Betulin (BioDeep_00000000550)

 

Secondary id: BioDeep_00000403518

human metabolite PANOMIX_OTCML-2023 Endogenous natural product


代谢物信息卡片


(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

化学式: C30H50O2 (442.3811)
中文名称: 桦木脑, 白桦醇, 桦脑, 白桦脂醇
谱图信息: 最多检出来源 Viridiplantae(plant) 3.13%

分子结构信息

SMILES: C1[C@@]2(C)[C@@]([H])(CC[C@]3(C)[C@]2([H])CC[C@@]2([C@@]4([C@](CC[C@@]32C)(CO)CC[C@H]4C(C)=C)[H])[H])C(C)(C)[C@@H](O)C1
InChI: InChI=1S/C30H50O2/c1-19(2)20-10-15-30(18-31)17-16-28(6)21(25(20)30)8-9-23-27(5)13-12-24(32)26(3,4)22(27)11-14-29(23,28)7/h20-25,31-32H,1,8-18H2,2-7H3/t20-,21+,22-,23+,24-,25+,27-,28+,29+,30+/m0/s1

描述信息

Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28
Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane.
Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available.
A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents.
Constituent of Corylus avellana (filbert) and Vicia faba
Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

同义名列表

62 个代谢物同义名

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol; (1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a-(hydroxymethyl)-1-isopropenyl-5a,5b,8,8,11a-pentamethyl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol; (3aS,5bR,9S,11aR)-3a-(hydroxymethyl)-1-isopropenyl-5a,5b,8,8,11a-pentamethyl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol;Betulin; (1R,2R,5S,8R,9R,10R,13R,14R,17S,19R)-5-(hydroxymethyl)-1,2,14,18,18-pentamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0^{2,10}.0^{5,9}.0^{14,19}]henicosan-17-ol; (1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3 a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-1H-cyclopenta[a]chrysen-9-ol; (1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a-(Hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)icosahydro-1H-cyclopenta[a]chrysen-9-ol; lup-20(29)-ene-3,28-diol, 3,28-diacetate, (3 beta)-; Lup-20(29)-ene-3,28-diol, (3.beta.)-; Lup-20(29)-ene-3,28-diol, (3beta )-; (3.beta.)-Lup-20(29)-ene-3,28-diol; lup-20(29)-en-3 alpha, 28,30-triol; Lup-20(29)-ene-3,28-diol, (3beta)-; 3beta,28-Dihydroxylup-20(29)-ene; (3beta)-lup-20(29)-ene-3,28-diol; Lup-20(30)-ene-3.beta.,28-diol; Lup-20(29)-ene-3.beta.,28-diol; Lup-20(29)-ene-3beta ,28-diol; 3Β,28-dihydroxylup-20(29)-ene; (3Β)-lup-20(29)-ene-3,28-diol; lup-20(29)-ene-3 beta,28-diol; Lup-20(30)-ene-3beta ,28-diol; lup-20(29)-ene-3alpha,28-diol; Lup-20(30)-ene-3beta,28-diol; Betulin, analytical standard; Lup-20(29)-ene-3beta,28-diol; FVWJYYTZTCVBKE-ROUWMTJPSA-N; Lup-20(30)-ene-3β,28-diol; Lup-20(29)-ene-3β,28-diol; Lup-20(29)-ene-3 ,28-diol; Betulinol (obsol pound(c); Lup-20(29)-ene-3b,28-diol; 3,28-di-O-acetylbetulin; 3,28-diacetoxy-betulin; 3,28-Dihydroxy-lupeol; (+)-betulin diacetate; betulinol biacetate; betulinol diacetate; Betulinol (obsol.); Prestwick3_000990; betulinic alcohol; betulin diacetate; Betulin, >=98\\%; UNII-6W70HN7X7O; BETULIN [INCI]; BPBio1_001165; MEGxp0_001726; ORISTRACT BTL; ACon1_000091; BETULIN [MI]; (+)-betulin; Betulin, 23; 6W70HN7X7O; CP BETULIN; betulinol; AI3-62999; betuline; Betulin; Betulol; Trochol; Lup-20(29)-ene-3,28-diol; Betulo; Betulin



数据库引用编号

27 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

88 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(2)

WikiPathways(0)

Plant Reactome(0)

INOH(0)

PlantCyc(86)

  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: H+ + NADPH + O2 + betulin ⟶ H2O + NADP+ + betulinic aldehyde
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + betulin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulinic aldehyde
  • betulinate biosynthesis: H+ + NADPH + O2 + betulin ⟶ H2O + NADP+ + betulinic aldehyde
  • betulinate biosynthesis: H+ + NADPH + O2 + lupeol ⟶ H2O + NADP+ + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: H+ + NADPH + O2 + betulin ⟶ H2O + NADP+ + betulinic aldehyde
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + betulin ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulinic aldehyde
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: H+ + NADPH + O2 + betulin ⟶ H2O + NADP+ + betulinic aldehyde
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + lupeol ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + betulin
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + betulinic aldehyde ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + betulinate
  • betulinate biosynthesis: O2 + a reduced [NADPH-hemoprotein reductase] + betulinic aldehyde ⟶ H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + betulinate

COVID-19 Disease Map(0)

PathBank(0)

PharmGKB(0)

913 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 14 AKT1, BCL2, CASP9, CAT, CDKN1A, EGFR, MAPK14, MSMP, NFE2L2, NLRP3, NQO1, PTGS2, TLR4, TP53
Peripheral membrane protein 2 GORASP1, PTGS2
Endosome membrane 2 EGFR, TLR4
Endoplasmic reticulum membrane 4 BCL2, EGFR, HMOX1, PTGS2
Nucleus 11 AKT1, BCL2, CASP9, CDKN1A, EGFR, HMOX1, MAPK14, NFE2L2, NLRP3, NQO1, TP53
cytosol 12 AKT1, BCL2, CASP9, CAT, CDKN1A, GPT, HMOX1, MAPK14, NFE2L2, NLRP3, NQO1, TP53
dendrite 1 NQO1
nuclear body 1 CDKN1A
centrosome 2 NFE2L2, TP53
nucleoplasm 6 AKT1, CDKN1A, HMOX1, MAPK14, NFE2L2, TP53
RNA polymerase II transcription regulator complex 1 NFE2L2
Cell membrane 4 AKT1, EGFR, TLR4, TNF
Cytoplasmic side 2 GORASP1, HMOX1
lamellipodium 1 AKT1
ruffle membrane 1 EGFR
Early endosome membrane 1 EGFR
Golgi apparatus membrane 2 GORASP1, NLRP3
Synapse 1 NQO1
cell cortex 1 AKT1
cell junction 1 EGFR
cell surface 3 EGFR, TLR4, TNF
glutamatergic synapse 3 AKT1, EGFR, MAPK14
Golgi apparatus 2 GORASP1, NFE2L2
Golgi membrane 4 EGFR, GORASP1, INS, NLRP3
neuronal cell body 2 NQO1, TNF
postsynapse 1 AKT1
Cytoplasm, cytosol 3 NFE2L2, NLRP3, NQO1
endosome 1 EGFR
plasma membrane 5 AKT1, EGFR, NFE2L2, TLR4, TNF
Membrane 9 AKT1, BCL2, CAT, EGFR, HMOX1, NLRP3, NQO1, TLR4, TP53
apical plasma membrane 1 EGFR
basolateral plasma membrane 1 EGFR
caveola 1 PTGS2
extracellular exosome 2 CAT, GPT
endoplasmic reticulum 5 BCL2, HMOX1, NLRP3, PTGS2, TP53
extracellular space 6 EGFR, HMOX1, IL6, INS, MSMP, TNF
perinuclear region of cytoplasm 4 CDKN1A, EGFR, HMOX1, TLR4
mitochondrion 6 BCL2, CASP9, CAT, MAPK14, NLRP3, TP53
protein-containing complex 8 AKT1, BCL2, CASP9, CAT, CDKN1A, EGFR, PTGS2, TP53
intracellular membrane-bounded organelle 1 CAT
Microsome membrane 1 PTGS2
Single-pass type I membrane protein 2 EGFR, TLR4
Secreted 4 IL6, INS, MSMP, NLRP3
extracellular region 6 CAT, IL6, INS, MAPK14, NLRP3, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 2 BCL2, HMOX1
Mitochondrion matrix 1 TP53
mitochondrial matrix 2 CAT, TP53
transcription regulator complex 1 TP53
Cytoplasm, cytoskeleton, microtubule organizing center, centrosome 1 TP53
Nucleus membrane 1 BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 BCL2, EGFR
external side of plasma membrane 2 TLR4, TNF
microtubule cytoskeleton 1 AKT1
nucleolus 2 CDKN1A, TP53
Early endosome 1 TLR4
cell-cell junction 1 AKT1
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
vesicle 1 AKT1
Membrane raft 2 EGFR, TNF
pore complex 1 BCL2
Cytoplasm, cytoskeleton 1 TP53
focal adhesion 2 CAT, EGFR
spindle 1 AKT1
cis-Golgi network 1 GORASP1
Peroxisome 1 CAT
intracellular vesicle 1 EGFR
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 1 CAT
Nucleus, PML body 1 TP53
PML body 1 TP53
Mitochondrion intermembrane space 1 AKT1
mitochondrial intermembrane space 1 AKT1
nuclear speck 1 MAPK14
Cytoplasm, cytoskeleton, microtubule organizing center 1 NLRP3
Inflammasome 1 NLRP3
interphase microtubule organizing center 1 NLRP3
NLRP3 inflammasome complex 1 NLRP3
Nucleus inner membrane 1 PTGS2
Nucleus outer membrane 1 PTGS2
nuclear inner membrane 1 PTGS2
nuclear outer membrane 1 PTGS2
Cell projection, ruffle 1 TLR4
ruffle 1 TLR4
receptor complex 2 EGFR, TLR4
neuron projection 1 PTGS2
ciliary basal body 1 AKT1
chromatin 2 NFE2L2, TP53
mediator complex 1 NFE2L2
phagocytic cup 2 TLR4, TNF
spindle pole 1 MAPK14
site of double-strand break 1 TP53
Endomembrane system 1 NLRP3
endosome lumen 1 INS
microtubule organizing center 1 NLRP3
germ cell nucleus 1 TP53
replication fork 1 TP53
myelin sheath 1 BCL2
basal plasma membrane 1 EGFR
synaptic membrane 1 EGFR
lipopolysaccharide receptor complex 1 TLR4
ficolin-1-rich granule lumen 2 CAT, MAPK14
secretory granule lumen 3 CAT, INS, MAPK14
Golgi lumen 1 INS
endoplasmic reticulum lumen 3 IL6, INS, PTGS2
nuclear matrix 1 TP53
transcription repressor complex 1 TP53
transport vesicle 1 INS
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GORASP1, INS
Golgi apparatus, cis-Golgi network membrane 1 GORASP1
Single-pass type IV membrane protein 1 HMOX1
apoptosome 1 CASP9
clathrin-coated endocytic vesicle membrane 1 EGFR
[Isoform 1]: Nucleus 1 TP53
protein-DNA complex 1 NFE2L2
cyclin-dependent protein kinase holoenzyme complex 1 CDKN1A
multivesicular body, internal vesicle lumen 1 EGFR
Shc-EGFR complex 1 EGFR
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
BAD-BCL-2 complex 1 BCL2
PCNA-p21 complex 1 CDKN1A
caspase complex 1 CASP9
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Prativa Biswasroy, Deepak Pradhan, Dilip Kumar Pradhan, Goutam Ghosh, Goutam Rath. Development of Betulin-Loaded Nanostructured Lipid Carriers for the Management of Imiquimod-Induced Psoriasis. AAPS PharmSciTech. 2024 Mar; 25(3):57. doi: 10.1208/s12249-024-02774-1. [PMID: 38472545]
  • Feyisayo O Adepoju, Ksenia V Sokolova, Irina F Gette, Irina G Danilova, Mikhail V Tsurkan, Alicia C Mondragon, Elena G Kovaleva, Jose Manuel Miranda. Protective Effect of Betulin on Streptozotocin-Nicotinamide-Induced Diabetes in Female Rats. International journal of molecular sciences. 2024 Feb; 25(4):. doi: 10.3390/ijms25042166. [PMID: 38396842]
  • Yiding Deng, Ruili Wang, Zhiyuan Ma, Weiwei Zuo, Meifang Zhu. Synthesis and Fabrication of Betulin-Derived Polysulfide and Polysulfoxide Electrospun Fibers for Fruit Preservation. Journal of agricultural and food chemistry. 2023 Dec; 71(48):18857-18864. doi: 10.1021/acs.jafc.3c07117. [PMID: 37994873]
  • Mengdi Lv, Yue Zheng, Jian Wu, Zhengqi Shen, Binglian Guo, Guojing Hu, Yuanlei Huang, Jingyue Zhao, Yong Qian, Zhi Su, Chao Wu, Xuling Xue, Hong-Ke Liu, Zong-Wan Mao. Evoking Ferroptosis by Synergistic Enhancement of a Cyclopentadienyl Iridium-Betulin Immune Agonist. Angewandte Chemie (International ed. in English). 2023 Oct; ?(?):e202312897. doi: 10.1002/anie.202312897. [PMID: 37830171]
  • Umesh Chandra Dash, Sandeep Kumar Swain, Atala Bihari Jena, Jagnehswar Dandapat, Atish Kumar Sahoo. The ameliorative effect of Piper trioicum in attenuating cognitive deficit in scopolamine induced neurotoxicity in experimental rats. Journal of ethnopharmacology. 2023 Jul; ?(?):116911. doi: 10.1016/j.jep.2023.116911. [PMID: 37451488]
  • Kai-Yuan Chen, Wei-Lin Hsu, Shih-Wei Hsu, Chao-Hsuan Chen, Kun-Ting Hong, Chia-Wen Tsai, Wen-Shin Chang, Chao-Chun Chen, Jen-Sheng Pei, Hsu-Tung Lee, DA-Tian Bau. Involvement of Mitochondrial Damage and Oxidative Stress in Apoptosis Induced by Betulin Plus Arsenic Trioxide in Neuroblastoma Cells. Anticancer research. 2023 Jun; 43(6):2467-2476. doi: 10.21873/anticanres.16414. [PMID: 37247918]
  • Maria Błaszczyk, Agata Kozioł, Anna Palko-Łabuz, Kamila Środa-Pomianek, Olga Wesołowska. Modulators of cellular cholesterol homeostasis as antiproliferative and model membranes perturbing agents. Biochimica et biophysica acta. Biomembranes. 2023 May; 1865(6):184163. doi: 10.1016/j.bbamem.2023.184163. [PMID: 37172710]
  • Amira E Farage, Walied Abdo, Amira Osman, Mona A Abdel-Kareem, Zaki H Hakami, Ahmad Alsulimani, Albandari Bin-Ammar, Ashwag S Alanazi, Bader Alsuwayt, Mohammed M Alanazi, Samar A Antar, Emadeldin M Kamel, Ayman M Mahmoud. Betulin prevents high fat diet-induced non-alcoholic fatty liver disease by mitigating oxidative stress and upregulating Nrf2 and SIRT1 in rats. Life sciences. 2023 Apr; ?(?):121688. doi: 10.1016/j.lfs.2023.121688. [PMID: 37030617]
  • E V Averyanova, M N Shkolnikova, O V Chugunova, O N Mazko. [Effects of triterpenoids in fatty products on liver condition of laboratory animals with acute toxic hepatitis]. Voprosy pitaniia. 2023; 92(4):81-91. doi: 10.33029/0042-8833-2023-92-4-81-91. [PMID: 37801458]
  • Hellen Karla Oliveira Marques, Maria Gabriela Ferreira Figueiredo, Willian Samuel de Souza Pio, Leonardo Monteiro Ribeiro, Islaine Franciely Pinheiro de Azevedo, Lucienir Pains Duarte, Grasiely Faria de Sousa, Mariana Guerra de Aguilar, Maria Olívia Mercadante-Simões. Laticifer ontogenesis and the chemical constituents of Marsdenia zehntneri (Apocynaceae) latex in a semiarid environment. Planta. 2022 Dec; 257(1):19. doi: 10.1007/s00425-022-04050-7. [PMID: 36538159]
  • Ting Ouyang, Huafeng Yin, Jianbo Yang, Yue Liu, Shuangcheng Ma. Tissue regeneration effect of betulin via inhibition of ROS/MAPKs/NF-ĸB axis using zebrafish model. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Sep; 153(?):113420. doi: 10.1016/j.biopha.2022.113420. [PMID: 36076542]
  • Prabhjit Kaur, Saroj Arora, Rajbir Singh. Isolation, characterization and biological activities of betulin from Acacia nilotica bark. Scientific reports. 2022 06; 12(1):9370. doi: 10.1038/s41598-022-13338-3. [PMID: 35672366]
  • Olga V Demets, Altynaray T Takibayeva, Rymchan Z Kassenov, Madina R Aliyeva. Methods of Betulin Extraction from Birch Bark. Molecules (Basel, Switzerland). 2022 Jun; 27(11):. doi: 10.3390/molecules27113621. [PMID: 35684557]
  • Wei-Ya Yan, Jian Cai, Jiang-Nan Wang, Yong-Sheng Gong, Xue-Bing Ding. Co-treatment of betulin and gefitinib is effective against EGFR wild-type/KRAS-mutant non-small cell lung cancer by inducing ferroptosis. Neoplasma. 2022 May; 69(3):648-656. doi: 10.4149/neo_2022_211103n1568. [PMID: 35330996]
  • Mapula Razwinani, Keolebogile Shirley Motaung. The influence of friedelin, resinone, tingenone and betulin of compounds on chondrogenic differentiation of porcine adipose-derived mesenchymal stem cells (pADMSCs). Biochimie. 2022 May; 196(?):234-242. doi: 10.1016/j.biochi.2022.01.018. [PMID: 35121053]
  • Celina Kruszniewska-Rajs, Barbara Strzałka-Mrozik, Magdalena Kimsa-Dudek, Agnieszka Synowiec-Wojtarowicz, Elwira Chrobak, Ewa Bębenek, Stanisław Boryczka, Stanisław Głuszek, Joanna Magdalena Gola. The Influence of Betulin and Its Derivatives EB5 and ECH147 on the Antioxidant Status of Human Renal Proximal Tubule Epithelial Cells. International journal of molecular sciences. 2022 Feb; 23(5):. doi: 10.3390/ijms23052524. [PMID: 35269667]
  • Claudia Vater, Leonie Bosch, Alexandra Mitter, Thomas Göls, Saskia Seiser, Elke Heiss, Adelheid Elbe-Bürger, Michael Wirth, Claudia Valenta, Victoria Klang. Lecithin-based nanoemulsions of traditional herbal wound healing agents and their effect on human skin cells. European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. 2022 Jan; 170(?):1-9. doi: 10.1016/j.ejpb.2021.11.004. [PMID: 34798283]
  • Aleksandra Ostapiuk, Łukasz Kurach, Maciej Strzemski, Jacek Kurzepa, Anna Hordyjewska. Evaluation of Antioxidative Mechanisms In Vitro and Triterpenes Composition of Extracts from Silver Birch (Betula pendula Roth) and Black Birch (Betula obscura Kotula) Barks by FT-IR and HPLC-PDA. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154633. [PMID: 34361786]
  • Augustine A Ahmadu, Claire Delehouzé, Anas Haruna, Lukman Mustapha, Bilqis A Lawal, Aniefiok Udobre, Blandine Baratte, Camilla Triscornia, Axelle Autret, Thomas Robert, Jeannette Chloë Bulinski, Morgane Rousselot, Mélanie Simoes Eugénio, Marie-Thérèse Dimanche-Boitrel, Jacobus P Petzer, Lesetja J Legoabe, Stéphane Bach. Betulin, a Newly Characterized Compound in Acacia auriculiformis Bark, Is a Multi-Target Protein Kinase Inhibitor. Molecules (Basel, Switzerland). 2021 Jul; 26(15):. doi: 10.3390/molecules26154599. [PMID: 34361750]
  • Ramona Daniela Pârvănescu Pană, Claudia-Geanina Watz, Elena-Alina Moacă, Lavinia Vlaia, Iasmina Marcovici, Ioana Gabriela Macașoi, Florin Borcan, Ioana Olariu, Georgeta Coneac, George-Andrei Drăghici, Zorin Crăiniceanu, Daniela Flondor Ionescu, Alexandra Enache, Cristina Adriana Dehelean. Oleogel Formulations for the Topical Delivery of Betulin and Lupeol in Skin Injuries-Preparation, Physicochemical Characterization, and Pharmaco-Toxicological Evaluation. Molecules (Basel, Switzerland). 2021 Jul; 26(14):. doi: 10.3390/molecules26144174. [PMID: 34299450]
  • Jinku Zhang, Bingjuan Zhou, Jirui Sun, Hong Chen, Zhao Yang. Betulin ameliorates 7,12-dimethylbenz(a)anthracene-induced rat mammary cancer by modulating MAPK and AhR/Nrf-2 signaling pathway. Journal of biochemical and molecular toxicology. 2021 Jul; 35(7):e22779. doi: 10.1002/jbt.22779. [PMID: 33759307]
  • Yoganathan Kamaraj, Sangeetha Dhayalan, Uma Chinnaiyan, Veenayohini Kumaresan, Satheeshkumar Subramaniyan, Deepak Kumar, Kokila Muniyandi, Ganesh Punamalai. Triterpenoid compound betulin attenuates allergic airway inflammation by modulating antioxidants, inflammatory cytokines and tissue transglutaminase in ovalbumin-induced asthma mice model. The Journal of pharmacy and pharmacology. 2021 Jun; 73(7):968-978. doi: 10.1093/jpp/rgab015. [PMID: 33769499]
  • Andrzej Günther, Edyta Makuch, Anna Nowak, Wiktoria Duchnik, Łukasz Kucharski, Robert Pełech, Adam Klimowicz. Enhancement of the Antioxidant and Skin Permeation Properties of Betulin and Its Derivatives. Molecules (Basel, Switzerland). 2021 Jun; 26(11):. doi: 10.3390/molecules26113435. [PMID: 34198892]
  • Chenchen Yu, Xixi Cai, Xuejiao Liu, Jianlong Liu, Na Zhu. Betulin Alleviates Myocardial Ischemia-Reperfusion Injury in Rats via Regulating the Siti1/NLRP3/NF-κB Signaling Pathway. Inflammation. 2021 Jun; 44(3):1096-1107. doi: 10.1007/s10753-020-01405-8. [PMID: 33392937]
  • Hani A Alhadrami, Ahmed M Sayed, Ahmed M Sharif, Esam I Azhar, Mostafa E Rateb. Olive-Derived Triterpenes Suppress SARS COV-2 Main Protease: A Promising Scaffold for Future Therapeutics. Molecules (Basel, Switzerland). 2021 May; 26(9):. doi: 10.3390/molecules26092654. [PMID: 34062737]
  • André Barreto Cunha, Ronan Batista, María Ángeles Castro, Jorge Mauricio David. Chemical Strategies towards the Synthesis of Betulinic Acid and Its More Potent Antiprotozoal Analogues. Molecules (Basel, Switzerland). 2021 Feb; 26(4):. doi: 10.3390/molecules26041081. [PMID: 33670791]
  • Jerónimo Laiolo, Cecilia L Barbieri, Mariana B Joray, Priscila A Lanza, Sara M Palacios, D Mariano A Vera, María C Carpinella. Plant extracts and betulin from Ligaria cuneifolia inhibit P-glycoprotein function in leukemia cells. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2021 Jan; 147(?):111922. doi: 10.1016/j.fct.2020.111922. [PMID: 33321149]
  • Giulia Carolina Lodi, Giuseppe Borsato, Maria Luisa Vázquez de Ágredos Pascual, Francesca Caterina Izzo. Disclosing the composition of unknown historical drug formulations: an emblematic case from the Spezieria of St. Maria della Scala in Rome. Analytical and bioanalytical chemistry. 2020 Nov; 412(27):7581-7593. doi: 10.1007/s00216-020-02893-1. [PMID: 32918172]
  • Mikhail V Dubinin, Alena A Semenova, Anna I Ilzorkina, Irina B Mikheeva, Valery A Yashin, Nikita V Penkov, Valentina A Vydrina, Gumer Yu Ishmuratov, Vyacheslav A Sharapov, Ekaterina I Khoroshavina, Sergey V Gudkov, Konstantin N Belosludtsev. Effect of betulin and betulonic acid on isolated rat liver mitochondria and liposomes. Biochimica et biophysica acta. Biomembranes. 2020 10; 1862(10):183383. doi: 10.1016/j.bbamem.2020.183383. [PMID: 32522531]
  • Jing Yin, Lu Sun, Ying Li, Jialei Xiao, Siyao Wang, Jie Yang, Ziyue Qu, Yaguang Zhan. Functional identification of BpMYB21 and BpMYB61 transcription factors responding to MeJA and SA in birch triterpenoid synthesis. BMC plant biology. 2020 Aug; 20(1):374. doi: 10.1186/s12870-020-02521-1. [PMID: 32787836]
  • Yongjin Wen, Ling Geng, Lin Zhou, Xueliang Pei, Zhiyuan Yang, Zhiwei Ding. Betulin alleviates on myocardial inflammation in diabetes mice via regulating Siti1/NLRP3/NF-κB pathway. International immunopharmacology. 2020 Aug; 85(?):106653. doi: 10.1016/j.intimp.2020.106653. [PMID: 32531709]
  • Carlos Calderón, Lara Rubarth, Malgorzata Cebo, Irmgard Merfort, Michael Lämmerhofer. Lipid Atlas of Keratinocytes and Betulin Effects on its Lipidome Profiled by Comprehensive UHPLC-MS/MS with Data Independent Acquisition Using Targeted Data Processing. Proteomics. 2020 06; 20(11):e1900113. doi: 10.1002/pmic.201900113. [PMID: 31489976]
  • Janeesh Plakkal Ayyappan, Kezia Lizardo, Sean Wang, Edward Yurkow, Jyothi F Nagajyothi. Inhibition of SREBP Improves Cardiac Lipidopathy, Improves Endoplasmic Reticulum Stress, and Modulates Chronic Chagas Cardiomyopathy. Journal of the American Heart Association. 2020 02; 9(3):e014255. doi: 10.1161/jaha.119.014255. [PMID: 31973605]
  • Gang Wang, Yu-Zhu Wang, Yang Yu, Jun-Jie Wang, Pei-Hao Yin, Ke Xu. Triterpenoids Extracted from Rhus chinensis Mill Act Against Colorectal Cancer by Inhibiting Enzymes in Glycolysis and Glutaminolysis: Network Analysis and Experimental Validation. Nutrition and cancer. 2020; 72(2):293-319. doi: 10.1080/01635581.2019.1631858. [PMID: 31267795]
  • V Buko, I Kuzmitskaya, S Kirko, E Belonovskaya, E Naruta, O Lukivskaya, A Shlyahtun, T Ilyich, A Zakreska, I Zavodnik. Betulin attenuated liver damage by prevention of hepatic mitochondrial dysfunction in rats with alcoholic steatohepatitis. Physiology international. 2019 Dec; 106(4):323-334. doi: 10.1556/2060.106.2019.26. [PMID: 31619044]
  • Jianlin Li, Baocheng Jiang, Chen Chen, Boyi Fan, Huilian Huang, Guangtong Chen. Biotransformation of betulin by Mucor subtilissimus to discover anti-inflammatory derivatives. Phytochemistry. 2019 Oct; 166(?):112076. doi: 10.1016/j.phytochem.2019.112076. [PMID: 31351331]
  • Fan Yin, Fan Feng, Lei Wang, Xiaoning Wang, Zongwei Li, Yu Cao. SREBP-1 inhibitor Betulin enhances the antitumor effect of Sorafenib on hepatocellular carcinoma via restricting cellular glycolytic activity. Cell death & disease. 2019 09; 10(9):672. doi: 10.1038/s41419-019-1884-7. [PMID: 31511501]
  • Ranjeet Kumar Nirala, Pratuyasha Dutta, Md Zubbair Malik, Lalita Dwivedi, Tulsidas G Shrivastav, Sonu Chand Thakur. In Vitro and In Silico Evaluation of Betulin on Calcium Oxalate Crystal Formation. Journal of the American College of Nutrition. 2019 Sep; 38(7):586-596. doi: 10.1080/07315724.2019.1568321. [PMID: 30933658]
  • I E Ojeda-Serna, N E Rocha-Guzmán, J A Gallegos-Infante, M H Cháirez-Ramírez, W Rosas-Flores, J D Pérez-Martínez, M R Moreno-Jiménez, R F González-Laredo. Water-in-oil organogel based emulsions as a tool for increasing bioaccessibility and cell permeability of poorly water-soluble nutraceuticals. Food research international (Ottawa, Ont.). 2019 06; 120(?):415-424. doi: 10.1016/j.foodres.2019.03.011. [PMID: 31000257]
  • Armin Scheffler. The Wound Healing Properties of Betulin from Birch Bark from Bench to Bedside. Planta medica. 2019 May; 85(7):524-527. doi: 10.1055/a-0850-0224. [PMID: 30856673]
  • Sameh Soliman, Alshaimaa M Hamoda, Abdel-Nasser A El-Shorbagi, Ali A El-Keblawy. Novel betulin derivative is responsible for the anticancer folk use of Ziziphus spina-christi from the hot environmental habitat of UAE. Journal of ethnopharmacology. 2019 Mar; 231(?):403-408. doi: 10.1016/j.jep.2018.11.040. [PMID: 30508621]
  • Razieh Jafari Hajati, Vahide Payamnoor, Najmeh Ahmadian Chashmi. Effect of biotic and abiotic elicitors on production of betulin and betulinic acid in the hairy root culture of Betula pendula Roth. Preparative biochemistry & biotechnology. 2019; 49(10):1010-1019. doi: 10.1080/10826068.2019.1650372. [PMID: 31385749]
  • Sarah D'Adamo, Gino Schiano di Visconte, Gavin Lowe, Joanna Szaub-Newton, Tracey Beacham, Andrew Landels, Michael J Allen, Andrew Spicer, Michiel Matthijs. Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production. Plant biotechnology journal. 2019 01; 17(1):75-87. doi: 10.1111/pbi.12948. [PMID: 29754445]
  • Guang-Meng Xu, Tao Zan, Hong-Yan Li, Jin-Feng Han, Zhong-Min Liu, Ju Huang, Li-Hua Dong, Hai-Na Zhang. Betulin inhibits lipopolysaccharide/D-galactosamine-induced acute liver injury in mice through activating PPAR-γ. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Oct; 106(?):941-945. doi: 10.1016/j.biopha.2018.07.011. [PMID: 30119266]
  • Yulin Ren, Gerardo D Anaya-Eugenio, Austin A Czarnecki, Tran Ngoc Ninh, Chunhua Yuan, Hee-Byung Chai, Djaja D Soejarto, Joanna E Burdette, Esperanza J Carcache de Blanco, A Douglas Kinghorn. Cytotoxic and NF-κB and mitochondrial transmembrane potential inhibitory pentacyclic triterpenoids from Syzygium corticosum and their semi-synthetic derivatives. Bioorganic & medicinal chemistry. 2018 08; 26(15):4452-4460. doi: 10.1016/j.bmc.2018.07.025. [PMID: 30057155]
  • Hae Min So, Hee Jeong Eom, Dahae Lee, Sil Kim, Ki Sung Kang, Il Kyun Lee, Kwan-Hyuck Baek, Jun Yeon Park, Ki Hyun Kim. Bioactivity evaluations of betulin identified from the bark of Betula platyphylla var. japonica for cancer therapy. Archives of pharmacal research. 2018 Aug; 41(8):815-822. doi: 10.1007/s12272-018-1064-9. [PMID: 30109574]
  • Ali Talebi, Jonas Dehairs, Florian Rambow, Aljosja Rogiers, David Nittner, Rita Derua, Frank Vanderhoydonc, Joao A G Duarte, Francesca Bosisio, Kathleen Van den Eynde, Kris Nys, Mónica Vara Pérez, Patrizia Agostinis, Etienne Waelkens, Joost Van den Oord, Sarah-Maria Fendt, Jean-Christophe Marine, Johannes V Swinnen. Sustained SREBP-1-dependent lipogenesis as a key mediator of resistance to BRAF-targeted therapy. Nature communications. 2018 06; 9(1):2500. doi: 10.1038/s41467-018-04664-0. [PMID: 29950559]
  • Nan Ouyang, Hua Gan, Quan He, Han Lei, Stephen Y Wang, Qing Liu, Chao Zhou. Dysfunction of cholesterol sensor SCAP promotes inflammation activation in THP-1 macrophages. Experimental cell research. 2018 06; 367(2):162-169. doi: 10.1016/j.yexcr.2018.03.032. [PMID: 29596892]
  • Wendan Zhang, Honghong Jiang, Miaomiao Jin, Qiao Wang, Qian Sun, Yingfeng Du, Liang Cao, Huijun Xu. UHPLC-Q-TOF-MS/MS based screening and identification of the metabolites in vivo after oral administration of betulin. Fitoterapia. 2018 Jun; 127(?):29-41. doi: 10.1016/j.fitote.2018.04.010. [PMID: 29665421]
  • George R Pettit, Noeleen Melody, Jean-Charles Chapuis. Antineoplastic Agents. 606. The Betulastatins. Journal of natural products. 2018 03; 81(3):458-464. doi: 10.1021/acs.jnatprod.7b00536. [PMID: 29303263]
  • Razieh Jafari Hajati, Vahide Payamnoor, Najmeh Ahmadian Chashmi, Kamal Ghasemi Bezdi. Improved accumulation of betulin and betulinic acid in cell suspension culture of Betula pendula roth by abiotic and biotic elicitors. Preparative biochemistry & biotechnology. 2018; 48(9):867-876. doi: 10.1080/10826068.2018.1514514. [PMID: 30296385]
  • Chao-Min Wang, Kuei-Lin Yeh, Shang-Jie Tsai, Yun-Lian Jhan, Chang-Hung Chou. Anti-Proliferative Activity of Triterpenoids and Sterols Isolated from Alstonia scholaris against Non-Small-Cell Lung Carcinoma Cells. Molecules (Basel, Switzerland). 2017 Dec; 22(12):. doi: 10.3390/molecules22122119. [PMID: 29194373]
  • Xiliang Yang, Qingyun Peng, Qian Liu, Jie Hu, Zhipeng Tang, Lianjie Cui, Zonghao Lin, Bing Xu, Kuojian Lu, Fang Yang, Zhizheng Sheng, Qiong Yuan, Song Liu, Jiuliang Zhang, Xuefeng Zhou. Antioxidant activity against H2O2-induced cytotoxicity of the ethanol extract and compounds from Pyrola decorate leaves. Pharmaceutical biology. 2017 Dec; 55(1):1843-1848. doi: 10.1080/13880209.2017.1333126. [PMID: 28571528]
  • Lía S Valencia-Chan, Isabel García-Cámara, Luis W Torres-Tapia, Rosa E Moo-Puc, Sergio R Peraza-Sánchez. Lupane-Type Triterpenes of Phoradendron vernicosum. Journal of natural products. 2017 11; 80(11):3038-3042. doi: 10.1021/acs.jnatprod.7b00177. [PMID: 29120172]
  • Zhiyuan Ma, Yong-Guang Jia, X X Zhu. Glycopolymers Bearing Galactose and Betulin: Synthesis, Encapsulation, and Lectin Recognition. Biomacromolecules. 2017 Nov; 18(11):3812-3818. doi: 10.1021/acs.biomac.7b01106. [PMID: 28982003]
  • H O B Oloyede, H O Ajiboye, M O Salawu, T O Ajiboye. Influence of oxidative stress on the antibacterial activity of betulin, betulinic acid and ursolic acid. Microbial pathogenesis. 2017 Oct; 111(?):338-344. doi: 10.1016/j.micpath.2017.08.012. [PMID: 28807773]
  • Braja Gopal Bag, Rakhi Majumdar. Self-assembly of Renewable  Nano-sized Triterpenoids. Chemical record (New York, N.Y.). 2017 09; 17(9):841-873. doi: 10.1002/tcr.201600123. [PMID: 28195390]
  • Guizhi Fan, Tingting Nie, Jin Sheng Fan, Yaguang Zhan. Exogenous Feeding of Fructose and Phenylalanine Further Improves Betulin Production in Suspended Betula platyphylla Cells under Nitric Oxide Treatment. Molecules (Basel, Switzerland). 2017 Jun; 22(7):. doi: 10.3390/molecules22071035. [PMID: 28665342]
  • Jianan Wu, Yongwu Niu, Abdelmoneim Bakur, Hao Li, Qihe Chen. Cell-Free Production of Pentacyclic Triterpenoid Compound Betulinic Acid from Betulin by the Engineered Saccharomyces cerevisiae. Molecules (Basel, Switzerland). 2017 Jun; 22(7):. doi: 10.3390/molecules22071075. [PMID: 28653998]
  • Chang Ha Park, Shicheng Zhao, Hyeon Ji Yeo, Ye Eun Park, Thanislas Bastin Baska, Mariadhas Valan Arasu, Naif Abdullah Ai-Dhabi, Sang Un Park. Comparison of Different Strains of Agrobacterium rhizogenes for Hairy Root Induction and Betulin and Betulinic Acid Production in Morus alba. Natural product communications. 2017 Apr; 12(4):479-482. doi: ". [PMID: 30520575]
  • Olga N Pozharitskaya, Marina V Karlina, Alexander N Shikov, Vera M Kosman, Valery G Makarov, Eudald Casals, Jessica M Rosenholm. Pharmacokinetics and Tissue Disposition of Nanosystem-Entrapped Betulin After Endotracheal Administration to Rats. European journal of drug metabolism and pharmacokinetics. 2017 Apr; 42(2):327-332. doi: 10.1007/s13318-016-0340-7. [PMID: 27155877]
  • Yong-Qin Zhou, Xiu-Fang Weng, Rui Dou, Xiao-Sheng Tan, Tian-Tian Zhang, Jin-Bo Fang, Xiong-Wen Wu. Betulin from Hedyotis hedyotidea ameliorates concanavalin A-induced and T cell-mediated autoimmune hepatitis in mice. Acta pharmacologica Sinica. 2017 Feb; 38(2):201-210. doi: 10.1038/aps.2016.102. [PMID: 27796295]
  • Wenlong Cheng, Shiqi Ji, Haijian Zhang, Zhixing Han, Qingjun Liu, Jianwen Wang, Hao Ping. mTOR activation is critical for betulin treatment in renal cell carcinoma cells. Biochemical and biophysical research communications. 2017 Jan; 482(4):1030-1036. doi: 10.1016/j.bbrc.2016.11.153. [PMID: 27908730]
  • Dharmaprakash Viszwapriya, Ganapathy Ashwinkumar Subramenium, Solai Radhika, Shunmugiah Karutha Pandian. Betulin inhibits cariogenic properties of Streptococcus mutans by targeting vicRK and gtf genes. Antonie van Leeuwenhoek. 2017 Jan; 110(1):153-165. doi: 10.1007/s10482-016-0785-3. [PMID: 27757704]
  • Ma Chunhua, Hongyan Long, Weina Zhu, Zheng Liu, Ruan Jie, Yajie Zhang, Yarui Wang. Betulin inhibited cigarette smoke-induced COPD in mice. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2017 Jan; 85(?):679-686. doi: 10.1016/j.biopha.2016.11.079. [PMID: 27899253]
  • Chunhua Ma, Hongyan Long. Protective effect of betulin on cognitive decline in streptozotocin (STZ)-induced diabetic rats. Neurotoxicology. 2016 12; 57(?):104-111. doi: 10.1016/j.neuro.2016.09.009. [PMID: 27640960]
  • Ruta Muceniece, Jana Namniece, Ilva Nakurte, Kaspars Jekabsons, Una Riekstina, Baiba Jansone. Pharmacological research on natural substances in Latvia: Focus on lunasin, betulin, polyprenol and phlorizin. Pharmacological research. 2016 11; 113(Pt B):760-770. doi: 10.1016/j.phrs.2016.03.040. [PMID: 27109319]
  • Vandana Verma, Avinash C Tripathi, Shailendra K Saraf. Bioactive non-sterol triterpenoid from Streblus asper: microwave-assisted extraction, HPTLC profiling, computational studies and neuro-pharmacological evaluation in BALB/c mice. Pharmaceutical biology. 2016 Nov; 54(11):2454-2464. doi: 10.3109/13880209.2016.1160132. [PMID: 27049764]
  • Yu-Zhou Gui, Hong Yan, Fei Gao, Cong Xi, Hui-Hui Li, Yi-Ping Wang. Betulin attenuates atherosclerosis in apoE-/- mice by up-regulating ABCA1 and ABCG1. Acta pharmacologica Sinica. 2016 Sep; 37(10):1337-1348. doi: 10.1038/aps.2016.46. [PMID: 27374487]
  • Ankur A Gholkar, Keith Cheung, Kevin J Williams, Yu-Chen Lo, Shadia A Hamideh, Chelsea Nnebe, Cindy Khuu, Steven J Bensinger, Jorge Z Torres. Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division. The Journal of biological chemistry. 2016 08; 291(33):17001-8. doi: 10.1074/jbc.c116.737346. [PMID: 27378817]
  • Jiajin Li, Hui Yan, Li Zhao, Wenzhi Jia, Hao Yang, Liu Liu, Xiang Zhou, Ping Miao, Xiaoguang Sun, Shaoli Song, Xiaoping Zhao, Jianjun Liu, Gang Huang. Inhibition of SREBP increases gefitinib sensitivity in non-small cell lung cancer cells. Oncotarget. 2016 Aug; 7(32):52392-52403. doi: 10.18632/oncotarget.10721. [PMID: 27447558]
  • Yun-ting Cai, Hua-wei Geng. [Chemical Constituents from the Roots of Rhodomyrtus tomentosa]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2016 Jun; 39(6):1303-7. doi: ". [PMID: 30156803]
  • Dezhi Yang, Ningbo Gong, Li Zhang, Yang Lu. Isostructurality Among 5 Solvatomorphs of Betulin: X-Ray Structure and Characterization. Journal of pharmaceutical sciences. 2016 06; 105(6):1867-1873. doi: 10.1016/j.xphs.2016.03.015. [PMID: 27129904]
  • Tina Wardecki, Philipp Werner, Maria Thomas, Markus F Templin, Gudula Schmidt, Johanna M Brandner, Irmgard Merfort. Influence of Birch Bark Triterpenes on Keratinocytes and Fibroblasts from Diabetic and Nondiabetic Donors. Journal of natural products. 2016 Apr; 79(4):1112-23. doi: 10.1021/acs.jnatprod.6b00027. [PMID: 27002382]
  • Filomena S G Silva, Paulo J Oliveira, Maria F Duarte. Oleanolic, Ursolic, and Betulinic Acids as Food Supplements or Pharmaceutical Agents for Type 2 Diabetes: Promise or Illusion?. Journal of agricultural and food chemistry. 2016 Apr; 64(15):2991-3008. doi: 10.1021/acs.jafc.5b06021. [PMID: 27012451]
  • Shengxin Cai, April L Risinger, Shalini Nair, Jiangnan Peng, Timothy J C Anderson, Lin Du, Douglas R Powell, Susan L Mooberry, Robert H Cichewicz. Identification of Compounds with Efficacy against Malaria Parasites from Common North American Plants. Journal of natural products. 2016 Mar; 79(3):490-8. doi: 10.1021/acs.jnatprod.5b00874. [PMID: 26722868]
  • Yao-wu Tao, Ye Tian, Wen-dong Xu, Qing-lan Guo, Jian-gong Shi. [Terpenoids from Euphorbia micractina]. Yao xue xue bao = Acta pharmaceutica Sinica. 2016 03; 51(3):411-9. doi: ". [PMID: 29859022]
  • Ting Bai, Yong Yang, You-Li Yao, Peng Sun, Li-Hua Lian, Yan-Ling Wu, Ji-Xing Nan. Betulin alleviated ethanol-induced alcoholic liver injury via SIRT1/AMPK signaling pathway. Pharmacological research. 2016 Mar; 105(?):1-12. doi: 10.1016/j.phrs.2015.12.022. [PMID: 26776965]
  • Ramdhan Yadav, Dharmesh Kumar, Avnesh Kumari, Sudesh Kumar Yadav. PLA nanovectors with encapsulated betulin: plant leaf extract-synthesized nanovectors are more efficacious than PVA-synthesized nanovectors. Biotechnology letters. 2016 Feb; 38(2):259-69. doi: 10.1007/s10529-015-1981-3. [PMID: 26476528]
  • Hongyu Zhao, Qiang Zheng, Xiao Hu, Haitao Shen, Fengchun Li. Betulin attenuates kidney injury in septic rats through inhibiting TLR4/NF-κB signaling pathway. Life sciences. 2016 Jan; 144(?):185-93. doi: 10.1016/j.lfs.2015.12.003. [PMID: 26656467]
  • Pavel Šiman, Alžběta Filipová, Alena Tichá, Mohamed Niang, Aleš Bezrouk, Radim Havelek. Effective Method of Purification of Betulin from Birch Bark: The Importance of Its Purity for Scientific and Medicinal Use. PloS one. 2016; 11(5):e0154933. doi: 10.1371/journal.pone.0154933. [PMID: 27152419]
  • Anna Färber, Rolf Daniels. Ex vivo Skin Permeation of Betulin from Water-in-Oil Foams. Skin pharmacology and physiology. 2016; 29(5):250-256. doi: 10.1159/000448689. [PMID: 27632222]
  • Namki Cho, Hyeon Woo Kim, Hee Kyoung Lee, Byung Ju Jeon, Sang Hyun Sung. Ameliorative effect of betulin from Betula platyphylla bark on scopolamine-induced amnesic mice. Bioscience, biotechnology, and biochemistry. 2016; 80(1):166-71. doi: 10.1080/09168451.2015.1072460. [PMID: 26287580]
  • Hongyu Zhao, Zhenning Liu, Wei Liu, Xinfei Han, Min Zhao. Betulin attenuates lung and liver injuries in sepsis. International immunopharmacology. 2016 Jan; 30(?):50-56. doi: 10.1016/j.intimp.2015.11.028. [PMID: 26644168]
  • Jian Wang, Yang-min Ma, Meng-ru Yan, Qian Xu, Zi-rui Qu, Zhi Miao. [Chemical Compositions from Stems and Branches of Sorbaria arborea]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Oct; 38(10):2098-101. doi: . [PMID: 27254923]
  • J T Banzouzi, P Njomnang Soh, S Ramos, P Toto, A Cavé, J Hemez, F Benoit-Vical. Samvisterin, a new natural antiplasmodial betulin derivative from Uapaca paludosa (Euphorbiaceae). Journal of ethnopharmacology. 2015 Sep; 173(?):100-4. doi: 10.1016/j.jep.2015.07.023. [PMID: 26192809]
  • Li Pan, Ulyana Muñoz Acuña, Heebyung Chai, Hyun-Young Park, Tran Ngoc Ninh, Bui Van Thanh, Emilio F Merino, Maria B Cassera, L Harinantenaina Rakotondraibe, Esperanza J Carcache de Blanco, Djaja D Soejarto, A Douglas Kinghorn. New Bioactive Lupane Triterpene Coumaroyl Esters Isolated from Buxus cochinchinensis. Planta medica. 2015 Aug; 81(12-13):1133-40. doi: 10.1055/s-0035-1546118. [PMID: 26132853]
  • Nam-Hui Yim, Young Pil Jung, Aeyung Kim, Taesoo Kim, Jin Yeul Ma. Induction of apoptotic cell death by betulin in multidrug-resistant human renal carcinoma cells. Oncology reports. 2015 Aug; 34(2):1058-64. doi: 10.3892/or.2015.4045. [PMID: 26059173]
  • Svetlana A Myza, Tatyana P Shakhtshneidera, Mikhail A Mikhailenkob, Andrey G Ogienkoc, Ekaterina G Bogdanovaa, Anna A Ogienkoe, Svetlana A Kuznetsovaf, Elena V Boldyrevaa, Vladimir V Boldyreva. Ultrafine Betulin Formulation with Biocompatible Carriers Exhibiting Improved Dissolution Rate. Natural product communications. 2015 Aug; 10(8):1345-7. doi: ". [PMID: 26434111]
  • Oliver Callies, Luis M Bedoya, Manuela Beltrán, Alejandro Muñoz, Patricia Obregón Calderón, Alex A Osorio, Ignacio A Jiménez, José Alcamí, Isabel L Bazzocchi. Isolation, Structural Modification, and HIV Inhibition of Pentacyclic Lupane-Type Triterpenoids from Cassine xylocarpa and Maytenus cuzcoina. Journal of natural products. 2015 May; 78(5):1045-55. doi: 10.1021/np501025r. [PMID: 25927586]
  • Haoxin Li, Duncan Webster, John A Johnson, Christopher A Gray. Anti-mycobacterial triterpenes from the Canadian medicinal plant Alnus incana. Journal of ethnopharmacology. 2015 May; 165(?):148-51. doi: 10.1016/j.jep.2015.02.042. [PMID: 25725435]
  • Yong-zhang Wu, Yu-bo Zhang, Neng-hua Chen, Guo-cai Wang, Yao-lan Li. [Chemical Constituents from Syzygium samarangense Branches and Leaves]. Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials. 2015 Apr; 38(4):754-7. doi: . [PMID: 26672341]
  • Ren-Jun Hsu, Yao-Chin Hsu, Shu-Pin Chen, Chia-Lynn Fu, Jyh-Cherng Yu, Fung-Wei Chang, Ying-Hsin Chen, Jui-Ming Liu, Jar-Yi Ho, Cheng-Ping Yu. The triterpenoids of Hibiscus syriacus induce apoptosis and inhibit cell migration in breast cancer cells. BMC complementary and alternative medicine. 2015 Mar; 15(?):65. doi: 10.1186/s12906-015-0592-9. [PMID: 25885960]
  • Sylwia Katarzyna Król, Michał Kiełbus, Adolfo Rivero-Müller, Andrzej Stepulak. Comprehensive review on betulin as a potent anticancer agent. BioMed research international. 2015; 2015(?):584189. doi: 10.1155/2015/584189. [PMID: 25866796]
  • H Q Nguyen, V V Chupin, D I Prokhorov, I E Chikunov, V Yu Kovtun, R A Tarumov, A N Grebenyuk, V I Shvets. Creation and study of triterpenoid nanoparticles and radioprotective substance genistein. Doklady. Biochemistry and biophysics. 2015; 464(?):338-40. doi: 10.1134/s160767291505018x. [PMID: 26518563]
  • Lian-Xia Wang, Zhen-Ming Lu, Yan Geng, Xiao-Mei Zhang, Guo-Hua Xu, Jin-Song Shi, Zheng-Hong Xu. Stimulated production of steroids in Inonotus obliquus by host factors from birch. Journal of bioscience and bioengineering. 2014 Dec; 118(6):728-31. doi: 10.1016/j.jbiosc.2014.05.022. [PMID: 25027706]
  • M Heidary Navid, M N Laszczyk-Lauer, J Reichling, P Schnitzler. Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2014 Sep; 21(11):1273-80. doi: 10.1016/j.phymed.2014.06.007. [PMID: 25172789]
  • Xiuhua Zhao, Weiguo Wang, Yuangang Zu, Ying Zhang, Yong Li, Wei Sun, Chang Shan, Yunlong Ge. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation. Drug delivery. 2014 Sep; 21(6):467-79. doi: 10.3109/10717544.2014.881438. [PMID: 24479653]
  • Anna Ilyina, Roberto Arredondo-Valdés, Salavat Farkhutdinov, Elda Patricia Segura-Ceniceros, José Luis Martínez-Hernández, Radik Zaynullin, Rayhana Kunakova. Effect of betulin-containing extract from birch tree bark on α-amylase activity in vitro and on weight gain of broiler chickens in vivo. Plant foods for human nutrition (Dordrecht, Netherlands). 2014 Mar; 69(1):65-70. doi: 10.1007/s11130-014-0404-2. [PMID: 24445672]