyl-benzoimidazol-1-yl)-4-oxo-butyricacid

C12H16O3 (208.1099)


Elemicin is an olefinic compound. Elemicin is a natural product found in Anemopsis californica, Asarum celsum, and other organisms with data available. Constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is found in many foods, some of which are nutmeg, carrot, parsley, and tarragon. Elemicin is found in carrot. Elemicin is a constituent of Elemi oil and Myristica fragrans (nutmeg). Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

Methyleugenol

METHYLEUGENOL (CONSTITUENT OF HOLY BASIL LEAF) [DSC]

C11H14O2 (178.0994)


Methyleugenol, also known as 4-allylveratrole or eugenol methyl, belongs to the class of organic compounds known as dimethoxybenzenes. These are organic aromatic compounds containing a monocyclic benzene moiety carrying exactly two methoxy groups. FDA noted the action was despite its continuing stance that this substance does not pose a risk to public health under the conditions of its intended use. Methyleugenol is a sweet, anise, and apricot tasting compound. Methyleugenol is found, on average, in the highest concentration within a few different foods, such as allspices, tarragons, and sweet bay and in a lower concentration in sweet basils, rosemaries, and hyssops. Methyleugenol has also been detected, but not quantified, in several different foods, such as soy beans, evergreen blackberries, muskmelons, citrus, and pomes. This could make methyleugenol a potential biomarker for the consumption of these foods. As of October 2018, the US FDA withdrew authorization for the use of methyl eugenol as a synthetic flavoring substance for use in food because petitioners provided data demonstrating that these additives induce cancer in laboratory animals. Methyleugenol is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Methyl eugenol (allylveratrol) is a natural chemical compound classified as a phenylpropene, a type of phenylpropanoid. It is the methyl ether of eugenol and is important to insect behavior and pollination. Their ability to attract insects, particularly Bactrocera fruit flies was first noticed in 1915 by F. M. Howlett. The compound may have evolved in response to pathogens, as methyl eugenol has some antifungal activity. Methyl eugenol is found in a number of plants (over 450 species from 80 families including both angiosperm and gymnosperm families) and has a role in attracting pollinators. About 350 plant species have them as a component of floral fragrance. Methyleugenol is a clear colorless to pale yellow liquid with a spicy earthy odor. Bitter burning taste. (NTP, 1992) O-methyleugenol is a phenylpropanoid. It is functionally related to a eugenol. Methyleugenol is a natural product found in Vitis rotundifolia, Elettaria cardamomum, and other organisms with data available. Methyleugenol is a yellowish, oily, naturally occurring liquid with a clove-like aroma and is present in many essential oils. Methyleugenol is used as a flavoring agent, as a fragrance and as an anesthetic in rodents. Methyleugenol is mutagenic in animals and is reasonably anticipated to be a human carcinogen based on evidence of carcinogenicity in animals. (NCI05) Methyleugenol is found in allspice. Methyleugenol is present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberryMethyleugenol has been shown to exhibit anti-nociceptive function (A7914).Methyleugenol belongs to the family of Anisoles. These are organic compounds contaiing a methoxybenzene or a derivative thereof. Present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberry. Methyleugenol is found in many foods, some of which are wild carrot, sweet basil, citrus, and fruits. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1]. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury[1][2][3]. Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1].

   

LICARIN A

2-methoxy-4-[(2S,3S)-7-methoxy-3-methyl-5-[(E)-prop-1-enyl]-2,3-dihydro-1-benzofuran-2-yl]phenol

C20H22O4 (326.1518)


(-)-Licarin A is a natural product found in Magnolia dodecapetala, Magnolia kachirachirai, and other organisms with data available. Dehydrodiisoeugenol is a natural product found in Myristica fragrans with data available. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Dehydrodiisoeugenol is isolated from Myristica fragrans Houtt, shows anti-inflammatory and anti-bacterial actions[1]. Dehydrodiisoeugenol inhibits LPS- stimulated NF-κB activation and cyclooxygenase (COX)-2 gene expression in murine macrophages[2]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1]. Licarin A ((+)-Licarin A), a neolignan, significantly and dose-dependently reduces TNF-α production (IC50=12.6 μM) in dinitrophenyl-human serum albumin (DNP-HSA)-stimulated RBL-2H3 cells. Anti-allergic effects. Licarin A reduces TNF-α and PGD2 production, and COX-2 expression[1].

   

Magnosalicin

Magnosalicin

C24H32O7 (432.2148)


   

Surinamensin

Surinamensin

C22H28O6 (388.1886)


   

Isoelemicin

1,2,3-Trimethoxy-5-(1E)-1-propen-1-ylbenzene; (E)-Isoelemicin; 1,2,3-Trimethoxy-5-((E)-prop-1-enyl)benzene; 1,2,3-Trimethoxy-5-[(1E)-1-propenyl]benzene

C12H16O3 (208.1099)


Isoelemicin is found in herbs and spices. Isoelemicin is a constituent of oil of nutmeg Constituent of oil of nutmeg. Isoelemicin is found in ucuhuba and herbs and spices.

   

Pinene

(1R,5R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene

C10H16 (136.1252)


Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1252)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

Stirrup

InChI=1\C15H26O\c1-13(2)7-5-8-14(3)9-6-10-15(4)11-12-16\h7,9,11,16H,5-6,8,10,12H2,1-4H3\b14-9+,15-11

C15H26O (222.1984)


C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

2,4,5-Trimethoxybenzaldehyde

InChI=1/C10H12O4/c1-12-8-5-10(14-3)9(13-2)4-7(8)6-11/h4-6H,1-3H

C10H12O4 (196.0736)


2,4,5-Trimethoxybenzaldehyde, also known as TMBZ or asaraldehyde, belongs to the class of organic compounds known as benzoyl derivatives. These are organic compounds containing an acyl moiety of benzoic acid with the formula (C6H5CO-). 2,4,5-Trimethoxybenzaldehyde has been detected, but not quantified, in several different foods, such as carrots, herbs and spices, root vegetables, and wild carrots. This could make 2,4,5-trimethoxybenzaldehyde a potential biomarker for the consumption of these foods. 2,4,5-trimethoxybenzaldehyde is a beige powder. (NTP, 1992) 2,4,5-trimethoxybenzaldehyde is a carbonyl compound. 2,4,5-Trimethoxybenzaldehyde is a natural product found in Mosla scabra, Alpinia flabellata, and other organisms with data available. Constituent of bitter principle of carrot seeds (Daucus carota) and sweetflag (Acorus calamus). 2,4,5-Trimethoxybenzaldehyde is found in many foods, some of which are root vegetables, wild carrot, herbs and spices, and carrot. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1]. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1].

   

Marindinin

4-Methoxy-6-(2-phenylethyl)-5,6-dihydro-2H-pyran-2-one

C14H16O3 (232.1099)


Marindinin is found in beverages. Marindinin is found in the roots of kava (Piper methysticum). FDA advises against use of kava in food due to potential risk of severe liver damage (2002 Dihydrokavain is one of the six major kavalactones found in the kava plant; appears to contribute significantly to the anxiolytic effects of kava, based on a study in chicks. Dihydrokavain is one of the six major kavalactones found in the kava plant; appears to contribute significantly to the anxiolytic effects of kava, based on a study in chicks.

   

11,12-Dimethoxydihydrokawain

6-[2-(3,4-dimethoxyphenyl)ethyl]-4-methoxy-5,6-dihydro-2H-pyran-2-one

C16H20O5 (292.1311)


11,12-Dimethoxydihydrokawain is found in beverages. 11,12-Dimethoxydihydrokawain is a constituent of Piper methysticum (kava). FDA advises against use of kava in food due to potential risk of severe liver damage (2002)

   

delta-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]

   

alpha-Curcumene

1-methyl-4-(6-methylhept-5-en-2-yl)benzene

C15H22 (202.1721)


alpha-Curcumene belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units

   

Germacrene B

(1Z,5Z)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.1878)


Constituent of the peel oil of yuzu Citrus junos. Germacrene B is found in many foods, some of which are pepper (spice), lime, citrus, and common oregano. Germacrene B is found in citrus. Germacrene B is a constituent of the peel oil of yuzu Citrus junos.

   

6-Epi-beta-bisabolol

3-Cyclohexen-1-ol, 1-[(1R)-1,5-dimethyl-4-hexenyl]-4-methyl-, (1S)-rel- (9ci)

C15H26O (222.1984)


6-Epi-beta-bisabolol is found in citrus. 6-Epi-beta-bisabolol is a constituent of bergamot oil Constituent of bergamot oil. 6-Epi-beta-bisabolol is found in citrus.

   

beta-Sitostenone

(2R,15R)-14-[(2R,5R)-5-ethyl-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C29H48O (412.3705)


beta-Sitostenone is found in cardamom. beta-Sitostenone is a constituent of the wood of Quassia amara (Surinam quassia).

   

Benzyl salicylate

Benzoic acid, 2-hydroxy-, phenylmethyl ester

C14H12O3 (228.0786)


Benzyl salicylate is found in cloves. Benzyl salicylate is isolated from essential oils e.g. Dianthus caryophyllus, Populus, Primula species Fixative in perfumes and flavourings Benzyl salicylate is a salicylic acid benzyl ester, a chemical compound most frequently used in cosmetics. It appears as an almost colourless liquid and is rather faint or odorless in nature Isolated from essential oils e.g. Dianthus caryophyllus, Populus, Primula subspecies Fixative in perfumes and flavourings D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber. Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber.

   

5,6-Dihydro-4-methoxy-6-[2-(4-methoxyphenyl)ethyl]-2H-pyran-2-one

4-methoxy-6-[2-(4-methoxyphenyl)ethyl]-5,6-dihydro-2H-pyran-2-one

C15H18O4 (262.1205)


5,6-Dihydro-4-methoxy-6-[2-(4-methoxyphenyl)ethyl]-2H-pyran-2-one is found in beverages. 5,6-Dihydro-4-methoxy-6-[2-(4-methoxyphenyl)ethyl]-2H-pyran-2-one is a constituent of Piper methysticum (kava). FDA advises against use of kava in food due to potential risk of severe liver damage (2002)

   

4-Acetyl-1-methylcyclohexene

1-(4-Methyl-3-cyclohexen-1-yl)ethanone, 9ci

C9H14O (138.1045)


4-Acetyl-1-methylcyclohexene is found in cereals and cereal products. 4-Acetyl-1-methylcyclohexene is a flavouring ingredient. It is isolated from the famine food Santalum album (sandalwood). Flavouring ingredient. Isolated from the famine food Santalum album (sandalwood). 4-Acetyl-1-methylcyclohexene is found in cereals and cereal products.

   

1,2,4-Trimethoxy-5-propenylbenzene

1,2,4-trimethoxy-5-(prop-1-en-1-yl)benzene

C12H16O3 (208.1099)


Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1]. Beta-asarone is a major ingredient of Acorus tatarinowii Schott, penetrates blood brain barrier, with the properties of immunosuppression, central nervous system inhibition, sedation, and hypothermy. Beta-asarone protects against Parkinson’s disease[1].

   

Glaziovine

11-hydroxy-10-methoxy-5-methyl-5-azaspiro[cyclohexane-1,2-tricyclo[6.3.1.0⁴,¹²]dodecane]-1(11),2,5,8(12),9-pentaen-4-one

C18H19NO3 (297.1365)


C78276 - Agent Affecting Digestive System or Metabolism > C29701 - Anti-ulcer Agent

   

Methyl isoeugenol

1,2-dimethoxy-4-(prop-1-en-1-yl)benzene

C11H14O2 (178.0994)


   

Nerolidol

(E)-3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol, trans-3,7,11-Trimethyl-1,6,10-dodecatrien-3-ol

C15H26O (222.1984)


Nerolidol is a farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. It has a role as a flavouring agent, a cosmetic, a pheromone, a neuroprotective agent, an antifungal agent, an anti-inflammatory agent, an antihypertensive agent, an antioxidant, a volatile oil component, an insect attractant and a herbicide. It is a farnesane sesquiterpenoid, a tertiary allylic alcohol and a volatile organic compound. Nerolidol is a natural product found in Xylopia sericea, Rhododendron calostrotum, and other organisms with data available. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent. Nerolidol has been shown to exhibit anti-fungal function (A7933).Nerolidol belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units. A nerolidol in which the double bond at position 6 adopts a trans-configuration. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

Marindinin

2H-Pyran-2-one, 5,6-dihydro-4-methoxy-6-(2-phenylethyl)-, (6S)-

C14H16O3 (232.1099)


Dihydrokavain is a member of 2-pyranones and an aromatic ether. Dihydrokawain is a natural product found in Piper methysticum, Alnus sieboldiana, and other organisms with data available. See also: Piper methysticum root (part of). Dihydrokavain is one of the six major kavalactones found in the kava plant; appears to contribute significantly to the anxiolytic effects of kava, based on a study in chicks. Dihydrokavain is one of the six major kavalactones found in the kava plant; appears to contribute significantly to the anxiolytic effects of kava, based on a study in chicks.

   

Isodihydrofutoquinol A

4-[1-(2H-1,3-Benzodioxol-5-yl)propan-2-yl]-4,5-dimethoxy-2-(prop-2-en-1-yl)cyclohexa-2,5-dien-1-one

C21H24O5 (356.1624)


   

Burchellin

(2S,3S,3Ar)-2-(2H-1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-3a-(prop-2-en-1-yl)-3,3a-dihydro-1-benzofuran-6(2H)-one

C20H20O5 (340.1311)


A neolignan with formula C20H20O5 that is isolated from Ocotea cymbarum and Piper wallichii. It is active against a variety of parasites including T. cruzi, the vector for Chagas disease.

   

Benzyl 2-hydroxy-6-methoxybenzoate

Benzyl 2-hydroxy-6-methoxybenzoate

C15H14O4 (258.0892)


   

3-[(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]phenol

3-[(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)methyl]phenol

C18H21NO3 (299.1521)


   

DOTRIACONTANOIC ACID

DOTRIACONTANOIC ACID

C32H64O2 (480.4906)


A straight-chain saturated fatty acid that is dotriacontane in which one of the methyl groups has been oxidised to the corresponding carboxylic acid.

   

Curcumene

alpha-Curcumene

C15H22 (202.1721)


   

Benzyl 2,6-dimethoxybenzoate

Benzyl 2,6-dimethoxybenzoate

C16H16O4 (272.1049)


   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Desmethoxyyangonin

Desmethoxyyangonin

C14H12O3 (228.0786)


Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.

   

Glaziovine

L-(-)-N-Methylcrotsparine

C18H19NO3 (297.1365)


   

Bannamurpanisin

5,7,8-Trimethoxy-2-(3,4,5-trimethoxyphenyl)-4H-chromen-4-one #

C21H22O8 (402.1315)


Bannamurpanisin is a natural product found in Neoraputia alba and Murraya paniculata with data available.

   

Rhamnocitrin

4H-1-Benzopyran-4-one, 3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-

C16H12O6 (300.0634)


Rhamnocitrin is a monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. It has a role as a plant metabolite. It is a trihydroxyflavone, a member of flavonols and a monomethoxyflavone. It is functionally related to a kaempferol. Rhamnocitrin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. A monomethoxyflavone that is the 7-methyl ether derivative of kaempferol. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Hydroxygenkwanin (7-O-Methylluteolin), a natural flavonoid compound, is one of the main components of Lilac Daphne. Hydroxygenkwanin has anti-oxidant ability, anti-glioma ability and anticancer effect[1][2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2]. Rhamnocitrin is a flavonoid isolated from astragalus complanatus R. Br. (Sha-yuan-zi)[1]. Rhamnocitrin is a scavenger of DPPH with an IC50 of 28.38 mM. Rhamnocitrin has anti-oxidant, anti-inflammatory and an-tiatherosclerosis activity[2].

   

4-methoxy-6-phenylpyran-2-one

4-methoxy-6-phenylpyran-2-one

C12H10O3 (202.063)


   

6-(2-phenylethenyl)pyran-2-one

6-(2-phenylethenyl)pyran-2-one

C13H10O2 (198.0681)


   
   

Benzyl 2,6-dihydroxybenzoate

Benzyl 2,6-dihydroxybenzoate

C14H12O4 (244.0736)


   

6-phenyl-2H-pyran-2-one

6-phenyl-2H-pyran-2-one

C11H8O2 (172.0524)


   

4-Methoxyphenethylamine

4-Methoxyphenylethylamine

C9H13NO (151.0997)


   

Izalpinin

3,5-Dihydroxy-7-methoxyflavone

C16H12O5 (284.0685)


   

1-[(3-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol

1-[(3-hydroxyphenyl)methyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol

C16H17NO3 (271.1208)


   

2,6,4-trihydroxy-4-methoxybenzophenone

2,6,4-trihydroxy-4-methoxybenzophenone

C14H12O5 (260.0685)


   

Dotriacontanol

Dotriacontan-1-ol

C32H66O (466.5113)


   

Benzyl 2-methoxybenzoate

Benzyl 2-methoxybenzoate

C15H14O3 (242.0943)


   

Phenylnitroethane

(2-Nitroethyl)benzene

C8H9NO2 (151.0633)


   

Benzyl salicylate

Benzoic acid, 2-hydroxy-, phenylmethyl ester

C14H12O3 (228.0786)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9641; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber. Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber.

   

Methyl isoeugenol

4-cis-Propenylveratrole; cis-Isoeugenol methyl ether;cis-Methylisoeugenol

C11H14O2 (178.0994)


Isomethyleugenol is a phenylpropanoid, an olefinic compound and a dimethoxybenzene. Methylisoeugenol is a natural product found in Nicotiana bonariensis, Myrtus communis, and other organisms with data available. Methyl isoeugenol (MIE) is a natural food flavour that can be isolated from Pimenta pseudocaryophyllus leaf. Methyl isoeugenol shows anxiolytic and antidepressant like effects. Methyl isoeugenol is orally active[1]. Methyl isoeugenol (MIE) is a natural food flavour that can be isolated from Pimenta pseudocaryophyllus leaf. Methyl isoeugenol shows anxiolytic and antidepressant like effects. Methyl isoeugenol is orally active[1].

   

Terpenol

3-Cyclohexene-1-methanol, .alpha.,.alpha.,4-trimethyl-, sodium salt, (1S)-

C10H18O (154.1358)


Alpha-terpineol is a terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. It has a role as a plant metabolite. alpha-TERPINEOL is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with data available. 2-(4-Methyl-3-cyclohexen-1-yl)-2-propanol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Coriander Oil (part of); Cannabis sativa subsp. indica top (part of); Peumus boldus leaf (part of). A terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

1,6-Dihydro-4,7-epoxy-1-methoxy-3,4-methylenedioxy-6-oxo-3,8-lignan

(2S)-2alpha-(1,3-Benzodioxol-5-yl)-3,5-dihydro-5alpha-methoxy-3beta-methyl-5-allyl-2H-benzofuran-6-one

C20H20O5 (340.1311)


CID 101282026 is a natural product found in Ocotea porosa, Aniba terminalis, and Magnolia denudata with data available.

   

Catechol

(+)-Catechin Hydrate

C15H14O6 (290.079)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Dihydrokavain

NCGC00169002-05_C14H16O3_(6S)-4-Methoxy-6-(2-phenylethyl)-5,6-dihydro-2H-pyran-2-one

C14H16O3 (232.1099)


Dihydrokavain is one of the six major kavalactones found in the kava plant; appears to contribute significantly to the anxiolytic effects of kava, based on a study in chicks. Dihydrokavain is one of the six major kavalactones found in the kava plant; appears to contribute significantly to the anxiolytic effects of kava, based on a study in chicks.

   

benzaldehyde

benzaldehyde-carbonyl-13c

C7H6O (106.0419)


An arenecarbaldehyde that consists of benzene bearing a single formyl substituent; the simplest aromatic aldehyde and parent of the class of benzaldehydes.

   

phenylacetaldehyde

2-phenylacetaldehyde

C8H8O (120.0575)


An aldehyde that consists of acetaldehyde bearing a methyl substituent; the parent member of the phenylacetaldehyde class of compounds. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

7,8-dihydromethysticin

7,8-dihydromethysticin

C15H16O5 (276.0998)


   

Benzyl Benzoate

benzyl benzoate

C14H12O2 (212.0837)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   

Eugenol

2-methoxy-4-prop-2-enylphenol

C10H12O2 (164.0837)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

Asarylaldehyde

2,4,5-Trimethoxybenzaldehyde

C10H12O4 (196.0736)


Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1]. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1].

   

2,4,5-Trimethoxybenzaldehyde

2,4,5-trimethoxybenzaldehyde

C10H12O4 (196.0736)


CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243; ORIGINAL_PRECURSOR_SCAN_NO 4241 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4554; ORIGINAL_PRECURSOR_SCAN_NO 4552 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4219; ORIGINAL_PRECURSOR_SCAN_NO 4216 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4573; ORIGINAL_PRECURSOR_SCAN_NO 4572 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3741; ORIGINAL_PRECURSOR_SCAN_NO 3740 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4554; ORIGINAL_PRECURSOR_SCAN_NO 4550 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7363; ORIGINAL_PRECURSOR_SCAN_NO 7360 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7378; ORIGINAL_PRECURSOR_SCAN_NO 7376 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7361; ORIGINAL_PRECURSOR_SCAN_NO 7359 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7404; ORIGINAL_PRECURSOR_SCAN_NO 7400 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7394; ORIGINAL_PRECURSOR_SCAN_NO 7391 CONFIDENCE standard compound; INTERNAL_ID 746; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7418; ORIGINAL_PRECURSOR_SCAN_NO 7416 Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1]. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1].

   

2,6-DIHYDROXYBENZOIC ACID

2,6-dihydroxybenzoic acid

C7H6O4 (154.0266)


A dihydroxybenzoic acid having the two hydroxy groups at the C-2 and C-6 positions. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism. 2,6-Dihydroxybenzoic acid is a secondary metabolite of salicylic acid which has been hydrolyzed by liver enzymes during phase I metabolism.

   

5-hydroxy-3,7-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

5-hydroxy-3,7-dimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

C18H16O6 (328.0947)


   

Asaraldehyde

2,4,5-Trimethoxybenzaldehyde

C10H12O4 (196.0736)


Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1]. Asarylaldehyde (Asaronaldehyde), a COX-2 inhibitor, significantly inhibits cyclooxygenase II (COX-2) activity with an IC50 value of 100 μg/mL[1].

   

safrole

safrole

C10H10O2 (162.0681)


A member of the class of benzodioxoles that is 1,3-benzodioxole which is substituted by an allyl group at position 5. It is found in several plants, including black pepper, cinnamon and nutmeg, and is present in several essential oils, notably that of sassafras. It has insecticidal properties and has been used as a topical antiseptic. Although not thought to pose a significant carcinogenic risk to humans, findings of weak carcinogenicity in rats have resulted in the banning of its (previously widespread) use in perfumes and soaps, and as a food additive.

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Lacceroic acid

DOTRIACONTANOIC ACID

C32H64O2 (480.4906)


   

5,6,7,8-Tetrahydroyangonin

4-methoxy-6-[2-(4-methoxyphenyl)ethyl]-5,6-dihydro-2H-pyran-2-one

C15H18O4 (262.1205)


   

D-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

Epi-beta-bisabolol

3-Cyclohexen-1-ol, 1-[(1R)-1,5-dimethyl-4-hexenyl]-4-methyl-, (1S)-rel- (9ci)

C15H26O (222.1984)


   

C32:0

DOTRIACONTANOIC ACID

C32H64O2 (480.4906)


   

FOH 32:0

Dotriacontan-1-ol

C32H66O (466.5113)


   

nerolidol

(±)-trans-Nerolidol

C15H26O (222.1984)


A farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].

   

alpha-Curcumene

1-methyl-4-[(2R)-6-methylhept-5-en-2-yl]benzene

C15H22 (202.1721)


Alpha-curcumene is also known as α-curcumene. Alpha-curcumene is a herb tasting compound and can be found in a number of food items such as pepper (spice), lovage, wild carrot, and rosemary, which makes alpha-curcumene a potential biomarker for the consumption of these food products.

   

Germacrene B

(1E,5E)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.1878)


   

(+)-DELTA-CADINENE

3-amino-2,5-dichlorobenzoic acid

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,8aR-enantiomer).

   

Cyperene

3H-3a,7-Methanoazulene,2,4,5,6,7,8-hexahydro-1,4,9,9-tetramethyl-, (3aR,4R,7R)-

C15H24 (204.1878)


   

Tropanserin

Tropanserin

C17H23NO2 (273.1729)


C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist Tropanserin is a serotoninergic active compound, as well as a 5HT3 receptor antagonist. Tropanserin modulates Cardio-respiratory reflex effects of an exogenous serotonin challenge[1].

   

alpha-terpineol

2-(4-methylcyclohex-3-en-1-yl)propan-2-ol

C10H18O (154.1358)


α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.1878)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

α-Pinene

InChI=1\C10H16\c1-7-4-5-8-6-9(7)10(8,2)3\h4,8-9H,5-6H2,1-3H

C10H16 (136.1252)


A pinene that is bicyclo[3.1.1]hept-2-ene substituted by methyl groups at positions 2, 6 and 6 respectively. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1]. (-)-α-Pinene is a monoterpene and shows sleep enhancing property through a direct binding to GABAA-benzodiazepine (BZD) receptors by acting as a partial modulator at the BZD binding site[1].

   

Safrol

InChI=1\C10H10O2\c1-2-3-8-4-5-9-10(6-8)12-7-11-9\h2,4-6H,1,3,7H

C10H10O2 (162.0681)


   

93-15-2

4-06-00-06337 (Beilstein Handbook Reference)

C11H14O2 (178.0994)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1]. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury[1][2][3]. Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1].

   

AIDS-224739

2H-Pyran-2-one, 4-methoxy-6-(2-phenylethenyl)-, (E)- (9CI)

C14H12O3 (228.0786)


Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B. Desmethoxyyangonin is one of the six major kavalactones found in the Piper methysticum (kava) plant; reversible inhibitor of MAO-B.

   

Engenol

InChI=1\C10H12O2\c1-3-4-8-5-6-9(11)10(7-8)12-2\h3,5-7,11H,1,4H2,2H

C10H12O2 (164.0837)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

Myristicin

1,3-Benzodioxole, 4-methoxy-6-(2-propenyl)- (9CI)

C11H12O3 (192.0786)


Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine is an orally bioavailable serotonin receptor antagonist and weak monoamine oxidase (MAO) inhibitor. Myristicine also exerts anti-cancer effects on gastric cancer cells by inhibiting the EGFR/ERK signaling pathway. Myristicine is the main component of nutmeg essential oil and has anti-cancer, anti-proliferative, antibacterial, anti-inflammatory and apoptosis-inducing effects. Myristicine abuse can produce hallucinogenic effects, organ damage, etc[1][2][3][4]. Myristicine ?act as a serotonin receptor antagonist, a weak monamine oxidase (MAO) inhibitor. Myristicine is the main component of nutmeg essential oil from Myristica fragrans?Houtt. Myristicine abuse produce hallucinogenic effects, organ damage, deliriumand others[1].

   

Isoelemicin

Benzene, 1,2,3-trimethoxy-5-(1-propenyl)-, (E)-

C12H16O3 (208.1099)


   

Elemicin

Benzene, 1,2,3-trimethoxy-5-(2-propenyl)- (9CI)

C12H16O3 (208.1099)


Elemicin is an orally active alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin has anti-influenza activities, antimicrobial, antioxidant, and antiviral activities. Elemicin and its reactive metabolite of 1′-Hydroxyelemicin can induce hepatotoxicity[1][2][3][4]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1]. Elemicin is a alkenylbenzene widely distributed in many herbs and spices. Elemicin inhibits Stearoyl-CoA Desaturase 1 (SCD1) by metabolic activation. Elemicin is one of the main components in aromatic food and has antimicrobial, antioxidant, and antiviral activities. Elemicin possesses genotoxicity and carcinogenicity[1].

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

LS-27

InChI=1\C7H6O\c8-6-7-4-2-1-3-5-7\h1-6

C7H6O (106.0419)


   

Hyacinthin

InChI=1\C8H8O\c9-7-6-8-4-2-1-3-5-8\h1-5,7H,6H

C8H8O (120.0575)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Lacceric acid

DOTRIACONTANOIC ACID

C32H64O2 (480.4906)


   

Scabide

InChI=1\C14H12O2\c15-14(13-9-5-2-6-10-13)16-11-12-7-3-1-4-8-12\h1-10H,11H

C14H12O2 (212.0837)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   

AI3-00517

InChI=1\C14H12O3\c15-13-9-5-4-8-12(13)14(16)17-10-11-6-2-1-3-7-11\h1-9,15H,10H

C14H12O3 (228.0786)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber. Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber.

   

5353-15-1

InChI=1\C12H16O3\c1-5-6-9-7-11(14-3)12(15-4)8-10(9)13-2\h5,7-8H,1,6H2,2-4H

C12H16O3 (208.1099)


D006401 - Hematologic Agents > D005343 - Fibrinolytic Agents D009676 - Noxae > D002273 - Carcinogens D050299 - Fibrin Modulating Agents D002317 - Cardiovascular Agents

   

Norisocorydine

(6aS)-1,2,10-trimethoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinolin-11-ol

C19H21NO4 (327.1471)


   

α-Copaene

alpha-copaene

C15H24 (204.1878)


   

Dihydromethysticin

2H-Pyran-2-one, 6-[2-(1,3-benzodioxol-5-yl)ethyl]-5,6-dihydro-4-methoxy-, (6S)-

C15H16O5 (276.0998)


Dihydromethysticin is a member of 2-pyranones and an aromatic ether. Dihydromethysticin is a natural product found in Piper methysticum, Piper majusculum, and Aniba hostmanniana with data available. Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23. Dihydromethysticin is one of the six major kavalactones found in the kava plant; has marked activity on the induction of CYP3A23.

   

(-)-Apoglaziovine

(-)-Apoglaziovine

C18H19NO3 (297.1365)


   

Dillapiol

Dillapiole

C12H14O4 (222.0892)


A natural product found in Anethum graveolens.

   

4-Acetyl-1-methylcyclohexene

4-Acetyl-1-methyl-1-cyclohexene

C9H14O (138.1045)


   

delta-Cadinene

delta-Cadinene

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

Dotriacontan-1-ol

Dotriacontan-1-ol

C32H66O (466.5113)


An ultra-long-chain primary fatty alcohol that is dotriacontane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group.

   

2-hydroxy-1,3-dimethoxy-6-methyl-5-(prop-2-en-1-yl)-7-(3,4,5-trimethoxyphenyl)bicyclo[3.2.1]octan-8-one

2-hydroxy-1,3-dimethoxy-6-methyl-5-(prop-2-en-1-yl)-7-(3,4,5-trimethoxyphenyl)bicyclo[3.2.1]octan-8-one

C23H32O7 (420.2148)


   

(12br)-10,11-dimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphen-2-ol

(12br)-10,11-dimethoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphen-2-ol

C19H21NO3 (311.1521)


   

(1r,2r,5r,6r,7s,8s)-2,8-dihydroxy-1-methoxy-7-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-methyl-5-(prop-2-en-1-yl)bicyclo[3.2.1]octan-3-one

(1r,2r,5r,6r,7s,8s)-2,8-dihydroxy-1-methoxy-7-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-methyl-5-(prop-2-en-1-yl)bicyclo[3.2.1]octan-3-one

C21H26O7 (390.1678)


   

(2s,3r,5s)-2-(2h-1,3-benzodioxol-5-ylmethyl)-5-methoxy-3-methyl-5-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-one

(2s,3r,5s)-2-(2h-1,3-benzodioxol-5-ylmethyl)-5-methoxy-3-methyl-5-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-one

C21H22O5 (354.1467)


   

(2r,3s)-5-methoxy-2-(7-methoxy-2h-1,3-benzodioxol-5-yl)-3-methyl-7-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-ol

(2r,3s)-5-methoxy-2-(7-methoxy-2h-1,3-benzodioxol-5-yl)-3-methyl-7-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-ol

C21H22O6 (370.1416)


   

7a-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-methyl-3a-(prop-2-en-1-yl)-3,4-dihydro-2h-1-benzofuran-7-one

7a-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-methyl-3a-(prop-2-en-1-yl)-3,4-dihydro-2h-1-benzofuran-7-one

C19H22O5 (330.1467)


   

6-[(1z)-2-phenylethenyl]pyran-2-one

6-[(1z)-2-phenylethenyl]pyran-2-one

C13H10O2 (198.0681)


   

5-methoxy-2-(7-methoxy-2h-1,3-benzodioxol-5-yl)-3-methyl-3a-(prop-2-en-1-yl)-2,3,4,5-tetrahydro-1-benzofuran-6-one

5-methoxy-2-(7-methoxy-2h-1,3-benzodioxol-5-yl)-3-methyl-3a-(prop-2-en-1-yl)-2,3,4,5-tetrahydro-1-benzofuran-6-one

C21H24O6 (372.1573)


   

(e,2z)-n-[(1z)-2-phenylethenyl]dec-2-en-6,8-diynimidic acid

(e,2z)-n-[(1z)-2-phenylethenyl]dec-2-en-6,8-diynimidic acid

C18H17NO (263.131)


   

6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]pyran-2-one

6-[(1e)-2-(3,4-dihydroxyphenyl)ethenyl]pyran-2-one

C13H10O4 (230.0579)


   

(12bs)-10-methoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-4,11-diol

(12bs)-10-methoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-4,11-diol

C18H19NO3 (297.1365)


   

1-[(3-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

1-[(3-hydroxyphenyl)methyl]-6-methoxy-1,2,3,4-tetrahydroisoquinolin-7-ol

C17H19NO3 (285.1365)


   

(4s)-4-[(2r)-1-(3,4-dimethoxyphenyl)propan-2-yl]-4,5-dimethoxy-2-(prop-2-en-1-yl)cyclohexa-2,5-dien-1-one

(4s)-4-[(2r)-1-(3,4-dimethoxyphenyl)propan-2-yl]-4,5-dimethoxy-2-(prop-2-en-1-yl)cyclohexa-2,5-dien-1-one

C22H28O5 (372.1937)


   

(5s,12bs)-10-methoxy-5-methyl-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,11-diol

(5s,12bs)-10-methoxy-5-methyl-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,11-diol

C19H21NO3 (311.1521)


   

(2r,3s,3ar,7as)-7a-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-methyl-3a-(prop-2-en-1-yl)-3,4-dihydro-2h-1-benzofuran-7-one

(2r,3s,3ar,7as)-7a-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-methyl-3a-(prop-2-en-1-yl)-3,4-dihydro-2h-1-benzofuran-7-one

C19H22O5 (330.1467)


   

3-methyl-5-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran-6-ol

3-methyl-5-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran-6-ol

C21H24O5 (356.1624)


   

(2s,3s,5r)-5-methoxy-2-(7-methoxy-2h-1,3-benzodioxol-5-yl)-3-methyl-5-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-one

(2s,3s,5r)-5-methoxy-2-(7-methoxy-2h-1,3-benzodioxol-5-yl)-3-methyl-5-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-one

C21H22O6 (370.1416)


   

1-{9-hydroxy-1,5,5-trimethyl-6,15-dioxatetracyclo[9.3.1.0⁴,¹³.0⁷,¹²]pentadeca-7,9,11-trien-8-yl}-3-phenylprop-2-en-1-one

1-{9-hydroxy-1,5,5-trimethyl-6,15-dioxatetracyclo[9.3.1.0⁴,¹³.0⁷,¹²]pentadeca-7,9,11-trien-8-yl}-3-phenylprop-2-en-1-one

C25H26O4 (390.1831)


   

(1r,2r,3s,6r,7s)-7-(2h-1,3-benzodioxol-5-yl)-1,3-dimethoxy-6-methyl-5-(prop-2-en-1-yl)bicyclo[3.2.1]octane-2,8-diol

(1r,2r,3s,6r,7s)-7-(2h-1,3-benzodioxol-5-yl)-1,3-dimethoxy-6-methyl-5-(prop-2-en-1-yl)bicyclo[3.2.1]octane-2,8-diol

C21H28O6 (376.1886)


   

4-methoxy-6-[(2r,3s)-5-methoxy-3-methyl-6-(prop-2-en-1-yloxy)-2,3-dihydro-1-benzofuran-2-yl]-2h-1,3-benzodioxole

4-methoxy-6-[(2r,3s)-5-methoxy-3-methyl-6-(prop-2-en-1-yloxy)-2,3-dihydro-1-benzofuran-2-yl]-2h-1,3-benzodioxole

C21H22O6 (370.1416)


   

2-hydroxy-n-[2-(4-hydroxyphenyl)ethyl]benzenecarboximidic acid

2-hydroxy-n-[2-(4-hydroxyphenyl)ethyl]benzenecarboximidic acid

C15H15NO3 (257.1052)


   

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.1827)


   

4,5-dimethoxy-2-(prop-2-en-1-yl)phenol

4,5-dimethoxy-2-(prop-2-en-1-yl)phenol

C11H14O3 (194.0943)


   

(2s,3s)-2-(2h-1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-7-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-ol

(2s,3s)-2-(2h-1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-7-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-ol

C20H20O5 (340.1311)


   

(2s,3s,3as)-5-methoxy-3-methyl-3a-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran-6-one

(2s,3s,3as)-5-methoxy-3-methyl-3a-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran-6-one

C22H26O6 (386.1729)


   

10-methoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,11-diol

10-methoxy-7,8,12b,13-tetrahydro-5h-6-azatetraphene-2,11-diol

C18H19NO3 (297.1365)


   

2-(2h-1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-7-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-ol

2-(2h-1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-7-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-ol

C20H20O5 (340.1311)


   

1,3-dimethoxy-7-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-methyl-5-(prop-2-en-1-yl)bicyclo[3.2.1]octane-2,8-diol

1,3-dimethoxy-7-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-methyl-5-(prop-2-en-1-yl)bicyclo[3.2.1]octane-2,8-diol

C22H30O7 (406.1991)


   

(9s)-4,15,16-trimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-3-ol

(9s)-4,15,16-trimethoxy-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-3-ol

C19H21NO4 (327.1471)


   

5-methoxy-3-methyl-3a-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3,4,5-tetrahydro-1-benzofuran-6-one

5-methoxy-3-methyl-3a-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3,4,5-tetrahydro-1-benzofuran-6-one

C22H28O6 (388.1886)


   

(2s,3s)-5-methoxy-3-methyl-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran-6-ol

(2s,3s)-5-methoxy-3-methyl-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran-6-ol

C19H22O6 (346.1416)


   

(2s,3s,5s)-2-(2h-1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-5-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-one

(2s,3s,5s)-2-(2h-1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-5-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-one

C20H20O5 (340.1311)


   

4-methyl-1-(6-methylhept-5-en-2-yl)cyclohex-3-en-1-ol

4-methyl-1-(6-methylhept-5-en-2-yl)cyclohex-3-en-1-ol

C15H26O (222.1984)


   

7-(4-hydroxy-3-methoxyphenyl)-3-methoxy-6-methyl-5-(prop-2-en-1-yl)bicyclo[3.2.1]octane-2,8-dione

7-(4-hydroxy-3-methoxyphenyl)-3-methoxy-6-methyl-5-(prop-2-en-1-yl)bicyclo[3.2.1]octane-2,8-dione

C20H24O5 (344.1624)


   

(2-hydroxyphenyl)methyl benzoate

benzoic acid (2-hydroxyphenyl)methyl ester; benzoic acid (2-hydroxybenzyl) ester

C14H12O3 (228.0786)


{"Ingredient_id": "HBIN005823","Ingredient_name": "(2-hydroxyphenyl)methyl benzoate","Alias": "benzoic acid (2-hydroxyphenyl)methyl ester; benzoic acid (2-hydroxybenzyl) ester","Ingredient_formula": "C14H12O3","Ingredient_Smile": "C1=CC=C(C=C1)C(=O)OCC2=CC=CC=C2O","Ingredient_weight": "228.24 g/mol","OB_score": "79.02599998","CAS_id": "NA","SymMap_id": "SMIT11908","TCMID_id": "NA","TCMSP_id": "MOL010945","TCM_ID_id": "NA","PubChem_id": "12731045","DrugBank_id": "NA"}

   

(2s,3r,3as,5s)-5,7-dimethoxy-2-(7-methoxy-2h-1,3-benzodioxol-5-yl)-3-methyl-3a-(prop-2-en-1-yl)-2,3,4,5-tetrahydro-1-benzofuran-6-one

(2s,3r,3as,5s)-5,7-dimethoxy-2-(7-methoxy-2h-1,3-benzodioxol-5-yl)-3-methyl-3a-(prop-2-en-1-yl)-2,3,4,5-tetrahydro-1-benzofuran-6-one

C22H26O7 (402.1678)


   

(6s)-4-methoxy-6-[2-(4-methoxyphenyl)ethyl]-5,6-dihydropyran-2-one

(6s)-4-methoxy-6-[2-(4-methoxyphenyl)ethyl]-5,6-dihydropyran-2-one

C15H18O4 (262.1205)


   

5-methoxy-3-methyl-5-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3,4,7-tetrahydro-1-benzofuran-6-one

5-methoxy-3-methyl-5-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3,4,7-tetrahydro-1-benzofuran-6-one

C22H28O6 (388.1886)


   

5-methoxy-3-methyl-7-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran-6-ol

5-methoxy-3-methyl-7-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran-6-ol

C22H26O6 (386.1729)


   

(7r)-4,8-dihydroxy-7-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-methyl-1-(prop-2-en-1-yl)bicyclo[3.2.1]octan-3-one

(7r)-4,8-dihydroxy-7-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-methyl-1-(prop-2-en-1-yl)bicyclo[3.2.1]octan-3-one

C20H24O6 (360.1573)


   

6-[(1e)-2-(2h-1,3-benzodioxol-5-yl)ethenyl]-4-methoxypyran-2-one

6-[(1e)-2-(2h-1,3-benzodioxol-5-yl)ethenyl]-4-methoxypyran-2-one

C15H12O5 (272.0685)


   

6-[2-(2h-1,3-benzodioxol-5-yl)ethenyl]-4-methoxypyran-2-one

6-[2-(2h-1,3-benzodioxol-5-yl)ethenyl]-4-methoxypyran-2-one

C15H12O5 (272.0685)


   

(-)-β-bisabolene

(-)-β-bisabolene

C15H24 (204.1878)


   

6-[(1e)-2-(2h-1,3-benzodioxol-5-yl)ethenyl]pyran-2-one

6-[(1e)-2-(2h-1,3-benzodioxol-5-yl)ethenyl]pyran-2-one

C14H10O4 (242.0579)


   

6-[(1e)-2-phenylethenyl]pyran-2-one

6-[(1e)-2-phenylethenyl]pyran-2-one

C13H10O2 (198.0681)


   

(5r,12bs)-10-methoxy-5-methyl-7,8,12b,13-tetrahydro-5h-6-azatetraphene-4,11-diol

(5r,12bs)-10-methoxy-5-methyl-7,8,12b,13-tetrahydro-5h-6-azatetraphene-4,11-diol

C19H21NO3 (311.1521)


   

6-(2h-1,3-benzodioxol-5-yl)-4-methylpyran-2-one

6-(2h-1,3-benzodioxol-5-yl)-4-methylpyran-2-one

C13H10O4 (230.0579)


   

2-(2h-1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-7-(prop-2-en-1-yl)-1-benzofuran-6-ol

2-(2h-1,3-benzodioxol-5-yl)-5-methoxy-3-methyl-7-(prop-2-en-1-yl)-1-benzofuran-6-ol

C20H18O5 (338.1154)


   

(2r,3r)-3-hydroxy-5,7-dimethoxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

(2r,3r)-3-hydroxy-5,7-dimethoxy-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C17H16O5 (300.0998)


   

2,8-dihydroxy-1-methoxy-7-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-methyl-5-(prop-2-en-1-yl)bicyclo[3.2.1]octan-3-one

2,8-dihydroxy-1-methoxy-7-(7-methoxy-2h-1,3-benzodioxol-5-yl)-6-methyl-5-(prop-2-en-1-yl)bicyclo[3.2.1]octan-3-one

C21H26O7 (390.1678)


   

6,8-bis[(1z)-dec-1-en-1-yl]-5,7-dimethyl-2,3-dihydro-1h-4λ⁵-indolizin-4-ylium

6,8-bis[(1z)-dec-1-en-1-yl]-5,7-dimethyl-2,3-dihydro-1h-4λ⁵-indolizin-4-ylium

[C30H50N]+ (424.3943)


   

6-[(1e)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]pyran-2-one

6-[(1e)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]pyran-2-one

C14H12O4 (244.0736)


   

dotriacontyl acetate

dotriacontyl acetate

C34H68O2 (508.5219)


   

5-methoxy-3-methyl-5-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran-6-one

5-methoxy-3-methyl-5-(prop-2-en-1-yl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran-6-one

C22H26O6 (386.1729)


   

(2s,3s)-5-methoxy-2-(7-methoxy-2h-1,3-benzodioxol-5-yl)-3-methyl-7-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-ol

(2s,3s)-5-methoxy-2-(7-methoxy-2h-1,3-benzodioxol-5-yl)-3-methyl-7-(prop-2-en-1-yl)-2,3-dihydro-1-benzofuran-6-ol

C21H22O6 (370.1416)


   

(6r)-4-methoxy-6-[2-(4-methoxyphenyl)ethyl]-5,6-dihydropyran-2-one

(6r)-4-methoxy-6-[2-(4-methoxyphenyl)ethyl]-5,6-dihydropyran-2-one

C15H18O4 (262.1205)


   

(4r)-4-[(2r)-1-(2h-1,3-benzodioxol-5-yl)propan-2-yl]-4,5-dimethoxy-2-(prop-2-en-1-yl)cyclohexa-2,5-dien-1-one

(4r)-4-[(2r)-1-(2h-1,3-benzodioxol-5-yl)propan-2-yl]-4,5-dimethoxy-2-(prop-2-en-1-yl)cyclohexa-2,5-dien-1-one

C21H24O5 (356.1624)


   

(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H50O (414.3861)


   

2-hydroxy-6-methoxy-n-[2-(4-methoxyphenyl)ethyl]benzenecarboximidic acid

2-hydroxy-6-methoxy-n-[2-(4-methoxyphenyl)ethyl]benzenecarboximidic acid

C17H19NO4 (301.1314)


   

nerolidol isomers

nerolidol isomers

C15H26O (222.1984)


   

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.1878)


   

(6s)-6-[2-(3,4-dimethoxyphenyl)ethyl]-4-methoxy-5,6-dihydropyran-2-one

(6s)-6-[2-(3,4-dimethoxyphenyl)ethyl]-4-methoxy-5,6-dihydropyran-2-one

C16H20O5 (292.1311)


   

4-[1-(4-hydroxy-3-methoxyphenyl)propan-2-yl]-4,5-dimethoxy-2-(prop-2-en-1-yl)cyclohexa-2,5-dien-1-one

4-[1-(4-hydroxy-3-methoxyphenyl)propan-2-yl]-4,5-dimethoxy-2-(prop-2-en-1-yl)cyclohexa-2,5-dien-1-one

C21H26O5 (358.178)


   

6-(2h-1,3-benzodioxol-5-yl)-4,8-dihydroxy-7-methyl-1-(prop-2-en-1-yl)bicyclo[3.2.1]octan-3-one

6-(2h-1,3-benzodioxol-5-yl)-4,8-dihydroxy-7-methyl-1-(prop-2-en-1-yl)bicyclo[3.2.1]octan-3-one

C19H22O5 (330.1467)


   

5-methoxy-8-(4-methoxy-6-oxopyran-2-yl)-1,7-diphenyl-2-oxabicyclo[4.2.0]oct-4-en-3-one

5-methoxy-8-(4-methoxy-6-oxopyran-2-yl)-1,7-diphenyl-2-oxabicyclo[4.2.0]oct-4-en-3-one

C26H22O6 (430.1416)


   

5,7-dimethoxy-3-methyl-6-(prop-2-en-1-yloxy)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran

5,7-dimethoxy-3-methyl-6-(prop-2-en-1-yloxy)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydro-1-benzofuran

C23H28O7 (416.1835)


   

6-(2h-1,3-benzodioxol-5-yl)-8-hydroxy-4-methoxy-7-methyl-1-(prop-2-en-1-yl)bicyclo[3.2.1]octan-3-one

6-(2h-1,3-benzodioxol-5-yl)-8-hydroxy-4-methoxy-7-methyl-1-(prop-2-en-1-yl)bicyclo[3.2.1]octan-3-one

C20H24O5 (344.1624)


   

(4s)-4-[(2r)-1-(2h-1,3-benzodioxol-5-yl)propan-2-yl]-4,5-dimethoxy-2-(prop-2-en-1-yl)cyclohexa-2,5-dien-1-one

(4s)-4-[(2r)-1-(2h-1,3-benzodioxol-5-yl)propan-2-yl]-4,5-dimethoxy-2-(prop-2-en-1-yl)cyclohexa-2,5-dien-1-one

C21H24O5 (356.1624)


   

5-[(2s,3s)-5-methoxy-3-methyl-6-(prop-2-en-1-yloxy)-2,3-dihydro-1-benzofuran-2-yl]-2h-1,3-benzodioxole

5-[(2s,3s)-5-methoxy-3-methyl-6-(prop-2-en-1-yloxy)-2,3-dihydro-1-benzofuran-2-yl]-2h-1,3-benzodioxole

C20H20O5 (340.1311)