(+)-taxifolin (BioDeep_00000000348)
Secondary id: BioDeep_00000017305, BioDeep_00000398609
natural product human metabolite PANOMIX_OTCML-2023 BioNovoGene_Lab2019
代谢物信息卡片
化学式: C15H12O7 (304.0583)
中文名称: 花旗松素, 二氢槲皮素, (+)-花旗松素
谱图信息:
最多检出来源 Viridiplantae(plant) 13.76%
分子结构信息
SMILES: c1(cc(c2c(c1)O[C@@H]([C@H](C2=O)O)c1cc(c(cc1)O)O)O)O
InChI: InChI=1/C15H12O7/c16-7-4-10(19)12-11(5-7)22-15(14(21)13(12)20)6-1-2-8(17)9(18)3-6/h1-5,14-19,21H/t14-,15+/m0/s1
描述信息
Taxifolin, also known as dihydroquercetin or (+)-taxifolin, is a member of the class of compounds known as flavanonols. Flavanonols are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a hydroxyl group and a ketone at the carbon C2 and C3, respectively. Taxifolin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Taxifolin can be found in a number of food items such as sweet rowanberry, arrowroot, evening primrose, and walnut, which makes taxifolin a potential biomarker for the consumption of these food products. Taxifolin is a flavanonol, a type of flavonoid .
D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents
D002491 - Central Nervous System Agents > D000700 - Analgesics
D000893 - Anti-Inflammatory Agents
D018501 - Antirheumatic Agents
Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].
Taxifolin ((+)-Dihydroquercetin) exhibits important anti-tyrosinase activity. Taxifolin exhibits significant inhibitory activity against collagenase with an IC50 value of 193.3 μM[1]. Taxifolin is an important natural compound with antifibrotic activity. Taxifolin is a free radical scavenger with antioxidant capacity[2].
同义名列表
32 个代谢物同义名
(2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-3,4-dihydro-2H-1-benzopyran-4-one; (2R,3R)-2-(3,4-dihydroxyphenyl)-2,3-dihydro-3,5,7-trihydroxy-4H-1-benzopyran-4-one; (2R-trans)-2-(3,4-Dihydroxyphenyl)-2,3-dihydro-3,5,7-trihydroxy-4-benzopyrone; (2R,3R)-2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydrochromen-4-one; (2R,3R)-3,3’,4’,5,7-Pentahydroxyflavanone; (2R,3R)-3,3,4,5,7-Pentahydroxyflavanone; 3,5,7,3’,4’-Pentahydroxyflavanone; 3,5,7,3,4-Pentahydroxyflavanone; (+)-(2R,3R)-dihydroquercetin; 2,3-trans-Dihydroquercetin; (2R,3R)-Dihydroquercetin; trans-Dihydroquercetin; (2R,3R)-(+)-Taxifolin; 2,3-Dihydroquercetin; (±)-Taxifolin; (+)-Dihydroquercetin; (+)-trans-Taxifolin; (2R,3R)-Taxifolin; dihydroquercetin; (+-)-Taxifolin; (±)-Taxifolin; (+)-Taxifolin; Jikuberuchin; Taxifoliol; Flamena D; Taxifolin; Diquertin; Lariksin; Distylin; Lavitol; FLAMENA; Taxifolin
数据库引用编号
27 个数据库交叉引用编号
- ChEBI: CHEBI:17948
- KEGG: C01617
- PubChem: 439533
- HMDB: HMDB0303943
- Metlin: METLIN3434
- DrugBank: DB02224
- Wikipedia: Taxifolin
- KNApSAcK: C00000677
- foodb: FDB030075
- chemspider: 388626
- CAS: 20254-28-8
- CAS: 17654-26-1
- CAS: 24198-97-8
- CAS: 480-18-2
- MoNA: PS069609
- MoNA: PS069607
- MoNA: PS069608
- MoNA: PS069601
- PubChem: 4769
- LipidMAPS: LMPK12140721
- PDB-CCD: DQH
- 3DMET: B01471
- NIKKAJI: J90.394I
- medchemexpress: HY-N0136
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-701
- KNApSAcK: 17948
- LOTUS: LTS0090664
分类词条
相关代谢途径
Reactome(0)
BioCyc(0)
PlantCyc(0)
代谢反应
289 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
Plant Reactome(288)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Leucodelphinidin biosynthesis:
2OG + Oxygen + eriodictyol ⟶ (+)-taxifolin + SUCCA + carbon dioxide
- Leucopelargonidin and leucocyanidin biosynthesis:
2OG + Oxygen + eriodictyol ⟶ (+)-taxifolin + SUCCA + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
L-Phe ⟶ ammonia + trans-cinnamate
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Secondary metabolism:
ATP + CoA-SH + ferulate ⟶ AMP + PPi + feruloyl-CoA
- Leucodelphinidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
- Leucopelargonidin and leucocyanidin biosynthesis:
H+ + Oxygen + TPNH + dihydrokaempferol ⟶ (+)-taxifolin + H2O + TPN
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
563 个相关的物种来源信息
- 3319 - Abies: LTS0090664
- 97171 - Abies nephrolepis: 10.1002/CBDV.201000373
- 97171 - Abies nephrolepis: LTS0090664
- 3808 - Acacia: LTS0090664
- 1173639 - Acacia carneorum: 10.1039/P19810000514
- 1173639 - Acacia carneorum: LTS0090664
- 139012 - Acacia mearnsii: 10.1021/NP100372T
- 139012 - Acacia mearnsii: LTS0090664
- 57517 - Agapetes: LTS0090664
- 1876772 - Agapetes incurvata: 10.1016/S0031-9422(00)81226-1
- 1876772 - Agapetes incurvata: LTS0090664
- 74656 - Agrimonia pilosa Ledeb.: -
- 3812 - Albizia: LTS0090664
- 3813 - Albizia julibrissin: 10.1248/CPB.60.129
- 3813 - Albizia julibrissin: LTS0090664
- 4678 - Allium: LTS0090664
- 4679 - Allium cepa: 10.1021/JF048404O
- 4679 - Allium cepa: LTS0090664
- 4668 - Amaryllidaceae: LTS0090664
- 663964 - Anastatica: LTS0090664
- 663965 - Anastatica hierochuntica:
- 663965 - Anastatica hierochuntica: 10.1002/CHIN.200329185
- 663965 - Anastatica hierochuntica: 10.1016/J.BMC.2010.01.046
- 663965 - Anastatica hierochuntica: 10.1016/S0960-894X(03)00088-X
- 663965 - Anastatica hierochuntica: LTS0090664
- 224846 - Anaxagorea: LTS0090664
- 235716 - Anaxagorea luzonensis:
- 235716 - Anaxagorea luzonensis: 10.1002/CHIN.200052210
- 235716 - Anaxagorea luzonensis: 10.1248/CPB.48.1219
- 235716 - Anaxagorea luzonensis: LTS0090664
- 48128 - Andira: LTS0090664
- 53825 - Andira inermis: 10.1007/BF00564927
- 53825 - Andira inermis: LTS0090664
- 13336 - Annona: LTS0090664
- 1937577 - Annona ambotay: 10.1016/S0031-9422(00)83902-3
- 1937577 - Annona ambotay: LTS0090664
- 22140 - Annonaceae: LTS0090664
- 99027 - Anthemis: LTS0090664
- 314052 - Anthemis candidissima: 10.1021/NP020472M
- 589801 - Anthemis tomentosa: LTS0090664
- 4056 - Apocynaceae: LTS0090664
- 3701 - Arabidopsis: LTS0090664
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1039/B105576N
- 3702 - Arabidopsis thaliana: 10.1046/J.1365-313X.2003.01834.X
- 3702 - Arabidopsis thaliana: LTS0090664
- 3817 - Arachis: LTS0090664
- 3818 - Arachis hypogaea: 10.1007/BF02636221
- 3818 - Arachis hypogaea: LTS0090664
- 225832 - Artabotrys: LTS0090664
- 225833 - Artabotrys hexapetalus: 10.1016/S0031-9422(97)00012-5
- 225833 - Artabotrys hexapetalus: LTS0090664
- 4686 - Asparagus officinalis: 10.1371/JOURNAL.PONE.0219973
- 4210 - Asteraceae: LTS0090664
- 103963 - Austrocedrus: LTS0090664
- 103964 - Austrocedrus chilensis: 10.3891/ACTA.CHEM.SCAND.09-1728
- 103964 - Austrocedrus chilensis: LTS0090664
- 41487 - Baccharis: LTS0090664
- 2 - Bacteria: LTS0090664
- 3805 - Bauhinia: LTS0090664
- 3806 - Bauhinia purpurea: 10.1002/JCCS.199700056
- 3806 - Bauhinia purpurea: LTS0090664
- 72167 - Berchemia: LTS0090664
- 1226760 - Berchemia floribunda: 10.1248/YAKUSHI1947.110.5_354
- 1812989 - Berchemia formosana: 10.1002/JCCS.199500018
- 1812989 - Berchemia formosana: LTS0090664
- 1226761 - Berchemia racemosa: 10.1248/YAKUSHI1947.110.5_354
- 1226761 - Berchemia racemosa: LTS0090664
- 3504 - Betula: LTS0090664
- 3505 - Betula pendula: LTS0090664
- 1689654 - Betula pendula subsp. mandshurica: 10.1016/S0960-894X(98)00528-9
- 1689654 - Betula pendula subsp. mandshurica: LTS0090664
- 78630 - Betula platyphylla: LTS0090664
- 216988 - Betula platyphylla var. japonica: 10.1016/S0960-894X(98)00528-9
- 216988 - Betula platyphylla var. japonica: LTS0090664
- 3514 - Betulaceae: LTS0090664
- 3705 - Brassica: LTS0090664
- 52824 - Brassica carinata: 10.1016/S0031-9422(02)00488-0
- 52824 - Brassica carinata: LTS0090664
- 3700 - Brassicaceae: LTS0090664
- 43722 - Brucea: LTS0090664
- 210348 - Brucea javanica:
- 210348 - Brucea javanica: 10.1002/JCCS.200800033
- 210348 - Brucea javanica: 10.1016/J.FITOTE.2007.07.008
- 210348 - Brucea javanica: LTS0090664
- 3593 - Cactaceae: LTS0090664
- 86658 - Calceolaria: LTS0090664
- 3027735 - Calceolaria hypericina: LTS0090664
- 155890 - Calceolariaceae: LTS0090664
- 4441 - Camellia: LTS0090664
- 452972 - Camellia reticulata: 10.1002/HLCA.200890142
- 452972 - Camellia reticulata: LTS0090664
- 4381 - Campanulaceae: LTS0090664
- 3321 - Cedrus: LTS0090664
- 3322 - Cedrus deodara: 10.1016/0031-9422(80)85133-8
- 3322 - Cedrus deodara: LTS0090664
- 41503 - Centaurea: LTS0090664
- 16711 - Cercidiphyllaceae: LTS0090664
- 13412 - Cercidiphyllum: LTS0090664
- 13413 - Cercidiphyllum japonicum: 10.1055/S-2002-35657
- 13413 - Cercidiphyllum japonicum: LTS0090664
- 13424 - Chrysophyllum: LTS0090664
- 306910 - Cleistopholis: LTS0090664
- 306911 - Cleistopholis glauca: 10.1021/NP9901478
- 306911 - Cleistopholis glauca: LTS0090664
- 162714 - Colophospermum: LTS0090664
- 162715 - Colophospermum mopane: 10.1039/J39660001644
- 162715 - Colophospermum mopane: LTS0090664
- 1097172 - Conchidium: LTS0090664
- 4118 - Convolvulaceae: LTS0090664
- 282214 - Cota: LTS0090664
- 589812 - Cota altissima: 10.1021/NP020472M
- 589812 - Cota altissima: LTS0090664
- 3781 - Crassulaceae: LTS0090664
- 23159 - Crataegus: LTS0090664
- 510746 - Crataegus flava: 10.1016/S0367-326X(01)00315-X
- 510746 - Crataegus flava: LTS0090664
- 298646 - Crataegus sinaica: 10.1016/S0944-7113(98)80010-X
- 298646 - Crataegus sinaica: 10.1055/S-2002-32547
- 298646 - Crataegus sinaica: LTS0090664
- 3828 - Crotalaria: LTS0090664
- 1977599 - Crotalaria nitens: 10.1055/S-0028-1099931
- 1977599 - Crotalaria nitens: LTS0090664
- 3830 - Crotalaria pallida: 10.1016/J.BMCL.2003.11.074
- 3830 - Crotalaria pallida: LTS0090664
- 3368 - Cryptomeria: LTS0090664
- 3369 - Cryptomeria japonica: 10.1016/0031-9422(95)00269-D
- 3369 - Cryptomeria japonica: LTS0090664
- 3650 - Cucurbitaceae: LTS0090664
- 3367 - Cupressaceae: LTS0090664
- 4128 - Cuscuta: LTS0090664
- 4129 - Cuscuta reflexa: 10.1177/095632029700800108
- 4129 - Cuscuta reflexa: LTS0090664
- 56524 - Dittrichia: LTS0090664
- 56525 - Dittrichia viscosa: LTS0090664
- 3418 - Drimys: LTS0090664
- 3419 - Drimys winteri: 10.1016/S0378-8741(98)00069-5
- 3419 - Drimys winteri: LTS0090664
- 148695 - Entada: LTS0090664
- 489316 - Entada phaseoloides: 10.1002/CBDV.201100002
- 489316 - Entada phaseoloides: LTS0090664
- 3256 - Equisetaceae: LTS0090664
- 3257 - Equisetum: LTS0090664
- 3258 - Equisetum arvense:
- 3258 - Equisetum arvense: 10.1007/BF00571226
- 3258 - Equisetum arvense: 10.1007/BF00571236
- 3258 - Equisetum arvense: LTS0090664
- 4345 - Ericaceae: LTS0090664
- 22118 - Erythroxylaceae: LTS0090664
- 13511 - Erythroxylum: LTS0090664
- 1465301 - Erythroxylum rufum: 10.1021/NP50018A009
- 1465301 - Erythroxylum rufum: LTS0090664
- 3932 - Eucalyptus: LTS0090664
- 34317 - Eucalyptus globulus: 10.1007/BF02975503
- 34317 - Eucalyptus globulus: LTS0090664
- 2759 - Eukaryota: LTS0090664
- 3803 - Fabaceae: LTS0090664
- 3493 - Ficus: LTS0090664
- 309266 - Ficus cordata: 10.1515/ZNB-2008-1113
- 309266 - Ficus cordata: LTS0090664
- 66386 - Ficus pumila: 10.1016/S0305-1978(99)00064-2
- 66386 - Ficus pumila: LTS0090664
- 3746 - Fragaria: 10.1016/J.JFF.2014.08.013
- 3746 - Fragaria: LTS0090664
- 3747 - Fragaria × ananassa: 10.1002/0471684228.EGP12027
- 3747 - Fragaria × ananassa: 10.1016/0031-9422(95)00497-U
- 2851913 - Gambeya africana: 10.1055/S-2002-34416
- 49818 - Genista: LTS0090664
- 319660 - Genista corsica:
- 319660 - Genista corsica: 10.1016/J.BSE.2004.10.015
- 319660 - Genista corsica: 10.1021/NP990282K
- 319660 - Genista corsica: LTS0090664
- 38851 - Gentiana lutea: 10.1371/JOURNAL.PONE.0212062
- 4027 - Geraniaceae: LTS0090664
- 3310 - Ginkgo: LTS0090664
- 3311 - Ginkgo biloba: 10.3389/FPLS.2019.00983
- 3311 - Ginkgo biloba: LTS0090664
- 3309 - Ginkgoaceae: LTS0090664
- 29811 - Ginkgoopsida: LTS0090664
- 23066 - Grossulariaceae: LTS0090664
- 9606 - Homo sapiens: -
- 154422 - Hylocereus: LTS0090664
- 176265 - Hylocereus undatus: 10.1080/10286020.2011.586944
- 629714 - Hypericaceae: LTS0090664
- 55962 - Hypericum: LTS0090664
- 282542 - Hypericum japonicum:
- 282542 - Hypericum japonicum: 10.1016/S0031-9422(98)00106-X
- 282542 - Hypericum japonicum: 10.3390/MOLECULES13112796
- 282542 - Hypericum japonicum: LTS0090664
- 182994 - Ichthyothere: LTS0090664
- 185166 - Ichthyothere terminalis: 10.1016/0031-9422(82)83123-3
- 185166 - Ichthyothere terminalis: LTS0090664
- 16714 - Juglandaceae: LTS0090664
- 16718 - Juglans: LTS0090664
- 91218 - Juglans mandshurica:
- 91218 - Juglans mandshurica: 10.1007/BF02976598
- 91218 - Juglans mandshurica: 10.1248/BPB.26.1042
- 91218 - Juglans mandshurica: 10.1248/CPB.48.194
- 91218 - Juglans mandshurica: LTS0090664
- 13100 - Juniperus: LTS0090664
- 50182 - Juniperus chinensis: 10.1007/BF02976600
- 50182 - Juniperus chinensis: LTS0090664
- 105749 - Kadsura: LTS0090664
- 124781 - Kadsura heteroclita: 10.1016/J.PHYTOCHEM.2007.11.019
- 124781 - Kadsura heteroclita: LTS0090664
- 4136 - Lamiaceae: LTS0090664
- 3325 - Larix: LTS0090664
- 71402 - Larix decidua: 10.3891/ACTA.CHEM.SCAND.06-1152
- 71402 - Larix decidua: LTS0090664
- 123599 - Larix gmelinii:
- 123599 - Larix gmelinii: 10.1002/(SICI)1099-1573(199609)10:6<478::AID-PTR883>3.0.CO;2-S
- 123599 - Larix gmelinii: LTS0090664
- 193048 - Larix gmelinii var. gmelinii: 10.1007/BF00564126
- 193048 - Larix gmelinii var. gmelinii: LTS0090664
- 3326 - Larix laricina: 10.1139/V59-232
- 3326 - Larix laricina: LTS0090664
- 62751 - Larix sibirica: 10.1007/BF00565363
- 62751 - Larix sibirica: LTS0090664
- 3433 - Lauraceae: LTS0090664
- 4447 - Liliopsida: LTS0090664
- 320344 - Lippia: LTS0090664
- 542673 - Lippia origanoides:
- 542673 - Lippia origanoides: 10.1021/NP0005917
- 542673 - Lippia origanoides: 10.4268/CJCMM20162420
- 542673 - Lippia origanoides: LTS0090664
- 320357 - Lippia sidoides:
- 320357 - Lippia sidoides: 10.1021/NP0005917
- 320357 - Lippia sidoides: 10.4268/CJCMM20162420
- 3867 - Lotus: LTS0090664
- 347994 - Lotus pedunculatus: 10.1104/PP.100.1.444
- 347994 - Lotus pedunculatus: LTS0090664
- 181288 - Lotus uliginosus: 10.1104/PP.100.1.444
- 181288 - Lotus uliginosus: LTS0090664
- 3495 - Maclura: LTS0090664
- 194324 - Maclura cochinchinensis: 10.1016/J.PHYTOCHEM.2005.09.015
- 194324 - Maclura cochinchinensis: LTS0090664
- 3496 - Maclura pomifera: 10.1007/BF02859211
- 85856 - Magnolia denudata: 10.3390/MOLECULES23071558
- 3403 - Magnolia liliiflora: 10.3390/MOLECULES23071558
- 3398 - Magnoliopsida: LTS0090664
- 3723 - Matthiola: LTS0090664
- 3724 - Matthiola incana: 10.1515/ZNC-1983-7-810
- 3724 - Matthiola incana: LTS0090664
- 233713 - Mimusops: LTS0090664
- 233715 - Mimusops elengi: 10.1016/0031-9422(95)00690-7
- 233715 - Mimusops elengi: LTS0090664
- 3673 - Momordica charantia: 10.3390/MOLECULES23020469
- 3487 - Moraceae: LTS0090664
- 3497 - Morus: LTS0090664
- 3498 - Morus alba: 10.1111/J.1750-3841.2008.00854.X
- 3498 - Morus alba: LTS0090664
- 59981 - Myrsine: LTS0090664
- 883796 - Myrsine coriacea: LTS0090664
- 2072269 - Myrsine lancifolia: 10.1590/S0102-695X2010000100002
- 3931 - Myrtaceae: LTS0090664
- 4430 - Nelumbo: LTS0090664
- 4432 - Nelumbo nucifera: 10.1016/J.BMCL.2013.04.013
- 4432 - Nelumbo nucifera: LTS0090664
- 4429 - Nelumbonaceae: LTS0090664
- 106975 - Opuntia: LTS0090664
- 371859 - Opuntia ficus-indica: 10.1016/J.PHYTOCHEM.2006.04.009
- 371859 - Opuntia ficus-indica: LTS0090664
- 4747 - Orchidaceae: LTS0090664
- 39174 - Origanum: LTS0090664
- 497761 - Origanum dictamnus: 10.1021/JF904596M
- 497761 - Origanum dictamnus: LTS0090664
- 39352 - Origanum vulgare: 10.1007/BF02542580
- 39352 - Origanum vulgare: LTS0090664
- 4030 - Pelargonium: LTS0090664
- 59871 - Pelargonium reniforme: 10.1016/S0031-9422(01)00403-4
- 59871 - Pelargonium reniforme: LTS0090664
- 61508 - Persicaria: LTS0090664
- 580470 - Persicaria decipiens: 10.1248/BPB.30.595
- 46901 - Persicaria hydropiper: 10.1248/BPB.30.595
- 46901 - Persicaria hydropiper: LTS0090664
- 430754 - Persicaria lapathifolia:
- 430754 - Persicaria lapathifolia: LTS0090664
- 1211590 - Persicaria lapathifolia subsp. lapathifolia: 10.1248/CPB.30.1602
- 1211590 - Persicaria lapathifolia subsp. lapathifolia: LTS0090664
- 488004 - Persicaria nodosa: 10.1248/CPB.30.1602
- 488004 - Persicaria nodosa: LTS0090664
- 467334 - Persicaria orientalis: 10.4268/CJCMM20101316
- 2726405 - Petrosedum: LTS0090664
- 4101 - Petunia: 10.1016/0031-9422(89)80139-6
- 4101 - Petunia: LTS0090664
- 4102 - Petunia × hybrida: 10.1016/0031-9422(89)80139-6
- 4102 - Petunia × hybrida: 10.1515/ZNC-1987-9-1026
- 128686 - Phoebe: LTS0090664
- 128687 - Phoebe formosana: 10.1002/JCCS.199900034
- 128687 - Phoebe formosana: LTS0090664
- 3328 - Picea: LTS0090664
- 3329 - Picea abies:
- 3329 - Picea abies: 10.1002/(SICI)1099-1565(199601)7:1<42::AID-PCA282>3.0.CO;2-K
- 3329 - Picea abies: 10.1016/0021-9673(95)00755-5
- 3329 - Picea abies: LTS0090664
- 67778 - Picea jezoensis:
- 67778 - Picea jezoensis: 10.1021/NP070104O
- 67778 - Picea jezoensis: LTS0090664
- 689840 - Picea jezoensis subsp. jezoensis: 10.1016/J.BMC.2009.07.016
- 689840 - Picea jezoensis subsp. jezoensis: 10.1021/NP070104O
- 689840 - Picea jezoensis subsp. jezoensis: LTS0090664
- 689841 - Picea jezoensis var. jezoensis: 10.1016/J.BMC.2009.07.016
- 689841 - Picea jezoensis var. jezoensis: 10.1021/NP070104O
- 689841 - Picea jezoensis var. jezoensis: LTS0090664
- 3318 - Pinaceae: LTS0090664
- 58019 - Pinopsida: LTS0090664
- 3337 - Pinus: LTS0090664
- 3339 - Pinus contorta:
- 3339 - Pinus contorta: 10.1007/BF02907158
- 3339 - Pinus contorta: 10.1016/S0021-9673(01)81355-8
- 3339 - Pinus contorta: LTS0090664
- 88730 - Pinus massoniana: 10.1016/S0031-9422(00)80826-2
- 88730 - Pinus massoniana: LTS0090664
- 55062 - Pinus ponderosa: 10.1021/JF00110A049
- 55062 - Pinus ponderosa: LTS0090664
- 3349 - Pinus sylvestris:
- 3349 - Pinus sylvestris: 10.1016/0031-9422(88)87039-0
- 3349 - Pinus sylvestris: 10.1016/0031-9422(96)00122-7
- 3349 - Pinus sylvestris: 10.1016/S0305-1978(02)00060-1
- 3349 - Pinus sylvestris: LTS0090664
- 98711 - Pittocaulon: LTS0090664
- 98712 - Pittocaulon praecox: 10.3987/COM-08-11625
- 98712 - Pittocaulon praecox: LTS0090664
- 1707444 - Pittocaulon velatum: 10.1021/NP200188W
- 1707444 - Pittocaulon velatum: LTS0090664
- 33090 - Plants: -
- 94285 - Platycodon: LTS0090664
- 94286 - Platycodon grandiflorus: 10.1248/CPB.40.3081
- 94286 - Platycodon grandiflorus: LTS0090664
- 305385 - Plectocephalus chilensis: 10.1055/S-2007-971441
- 4479 - Poaceae: LTS0090664
- 3362 - Podocarpaceae: LTS0090664
- 3363 - Podocarpus: LTS0090664
- 120625 - Podocarpus nivalis: 10.1016/S0031-9422(00)84968-7
- 120625 - Podocarpus nivalis: LTS0090664
- 4275 - Polygala: LTS0090664
- 3025166 - Polygala caudata: LTS0090664
- 4274 - Polygalaceae: LTS0090664
- 3615 - Polygonaceae: LTS0090664
- 46786 - Polygonum: LTS0090664
- 241806 - Polypodiopsida: LTS0090664
- 4335 - Primulaceae: LTS0090664
- 3754 - Prunus: LTS0090664
- 42229 - Prunus avium:
- 42229 - Prunus avium: 10.1016/0304-4238(78)90069-9
- 42229 - Prunus avium: LTS0090664
- 378224 - Prunus cerasoides: 10.1016/0040-4020(59)80074-0
- 378224 - Prunus cerasoides: LTS0090664
- 140311 - Prunus cerasus: 10.1016/0304-4238(78)90069-9
- 140311 - Prunus cerasus: LTS0090664
- 151433 - Prunus fruticosa: 10.1016/0304-4238(78)90069-9
- 151433 - Prunus fruticosa: LTS0090664
- 140654 - Prunus grayana: 10.1016/S0031-9422(00)97773-2
- 140654 - Prunus grayana: LTS0090664
- 195662 - Prunus prostrata: 10.1021/NP50102A017
- 195662 - Prunus prostrata: LTS0090664
- 3356 - Pseudotsuga: LTS0090664
- 3357 - Pseudotsuga menziesii:
- 3357 - Pseudotsuga menziesii: 10.1016/S0031-9422(97)00245-8
- 3357 - Pseudotsuga menziesii: 10.1039/C39890000217
- 3357 - Pseudotsuga menziesii: LTS0090664
- 104317 - Pterodon: LTS0090664
- 1079077 - Pterodon emarginatus: 10.1590/S0103-50532000000200015
- 1079077 - Pterodon emarginatus: LTS0090664
- 56534 - Pulicaria: LTS0090664
- 22663 - Punica granatum: 10.1371/JOURNAL.PONE.0142777
- 144561 - Pyracantha: LTS0090664
- 193309 - Pyracantha coccinea: 10.1016/0031-9422(93)85108-4
- 193309 - Pyracantha coccinea: LTS0090664
- 3608 - Rhamnaceae: LTS0090664
- 3609 - Rhamnus: LTS0090664
- 1813078 - Rhamnus disperma: 10.1016/S0031-9422(99)00262-9
- 1813078 - Rhamnus disperma: LTS0090664
- 3091430 - Rhamnus erythroxyloides: LTS0090664
- 72169 - Rhamnus lycioides: 10.1515/ZNC-1986-11-1204
- 72169 - Rhamnus lycioides: LTS0090664
- 1813065 - Rhamnus pallasii: 10.1016/0031-9422(83)80110-1
- 1813065 - Rhamnus pallasii: LTS0090664
- 4346 - Rhododendron: 10.1016/S0031-9422(00)81226-1
- 4346 - Rhododendron: LTS0090664
- 318879 - Rhododendron abietifolium: 10.1016/S0031-9422(00)81226-1
- 318879 - Rhododendron abietifolium: LTS0090664
- 228355 - Rhododendron acuminatum: 10.1016/S0031-9422(00)81226-1
- 228355 - Rhododendron acuminatum: LTS0090664
- 313316 - Rhododendron adenopodum: 10.1016/S0031-9422(00)81226-1
- 313316 - Rhododendron adenopodum: LTS0090664
- 2878209 - Rhododendron aurigeranum: 10.1016/S0031-9422(00)81226-1
- 2878209 - Rhododendron aurigeranum: LTS0090664
- 940862 - Rhododendron bagobonum: 10.1016/S0031-9422(00)81226-1
- 940862 - Rhododendron bagobonum: LTS0090664
- 2872542 - Rhododendron beyerinckianum: 10.1016/S0031-9422(00)81226-1
- 2872542 - Rhododendron beyerinckianum: LTS0090664
- 940863 - Rhododendron brookeanum: 10.1016/S0031-9422(00)81226-1
- 940864 - Rhododendron buxifolium: 10.1016/S0031-9422(00)81226-1
- 940864 - Rhododendron buxifolium: LTS0090664
- 2873472 - Rhododendron christianae: 10.1016/S0031-9422(00)81226-1
- 2873472 - Rhododendron christianae: LTS0090664
- 313322 - Rhododendron crassifolium: 10.1016/S0031-9422(00)81226-1
- 313322 - Rhododendron crassifolium: LTS0090664
- 228361 - Rhododendron culminicola: 10.1016/S0031-9422(00)81226-1
- 880079 - Rhododendron dauricum L.: -
- 344754 - Rhododendron decorum: 10.1007/S10600-009-9245-X
- 344754 - Rhododendron decorum: LTS0090664
- 2878215 - Rhododendron dianthosmum: 10.1016/S0031-9422(00)81226-1
- 2878215 - Rhododendron dianthosmum: LTS0090664
- 2946219 - Rhododendron durionifolium: 10.1016/S0031-9422(00)81226-1
- 2946219 - Rhododendron durionifolium: LTS0090664
- 940867 - Rhododendron edanoi: LTS0090664
- 228363 - Rhododendron gracilentum: 10.1016/S0031-9422(00)81226-1
- 228363 - Rhododendron gracilentum: LTS0090664
- 2946436 - Rhododendron hooglandii: 10.1016/S0031-9422(00)81226-1
- 2946436 - Rhododendron hooglandii: LTS0090664
- 228365 - Rhododendron inconspicuum: 10.1016/S0031-9422(00)81226-1
- 228365 - Rhododendron inconspicuum: LTS0090664
- 318897 - Rhododendron intranervatum: 10.1016/S0031-9422(00)81226-1
- 318897 - Rhododendron intranervatum: LTS0090664
- 228366 - Rhododendron jasminiflorum: 10.1016/S0031-9422(00)81226-1
- 228366 - Rhododendron jasminiflorum: LTS0090664
- 49624 - Rhododendron javanicum: 10.1016/S0031-9422(00)81226-1
- 49624 - Rhododendron javanicum: LTS0090664
- 174249 - Rhododendron kawakamii: 10.1016/S0031-9422(00)81226-1
- 174249 - Rhododendron kawakamii: LTS0090664
- 228367 - Rhododendron konori: 10.1016/S0031-9422(00)81226-1
- 228367 - Rhododendron konori: LTS0090664
- 228368 - Rhododendron laetum: 10.1016/S0031-9422(00)81226-1
- 228368 - Rhododendron laetum: LTS0090664
- 2873484 - Rhododendron lanceolatum: 10.1016/S0031-9422(00)81226-1
- 2873484 - Rhododendron lanceolatum: LTS0090664
- 184576 - Rhododendron latoucheae: 10.1016/S0031-9422(00)81226-1
- 49625 - Rhododendron leptanthum: 10.1016/S0031-9422(00)81226-1
- 49625 - Rhododendron leptanthum: LTS0090664
- 228370 - Rhododendron leucogigas: 10.1016/S0031-9422(00)81226-1
- 228370 - Rhododendron leucogigas: LTS0090664
- 2800032 - Rhododendron macgregoriae: 10.1016/S0031-9422(00)81226-1
- 2800032 - Rhododendron macgregoriae: LTS0090664
- 2878219 - Rhododendron nieuwenhuisii: 10.1016/S0031-9422(00)81226-1
- 2878219 - Rhododendron nieuwenhuisii: LTS0090664
- 940876 - Rhododendron orbiculatum: 10.1016/S0031-9422(00)81226-1
- 940876 - Rhododendron orbiculatum: LTS0090664
- 318911 - Rhododendron phaeochitum: 10.1016/S0031-9422(00)81226-1
- 318911 - Rhododendron phaeochitum: LTS0090664
- 1685497 - Rhododendron planecostatum: 10.1016/S0031-9422(00)81226-1
- 1685497 - Rhododendron planecostatum: LTS0090664
- 228375 - Rhododendron pneumonanthum: 10.1016/S0031-9422(00)81226-1
- 228375 - Rhododendron pneumonanthum: LTS0090664
- 318890 - Rhododendron polyanthemum: 10.1016/S0031-9422(00)81226-1
- 318890 - Rhododendron polyanthemum: LTS0090664
- 940879 - Rhododendron praetervisum: 10.1016/S0031-9422(00)81226-1
- 940879 - Rhododendron praetervisum: LTS0090664
- 228378 - Rhododendron rarum: 10.1016/S0031-9422(00)81226-1
- 228378 - Rhododendron rarum: LTS0090664
- 228379 - Rhododendron retusum: 10.1016/S0031-9422(00)81226-1
- 228379 - Rhododendron retusum: LTS0090664
- 318902 - Rhododendron robinsonii: 10.1016/S0031-9422(00)81226-1
- 318902 - Rhododendron robinsonii: LTS0090664
- 940883 - Rhododendron rugosum: 10.1016/S0031-9422(00)81226-1
- 940883 - Rhododendron rugosum: LTS0090664
- 2873492 - Rhododendron searleanum: 10.1016/S0031-9422(00)81226-1
- 2873492 - Rhododendron searleanum: LTS0090664
- 1080742 - Rhododendron simiarum: 10.1016/S0031-9422(00)81226-1
- 182159 - Rhododendron spinuliferum: 10.1007/S10600-009-9410-2
- 182159 - Rhododendron spinuliferum: LTS0090664
- 940887 - Rhododendron stapfianum: 10.1016/S0031-9422(00)81226-1
- 940887 - Rhododendron stapfianum: LTS0090664
- 1685496 - Rhododendron stenophyllum: 10.1016/S0031-9422(00)81226-1
- 1685496 - Rhododendron stenophyllum: LTS0090664
- 940888 - Rhododendron suaveolens: 10.1016/S0031-9422(00)81226-1
- 940888 - Rhododendron suaveolens: LTS0090664
- 228384 - Rhododendron superbum: 10.1016/S0031-9422(00)81226-1
- 228384 - Rhododendron superbum: LTS0090664
- 318912 - Rhododendron vitis-idaea: 10.1016/S0031-9422(00)81226-1
- 318912 - Rhododendron vitis-idaea: LTS0090664
- 318909 - Rhododendron womersleyi: 10.1016/S0031-9422(00)81226-1
- 318909 - Rhododendron womersleyi: LTS0090664
- 2873496 - Rhododendron wrightianum: 10.1016/S0031-9422(00)81226-1
- 2873496 - Rhododendron wrightianum: LTS0090664
- 940890 - Rhododendron yelliottii: 10.1016/S0031-9422(00)81226-1
- 940890 - Rhododendron yelliottii: LTS0090664
- 228389 - Rhododendron zoelleri: 10.1016/S0031-9422(00)81226-1
- 228389 - Rhododendron zoelleri: LTS0090664
- 3801 - Ribes: LTS0090664
- 78511 - Ribes nigrum: 10.1016/S0031-9422(01)00441-1
- 78511 - Ribes nigrum: LTS0090664
- 3764 - Rosa: LTS0090664
- 74635 - Rosa canina: 10.1271/BBB.90181
- 74635 - Rosa canina: LTS0090664
- 3745 - Rosaceae: LTS0090664
- 3688 - Salicaceae: LTS0090664
- 40685 - Salix: LTS0090664
- 1004002 - Salix atrocinerea: 10.1021/NP50040A007
- 172267 - Salix caprea: 10.1021/NP50040A007
- 172267 - Salix caprea: LTS0090664
- 75718 - Salix sachalinensis:
- 75718 - Salix sachalinensis: 10.1248/CPB.39.803
- 75718 - Salix sachalinensis: 10.3987/COM-90-5425
- 75718 - Salix sachalinensis: LTS0090664
- 889485 - Salix udensis: LTS0090664
- 23672 - Sapindaceae: LTS0090664
- 3737 - Sapotaceae: LTS0090664
- 16733 - Schisandraceae: LTS0090664
- 3784 - Sedum: LTS0090664
- 91145 - Sedum rupestre: 10.1016/0031-9422(80)85133-8
- 91145 - Sedum rupestre: LTS0090664
- 176265 - Selenicereus undatus: 10.1080/10286020.2011.586944
- 386229 - Sicana: LTS0090664
- 386230 - Sicana odorifera: 10.1016/J.FITOTE.2004.05.004
- 386230 - Sicana odorifera: LTS0090664
- 92920 - Silybum: LTS0090664
- 92921 - Silybum marianum:
- 92921 - Silybum marianum: 10.1002/CHIN.200338195
- 92921 - Silybum marianum: 10.1007/978-3-540-71095-0_9380
- 92921 - Silybum marianum: 10.1016/S0731-7085(98)00231-3
- 92921 - Silybum marianum: 10.1039/B300099K
- 92921 - Silybum marianum: 10.1055/S-2006-962330
- 92921 - Silybum marianum: 10.1080/11263508209428058
- 92921 - Silybum marianum: 10.1158/0008-5472.CAN-04-4662
- 92921 - Silybum marianum: 10.1177/1534735407301825
- 92921 - Silybum marianum: 10.1300/J044V10N01_08
- 92921 - Silybum marianum: LTS0090664
- 23808 - Simaroubaceae: LTS0090664
- 4703 - Smilacaceae: LTS0090664
- 49656 - Smilax: LTS0090664
- 49657 - Smilax China: -
- 1045139 - Smilax corbularia: 10.1016/J.PHYTOCHEM.2010.12.018
- 1045139 - Smilax corbularia: LTS0090664
- 703614 - Smilax glabra: 10.1055/S-1999-13963
- 703614 - Smilax glabra: LTS0090664
- 703614 - Smilax glabra Roxb.: -
- 4070 - Solanaceae: LTS0090664
- 4557 - Sorghum: LTS0090664
- 4558 - Sorghum bicolor: 10.1016/S0031-9422(00)81304-7
- 4558 - Sorghum bicolor: LTS0090664
- 132464 - Spatholobus: LTS0090664
- 455371 - Spatholobus suberectus: 10.1016/J.PHYTOCHEM.2006.05.008
- 455371 - Spatholobus suberectus: LTS0090664
- 1883 - Streptomyces: LTS0090664
- 1886 - Streptomyces albidoflavus: 10.1038/S41598-019-49478-2
- 1886 - Streptomyces albidoflavus: LTS0090664
- 42239 - Streptomyces sampsonii: 10.1038/S41598-019-49478-2
- 42239 - Streptomyces sampsonii: LTS0090664
- 2062 - Streptomycetaceae: LTS0090664
- 35493 - Streptophyta: LTS0090664
- 27065 - Theaceae: LTS0090664
- 49990 - Thymus: LTS0090664
- 49992 - Thymus vulgaris: 10.1021/NP010636J
- 49992 - Thymus vulgaris: LTS0090664
- 69388 - Trachelospermum: LTS0090664
- 69389 - Trachelospermum jasminoides: 10.1016/0031-9422(88)84132-3
- 69389 - Trachelospermum jasminoides: LTS0090664
- 58023 - Tracheophyta: LTS0090664
- 21910 - Verbenaceae: LTS0090664
- 33090 - Viridiplantae: LTS0090664
- 3417 - Winteraceae: LTS0090664
- 99657 - Xanthoceras: LTS0090664
- 99658 - Xanthoceras sorbifolium: 10.1021/NP9902441
- 99658 - Xanthoceras sorbifolium: LTS0090664
- 72171 - Ziziphus: LTS0090664
- 326968 - Ziziphus jujuba: 10.1016/J.BSE.2013.04.001
- 326968 - Ziziphus jujuba: LTS0090664
- 157914 - Ziziphus mauritiana: 10.1016/J.BSE.2013.04.001
- 157914 - Ziziphus mauritiana: LTS0090664
- 264981 - Ziziphus spina-christi: 10.21608/BFSA.1985.75704
- 264981 - Ziziphus spina-christi: LTS0090664
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Qiteng Ding, Wencong Liu, Shuai Zhang, Shuwen Sun, Jiali Yang, Lifeng Zhang, Ning Wang, Shuang Ma, Guodong Chai, Liqian Shen, Yang Gao, Chuanbo Ding, Xinglong Liu. Hydrogel loaded with thiolated chitosan modified taxifolin liposome promotes osteoblast proliferation and regulates Wnt signaling pathway to repair rat skull defects.
Carbohydrate polymers.
2024 Jul; 336(?):122115. doi:
10.1016/j.carbpol.2024.122115
. [PMID: 38670750] - Marija Bruić, Andrea Pirković, Sunčica Borozan, Mirjana Nacka Aleksić, Milica Jovanović Krivokuća, Biljana Spremo-Potparević. Antioxidative and anti-inflammatory effects of taxifolin in H2O2-induced oxidative stress in HTR-8/SVneo trophoblast cell line.
Reproductive toxicology (Elmsford, N.Y.).
2024 Jun; 126(?):108585. doi:
10.1016/j.reprotox.2024.108585
. [PMID: 38574953] - Yuqiao Zeng, Yiyu He, Li Wang, Hao Xu, Qianwen Zhang, Yanjun Wang, Jianhua Zhang, Likun Wang. Dihydroquercetin improves experimental acute liver failure by targeting ferroptosis and mitochondria-mediated apoptosis through the SIRT1/p53 axis.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jun; 128(?):155533. doi:
10.1016/j.phymed.2024.155533
. [PMID: 38552433] - Qiteng Ding, Xinglong Liu, Xuexia Liu, Guodong Chai, Ning Wang, Shuang Ma, Lifeng Zhang, Shuai Zhang, Jiali Yang, Yanjun Wang, Liqian Shen, Chuanbo Ding, Wencong Liu. Polyvinyl alcohol/carboxymethyl chitosan-based hydrogels loaded with taxifolin liposomes promote diabetic wound healing by inhibiting inflammation and regulating autophagy.
International journal of biological macromolecules.
2024 Apr; 263(Pt 1):130226. doi:
10.1016/j.ijbiomac.2024.130226
. [PMID: 38368971] - Yang Lu, Xinglong Liu, Ting Zhao, Chuanbo Ding, Qiteng Ding, Ning Wang, Shuang Ma, Lina Ma, Wencong Liu. Synthesis of Taxifolin-Loaded Polydopamine for Chemo-Photothermal-Synergistic Therapy of Ovarian Cancer.
Molecules (Basel, Switzerland).
2024 Feb; 29(5):. doi:
10.3390/molecules29051042
. [PMID: 38474556] - Ziyang Liu, Dengjun Qiu, Tong Yang, Jingxu Su, Chengyuan Liu, Xinyue Su, Anning Li, Pingping Sun, Jianguo Li, Li Yan, Chuanbo Ding, Shuai Zhang. Research Progress of Dihydroquercetin in the Treatment of Skin Diseases.
Molecules (Basel, Switzerland).
2023 Oct; 28(19):. doi:
10.3390/molecules28196989
. [PMID: 37836832] - Yue Wang, Chuanbo Ding, Yingchun Zhao, Jinping Zang, Qiteng Ding, Shuai Zhang, Ning Wang, Jiali Yang, Siyu Xi, Ting Zhao, Chunli Zhao, Wencong Liu. Sodium alginate/poly(vinyl alcohol)/taxifolin nanofiber mat promoting diabetic wound healing by modulating the inflammatory response, angiogenesis, and skin flora.
International journal of biological macromolecules.
2023 Aug; ?(?):126530. doi:
10.1016/j.ijbiomac.2023.126530
. [PMID: 37634780] - Amir Taldaev, Anastasiya D Savina, Vera V Olicheva, Sergey V Ivanov, Roman P Terekhov, Igor R Ilyasov, Anastasiya K Zhevlakova, Irina A Selivanova. Protective Properties of Spheroidal Taxifolin Form in Streptozotocin-Induced Diabetic Rats.
International journal of molecular sciences.
2023 Jul; 24(15):. doi:
10.3390/ijms241511962
. [PMID: 37569337] - Ipek Bayram, Artiona Laze, Eric A Decker. Synergistic Mechanisms of Interactions between Myricetin or Taxifolin with α-Tocopherol in Oil-in-Water Emulsions.
Journal of agricultural and food chemistry.
2023 Jun; ?(?):. doi:
10.1021/acs.jafc.3c01226
. [PMID: 37279160] - J N Caamaño, J Santiago-Moreno, F Martínez-Pastor, C Tamargo, A Salman, Á Fernández, M J Merino, E Lacalle, A Toledano-Díaz, C O Hidalgo. Use of the flavonoid taxifolin for sperm cryopreservation from the threatened Bermeya goat breed.
Theriogenology.
2023 May; 206(?):18-27. doi:
10.1016/j.theriogenology.2023.05.004
. [PMID: 37172535] - Qiteng Ding, Chuanbo Ding, Xinglong Liu, Yinan Zheng, Yingchun Zhao, Shuai Zhang, Shuwen Sun, Zanwen Peng, Wencong Liu. Preparation of nanocomposite membranes loaded with taxifolin liposome and its mechanism of wound healing in diabetic mice.
International journal of biological macromolecules.
2023 Apr; 241(?):124537. doi:
10.1016/j.ijbiomac.2023.124537
. [PMID: 37086765] - Shalini Gurumayum, Simanta Bharadwaj, Yunus Sheikh, Sagar R Barge, Kangkon Saikia, Deepsikha Swargiary, Semim Akhtar Ahmed, Debajit Thakur, Jagat C Borah. Taxifolin-3-O-glucoside from Osbeckia nepalensis Hook. mediates antihyperglycemic activity in CC1 hepatocytes and in diabetic Wistar rats via regulating AMPK/G6Pase/PEPCK signaling axis.
Journal of ethnopharmacology.
2023 Mar; 303(?):115936. doi:
10.1016/j.jep.2022.115936
. [PMID: 36403743] - Takayuki Inoue, Bin Fu, Miwako Nishio, Miyako Tanaka, Hisashi Kato, Masashi Tanaka, Michiko Itoh, Hajime Yamakage, Kozue Ochi, Ayaka Ito, Yukihiro Shiraki, Satoshi Saito, Masafumi Ihara, Hideo Nishimura, Atsuhiko Kawamoto, Shian Inoue, Kumiko Saeki, Atsushi Enomoto, Takayoshi Suganami, Noriko Satoh-Asahara. Novel Therapeutic Potentials of Taxifolin for Obesity-Induced Hepatic Steatosis, Fibrogenesis, and Tumorigenesis.
Nutrients.
2023 Jan; 15(2):. doi:
10.3390/nu15020350
. [PMID: 36678220] - A B Katasonov. [Dihydroquercetin as a systemic neuroprotector for the prevention and treatment of β-amyloid-associated brain diseases].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2023; 123(7):136-142. doi:
10.17116/jnevro2023123071136
. [PMID: 37490679] - Mengyu Wang, Hui Han, Fan Wan, Ruqing Zhong, Yoon Jung Do, Sang-Ik Oh, Xuemeng Lu, Lei Liu, Bao Yi, Hongfu Zhang. Dihydroquercetin Supplementation Improved Hepatic Lipid Dysmetabolism Mediated by Gut Microbiota in High-Fat Diet (HFD)-Fed Mice.
Nutrients.
2022 Dec; 14(24):. doi:
10.3390/nu14245214
. [PMID: 36558373] - Jinping Zhang, Yongchun Zheng, Bo Hong, Lina Ma, Yingchun Zhao, Shuai Zhang, Shuwen Sun, Qiteng Ding, Yue Wang, Wencong Liu, Chuanbo Ding. Dihydroquercetin composite nanofibrous membrane prevents UVA radiation-mediated inflammation, apoptosis and oxidative stress by modulating MAPKs/Nrf2 signaling in human epidermal keratinocytes.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Nov; 155(?):113727. doi:
10.1016/j.biopha.2022.113727
. [PMID: 36156260] - Shiqin Yu, Mingjia Li, Song Gao, Jingwen Zhou. Engineering Saccharomyces cerevisiae for the production of dihydroquercetin from naringenin.
Microbial cell factories.
2022 Oct; 21(1):213. doi:
10.1186/s12934-022-01937-8
. [PMID: 36243863] - R Ozyurt, N Celik, Z Suleyman, F Cagiran, Z Kali, N Gurkan, F Altindag, S Bulut, C Sarigul, K Dinc, H Suleyman. Fertility protective effect of taxifolin in cisplatin-induced ovarian damage.
European review for medical and pharmacological sciences.
2022 10; 26(19):7195-7203. doi:
10.26355/eurrev_202210_29909
. [PMID: 36263529] - Mei-Hua Piao, Hui Wang, Yin-Jing Jiang, Yan-Ling Wu, Ji-Xing Nan, Li-Hua Lian. Taxifolin blocks monosodium urate crystal-induced gouty inflammation by regulating phagocytosis and autophagy.
Inflammopharmacology.
2022 Aug; 30(4):1335-1349. doi:
10.1007/s10787-022-01014-x
. [PMID: 35708797] - Ying Li, Hang Su, Zhong-Ping Yin, Jing-En Li, En Yuan, Qing-Feng Zhang. Metabolism, tissue distribution and excretion of taxifolin in rat.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2022 Jun; 150(?):112959. doi:
10.1016/j.biopha.2022.112959
. [PMID: 35430392] - Jinping Zhang, Kecheng Chen, Chuanbo Ding, Shuwen Sun, Yinan Zheng, Qiteng Ding, Bo Hong, Wencong Liu. Fabrication of chitosan/PVP/dihydroquercetin nanocomposite film for in vitro and in vivo evaluation of wound healing.
International journal of biological macromolecules.
2022 May; 206(?):591-604. doi:
10.1016/j.ijbiomac.2022.02.110
. [PMID: 35217084] - Yiming Zhang, Lanlan Zhan, Quan Wen, Yulin Feng, Yun Luo, Ting Tan. Trapping Methylglyoxal by Taxifolin and Its Metabolites in Mice.
Journal of agricultural and food chemistry.
2022 Apr; 70(16):5026-5038. doi:
10.1021/acs.jafc.2c02189
. [PMID: 35420027] - Nguyen Huy Thuan, Anil Shrestha, Nguyen Thanh Trung, Vinay Bharadwaj Tatipamula, Duong Van Cuong, Nguyen Xuan Canh, Nguyen Van Giang, Tae-Su Kim, Jae Kyung Sohng, Dipesh Dhakal. Advances in biochemistry and the biotechnological production of taxifolin and its derivatives.
Biotechnology and applied biochemistry.
2022 Apr; 69(2):848-861. doi:
10.1002/bab.2156
. [PMID: 33797804] - Murat Alay, Miyase Gulcin Sonmez, Aysegul Sakin, Murat Atmaca, Halis Suleyman, Gulce Naz Yazici, Abdulkadir Coban, Bahadir Suleyman, Seval Bulut, Durdu Altuner. The effects of taxifolin on neuropathy related with hyperglycemia and neuropathic pain in rats: A biochemical and histopathological evaluation.
Advances in clinical and experimental medicine : official organ Wroclaw Medical University.
2022 Apr; 31(4):427-435. doi:
10.17219/acem/144002
. [PMID: 35178903] - Hang Su, Wen-Jun Wang, Guo-Dong Zheng, Zhong-Ping Yin, Jing-En Li, Ling-Li Chen, Qing-Feng Zhang. The anti-obesity and gut microbiota modulating effects of taxifolin in C57BL/6J mice fed with a high-fat diet.
Journal of the science of food and agriculture.
2022 Mar; 102(4):1598-1608. doi:
10.1002/jsfa.11496
. [PMID: 34409603] - Wei Li, Le Zhang, Qingbiao Xu, Wenbo Yang, Jianan Zhao, Ying Ren, Zhendong Yu, Libao Ma. Taxifolin Alleviates DSS-Induced Ulcerative Colitis by Acting on Gut Microbiome to Produce Butyric Acid.
Nutrients.
2022 Mar; 14(5):. doi:
10.3390/nu14051069
. [PMID: 35268045] - Xiangming Liu, Yiming Ma, Lijuan Luo, Dandan Zong, Herui Li, Zihang Zeng, Yanan Cui, Weiwei Meng, Yan Chen. Dihydroquercetin suppresses cigarette smoke induced ferroptosis in the pathogenesis of chronic obstructive pulmonary disease by activating Nrf2-mediated pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Feb; 96(?):153894. doi:
10.1016/j.phymed.2021.153894
. [PMID: 34942457] - Youhua Chen, Yan Mei, Lu Yang, Weibin Li, Yu Zhou, Surong He, Jie Liang. Taxifolin improves inflammatory injury of human bronchial epithelial cells by inhibiting matrix metalloproteinase (MMP) 10 via Wnt/β-catenin pathway.
Bioengineered.
2022 01; 13(1):1198-1208. doi:
10.1080/21655979.2021.2018384
. [PMID: 35000533] - Mengwen Shen, Baibai Lin, Fenghua Qian, Lei Zhao, Yao Xi, Yiming Qian. Taxifolin ameliorates sepsis-induced lung capillary leak through inhibiting the JAK/STAT3 pathway.
Allergologia et immunopathologia.
2022; 50(2):7-15. doi:
10.15586/aei.v50i2.550
. [PMID: 35257540] - Ceyda Tanoğlu, Alevtina Ersoy, Taha Abdulkadir Çoban, Gülce Naz Yazıcı, Renad Mammadov, Bahadır Süleyman. The effect of taxifolin on oxidative sciatic nerve damage induced by cobalt chloride in rats: a biochemical and histopathological evaluation.
Acta neurobiologiae experimentalis.
2022; 82(3):254-262. doi:
10.55782/ane-2022-024
. [PMID: 36214708] - Alena Rajnochová Svobodová, Alena Ryšavá, Kateřina Čížková, Lenka Roubalová, Jitka Ulrichová, Jiří Vrba, Bohumil Zálešák, Jitka Vostálová. Effect of the flavonoids quercetin and taxifolin on UVA-induced damage to human primary skin keratinocytes and fibroblasts.
Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.
2022 Jan; 21(1):59-75. doi:
10.1007/s43630-021-00140-9
. [PMID: 34837635] - Xiaoying Yu, Saddam Hussein, Lijia Li, Qingyu Liu, Zhibin Ban, Hailong Jiang. Effect of Dihydroquercetin on Energy Metabolism in LPS-Induced Inflammatory Mice.
BioMed research international.
2022; 2022(?):6491771. doi:
10.1155/2022/6491771
. [PMID: 35832840] - Sahin Yuceli, Bahadir Suleyman, Gulce Naz Yazici, Renad Mammadov, Murat Cankaya, Celaleddin Semih Kunak, Seval Bulut, Halis Suleyman, Durdu Altuner. Effect of Taxifolin on Ischemia/Reperfusion-Induced Oxidative Injury of Sciatic Nerve in Rats.
Transplantation proceedings.
2021 Dec; 53(10):3087-3092. doi:
10.1016/j.transproceed.2021.09.041
. [PMID: 34772492] - Xing-Long Liu, Ying-Chun Zhao, Hong-Yan Zhu, Ming Wu, Yi-Nan Zheng, Min Yang, Zhi-Qiang Cheng, Chuan-Bo Ding, Wen-Cong Liu. Taxifolin retards the D-galactose-induced aging process through inhibiting Nrf2-mediated oxidative stress and regulating the gut microbiota in mice.
Food & function.
2021 Nov; 12(23):12142-12158. doi:
10.1039/d1fo01349a
. [PMID: 34788354] - Fan Wan, Hui Han, Ruqing Zhong, Mengyu Wang, Shanlong Tang, Shunfen Zhang, Fujiang Hou, Bao Yi, Hongfu Zhang. Dihydroquercetin supplement alleviates colonic inflammation potentially through improved gut microbiota community in mice.
Food & function.
2021 Nov; 12(22):11420-11434. doi:
10.1039/d1fo01422f
. [PMID: 34673859] - Ahmed A Al-Karmalawy, Mai M Farid, Ahmed Mostafa, Alia Y Ragheb, Sara H Mahmoud, Mahmoud Shehata, Noura M Abo Shama, Mohamed GabAllah, Gomaa Mostafa-Hedeab, Mona M Marzouk. Naturally Available Flavonoid Aglycones as Potential Antiviral Drug Candidates against SARS-CoV-2.
Molecules (Basel, Switzerland).
2021 Oct; 26(21):. doi:
10.3390/molecules26216559
. [PMID: 34770969] - Tingting Di, Chunyan Zhai, Jingxia Zhao, Yan Wang, Zhaoxia Chen, Ping Li. Taxifolin inhibits keratinocyte proliferation and ameliorates imiquimod-induced psoriasis-like mouse model via regulating cytoplasmic phospholipase A2 and PPAR-γ pathway.
International immunopharmacology.
2021 Oct; 99(?):107900. doi:
10.1016/j.intimp.2021.107900
. [PMID: 34233233] - Mengyun Xing, Yunlin Cao, Chuanhong Ren, Yilong Liu, Jiajia Li, Donald Grierson, Cathie Martin, Chongde Sun, Kunsong Chen, Changjie Xu, Xian Li. Elucidation of myricetin biosynthesis in Morella rubra of the Myricaceae.
The Plant journal : for cell and molecular biology.
2021 10; 108(2):411-425. doi:
10.1111/tpj.15449
. [PMID: 34331782] - A M Kabel, H H Arab, M A Abd Elmaaboud. Attenuation of diethyl nitrosamine-induced hepatocellular carcinoma by taxifolin and/or alogliptin: The interplay between toll-like receptor 4, transforming growth factor beta-1, and apoptosis.
Human & experimental toxicology.
2021 Oct; 40(10):1710-1720. doi:
10.1177/09603271211008496
. [PMID: 33840231] - A M Kabel, S A Salama. Effect of taxifolin/dapagliflozin combination on colistin-induced nephrotoxicity in rats.
Human & experimental toxicology.
2021 Oct; 40(10):1767-1780. doi:
10.1177/09603271211010906
. [PMID: 33882723] - Shinji Kondo, Shin-Ichi Adachi, Fumiaki Yoshizawa, Kazumi Yagasaki. Antidiabetic Effect of Taxifolin in Cultured L6 Myotubes and Type 2 Diabetic Model KK-Ay/Ta Mice with Hyperglycemia and Hyperuricemia.
Current issues in molecular biology.
2021 Sep; 43(3):1293-1306. doi:
10.3390/cimb43030092
. [PMID: 34698101] - Zheng-Wen Yu, Ni Zhang, Chun-Yan Jiang, Shao-Xiong Wu, Xia-Yu Feng, Xiao-Ying Feng. Exploring the genes involved in biosynthesis of dihydroquercetin and dihydromyricetin in Ampelopsis grossedentata.
Scientific reports.
2021 08; 11(1):15596. doi:
10.1038/s41598-021-95071-x
. [PMID: 34341423] - Neelutpal Gogoi, Purvita Chowdhury, Ashis Kumar Goswami, Aparoop Das, Dipak Chetia, Bhaskarjyoti Gogoi. Computational guided identification of a citrus flavonoid as potential inhibitor of SARS-CoV-2 main protease.
Molecular diversity.
2021 Aug; 25(3):1745-1759. doi:
10.1007/s11030-020-10150-x
. [PMID: 33236176] - Fevzi Bedir, Hüseyin Kocatürk, Turgut Yapanoğlu, Cebrail Gürsul, Remzi Arslan, Renad Mammadov, Abdülkadir Çoban, Durdu Altuner, Halis Suleyman. Protective effect of taxifolin against prooxidant and proinflammatory kidney damage associated with acrylamide in rats.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2021 Jul; 139(?):111660. doi:
10.1016/j.biopha.2021.111660
. [PMID: 34243628] - Johirul Islam, Alpa Shree, Abul Vafa, Shekh M Afzal, Sarwat Sultana. Taxifolin ameliorates Benzo[a]pyrene-induced lung injury possibly via stimulating the Nrf2 signalling pathway.
International immunopharmacology.
2021 Jul; 96(?):107566. doi:
10.1016/j.intimp.2021.107566
. [PMID: 33813368] - Mehmet Emin Şeker, Ali Çelik, Kenan Dost, Ayşegül Erdoğan. Investigation of Phenolic Content in Five Different Pine Barks Species Grown in Turkey by HPLC-UV and LC-MS.
Journal of chromatographic science.
2021 May; 59(6):491-501. doi:
10.1093/chromsci/bmab022
. [PMID: 33634307] - Yue Zheng, Xian-Wen Yang, Dominique Schols, Mattia Mori, Bruno Botta, Andy Chevigné, Martin Mulinge, André Steinmetz, Jean-Claude Schmit, Carole Seguin-Devaux. Active Components from Cassia abbreviata Prevent HIV-1 Entry by Distinct Mechanisms of Action.
International journal of molecular sciences.
2021 May; 22(9):. doi:
10.3390/ijms22095052
. [PMID: 34068829] - Fernanda Cristina Stenger Moura, Valdir Cechinel-Filho, Francesco Antonio Greco, Larissa Venzon, Mariane Caroline Meurer, Tauani Caroline Dos Santos França, Bruna Longo, Lincon Bordignon Somensi, Luisa Nathalia Bolda Mariano, Alexandre Bella Cruz, Antonio Macchiarulo, Aurélie Schoubben, Maurizio Ricci, Tania Mari Belle Bresolin, Luisa Mota da Silva. Taxifolin and gastro-adhesive microparticles containing taxifolin promotes gastric healing in vivo, inhibits Helicobacter pylori in vitro and proton pump reversibly in silico.
Chemico-biological interactions.
2021 Apr; 339(?):109445. doi:
10.1016/j.cbi.2021.109445
. [PMID: 33741339] - Xianwen Yang, Zhihui He, Yue Zheng, Ning Wang, Martin Mulinge, Jean-Claude Schmit, André Steinmetz, Carole Seguin-Devaux. Chemical Constituents of Cassia abbreviata and Their Anti-HIV-1 Activity.
Molecules (Basel, Switzerland).
2021 Apr; 26(9):. doi:
10.3390/molecules26092455
. [PMID: 33922460] - Ibrahim Ahiskali, Irmak Ferah Okkay, Renad Mammadov, Ufuk Okkay, Ferda Keskin Cimen, Nezahat Kurt, Halis Suleyman. Effect of taxifolin on cisplatin-associated oxidative optic nerve damage in rats.
Cutaneous and ocular toxicology.
2021 Mar; 40(1):1-6. doi:
10.1080/15569527.2020.1844726
. [PMID: 33121287] - R P Terekhov, I A Selivanova, M N Anurova, A K Zhevlakova, I D Nikitin, Zh Cong, S Ma, F Yang, Z Dong, Y Liao. Comparative Study of Wound-Healing Activity of Dihydroquercetin Pseudopolymorphic Modifications.
Bulletin of experimental biology and medicine.
2021 Feb; 170(4):444-447. doi:
10.1007/s10517-021-05083-w
. [PMID: 33713223] - Zi-Ying Zhan, Mei Wu, Yue Shang, Min Jiang, Jian Liu, Chun-Ying Qiao, Huan Ye, Yong-Ce Lin, Mei-Hua Piao, Rong-Hui Sun, Zhi-Hong Zhang, Jing-Ya Jiao, Yan-Ling Wu, Ji-Xing Nan, Li-Hua Lian. Taxifolin ameliorate high-fat-diet feeding plus acute ethanol binge-induced steatohepatitis through inhibiting inflammatory caspase-1-dependent pyroptosis.
Food & function.
2021 Jan; 12(1):362-372. doi:
10.1039/d0fo02653k
. [PMID: 33325949] - Xinglong Liu, Wencong Liu, Chuanbo Ding, Yingchun Zhao, Xueyan Chen, Dong Ling, Yinan Zheng, Zhiqiang Cheng. Taxifolin, Extracted from Waste Larix olgensis Roots, Attenuates CCl4-Induced Liver Fibrosis by Regulating the PI3K/AKT/mTOR and TGF-β1/Smads Signaling Pathways.
Drug design, development and therapy.
2021; 15(?):871-887. doi:
10.2147/dddt.s281369
. [PMID: 33664566] - N V Khunderyakova, N V Belosludtseva, N V Khmil, A A Mosentsov, M R Stepanov, M A Ananyan, G D Mironova. [Effect of per os administration of dihydroquercetin aqueous form on energy exchange in blood lymphocytes of rats with experimental cardiomyopathy].
Voprosy pitaniia.
2021; 90(6):50-58. doi:
10.33029/0042-8833-2021-90-6-50-58
. [PMID: 35032124] - Liyuan Gao, Peipei Yuan, Qi Zhang, Yang Fu, Ying Hou, Yaxin Wei, Xiaoke Zheng, Weisheng Feng. Taxifolin improves disorders of glucose metabolism and water-salt metabolism in kidney via PI3K/AKT signaling pathway in metabolic syndrome rats.
Life sciences.
2020 Dec; 263(?):118713. doi:
10.1016/j.lfs.2020.118713
. [PMID: 33157091] - Mustafa Numan Bucak, Nazan Keskin, Pinar Ili, Mustafa Bodu, Pınar Peker Akalın, Ali Erdem Öztürk, Hüseyin Özkan, Tohid Rezaei Topraggaleh, Fikret Sari, Nuri Başpınar, Şükrü Dursun. Decreasing glycerol content by co-supplementation of trehalose and taxifolin hydrate in ram semen extender: Microscopic, oxidative stress, and gene expression analyses.
Cryobiology.
2020 10; 96(?):19-29. doi:
10.1016/j.cryobiol.2020.09.001
. [PMID: 32890464] - Samir A Salama, Ahmed M Kabel. Taxifolin ameliorates iron overload-induced hepatocellular injury: Modulating PI3K/AKT and p38 MAPK signaling, inflammatory response, and hepatocellular regeneration.
Chemico-biological interactions.
2020 Oct; 330(?):109230. doi:
10.1016/j.cbi.2020.109230
. [PMID: 32828744] - Zengqiang Li, Yige Yu, Yang Li, Feifei Ma, Yinghui Fang, Chaobo Ni, Keyang Wu, Peipei Pan, Ren-Shan Ge. Taxifolin attenuates the developmental testicular toxicity induced by di-n-butyl phthalate in fetal male rats.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2020 Aug; 142(?):111482. doi:
10.1016/j.fct.2020.111482
. [PMID: 32525071] - G D Mironova, N V Belosludtseva, M A Ananyan. Prospects for the use of regulators of oxidative stress in the comprehensive treatment of the novel Coronavirus Disease 2019 (COVID-19) and its complications.
European review for medical and pharmacological sciences.
2020 08; 24(16):8585-8591. doi:
10.26355/eurrev_202008_22658
. [PMID: 32894566] - Lin Zheng, Yueting Li, Zuying Zhou, Wenying Xiang, Zipeng Gong, Siying Chen, Yonglin Wang, Aimin Wang, Yanyu Lan, Yongjun Li, Yong Huang. Comparative pharmacokinetics of quercitrin, astragalin, afzelin and taxifolin in plasma after oral administration of Polygonum orientale inflorescence in sham-operated and myocardial ischemia-reperfusion injury rats.
Xenobiotica; the fate of foreign compounds in biological systems.
2020 Jul; 50(7):822-830. doi:
10.1080/00498254.2019.1700319
. [PMID: 31791186] - Xingbin Ma, Xukun Zhang, Hongling Lin, A M Abd El-Aty, Tsdan Rabah, Xiaoxi Liu, Zhichao Yu, Yanhong Yong, Xianghong Ju, Yongxin She. Magnetic molecularly imprinted specific solid-phase extraction for determination of dihydroquercetin from Larix griffithiana using HPLC.
Journal of separation science.
2020 Jun; 43(12):2301-2310. doi:
10.1002/jssc.201901086
. [PMID: 32191398] - Hang Su, Yi-Ting Ruan, Ying Li, Ji-Guang Chen, Zhong-Ping Yin, Qing-Feng Zhang. In vitro and in vivo inhibitory activity of taxifolin on three digestive enzymes.
International journal of biological macromolecules.
2020 May; 150(?):31-37. doi:
10.1016/j.ijbiomac.2020.02.027
. [PMID: 32035149] - Wei Wang, Bei-Lei Ma, Chang-Geng Xu, Xiang-Jun Zhou. Dihydroquercetin protects against renal fibrosis by activating the Nrf2 pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2020 Apr; 69(?):153185. doi:
10.1016/j.phymed.2020.153185
. [PMID: 32120244] - Mun Seok Jo, Seoyoung Lee, Jae Sik Yu, Su Cheol Baek, Young-Chang Cho, Ki Hyun Kim. Megastigmane Derivatives from the Cladodes of Opuntia humifusa and Their Nitric Oxide Inhibitory Activities in Macrophages.
Journal of natural products.
2020 03; 83(3):684-692. doi:
10.1021/acs.jnatprod.9b01120
. [PMID: 32118424] - Mengxia Wei, Ru Zhao, Xiaojin Peng, Chunte Feng, Huiyan Gu, Lei Yang. Ultrasound-Assisted Extraction of Taxifolin, Diosmin, and Quercetin from Abies nephrolepis (Trautv.) Maxim: Kinetic and Thermodynamic Characteristics.
Molecules (Basel, Switzerland).
2020 Mar; 25(6):. doi:
10.3390/molecules25061401
. [PMID: 32204461] - Masashi Tanaka, Satoshi Saito, Takayuki Inoue, Noriko Satoh-Asahara, Masafumi Ihara. Potential Therapeutic Approaches for Cerebral Amyloid Angiopathy and Alzheimer's Disease.
International journal of molecular sciences.
2020 Mar; 21(6):. doi:
10.3390/ijms21061992
. [PMID: 32183348] - Xia Zhang, Danqing Li, Chaoyang Dong, Jianguo Shi, Yangang Sun, Baoxian Ye, Yuandong Xu. Molybdenum sulfide-based electrochemical platform for high sensitive detection of taxifolin in Chinese medicine.
Analytica chimica acta.
2020 Feb; 1099(?):85-93. doi:
10.1016/j.aca.2019.11.057
. [PMID: 31986281] - Kee Dong Yoon, Jung-Yun Lee, Tae Yang Kim, Hanna Kang, Kyoung-Soo Ha, Tae-Ho Ham, Su Noh Ryu, Mi-Young Kang, Young-Ho Kim, Young-In Kwon. In Vitro and in Vivo Anti-Hyperglycemic Activities of Taxifolin and Its Derivatives Isolated from Pigmented Rice (Oryzae sativa L. cv. Superhongmi).
Journal of agricultural and food chemistry.
2020 Jan; 68(3):742-750. doi:
10.1021/acs.jafc.9b04962
. [PMID: 31880937] - Afolabi C Akinmoladun, Oluwabunmi O Olaniyan, Courage D Famusiwa, Sunday S Josiah, M Tolulope Olaleye. Ameliorative effect of quercetin, catechin, and taxifolin on rotenone-induced testicular and splenic weight gain and oxidative stress in rats.
Journal of basic and clinical physiology and pharmacology.
2020 Jan; 31(3):. doi:
10.1515/jbcpp-2018-0230
. [PMID: 31940286] - Sameh F AbouZid, Hayam S Ahmed, Abd-El Mageed A Abd El Mageed, Abeer S Moawad, Asmaa I Owis, Shao-Nong Chen, Amandine Nachtergael, James B McAlpine, J Brent Friesen, Guido F Pauli. Linear regression analysis of silychristin A, silybin A and silybin B contents in Silybum marianum.
Natural product research.
2020 Jan; 34(2):305-310. doi:
10.1080/14786419.2018.1527838
. [PMID: 30488719] - Jingzeng Cai, Guangliang Shi, Yuan Zhang, Yingying Zheng, Jie Yang, Qi Liu, Yafan Gong, Dahai Yu, Ziwei Zhang. Taxifolin ameliorates DEHP-induced cardiomyocyte hypertrophy via attenuating mitochondrial dysfunction and glycometabolism disorder in chicken.
Environmental pollution (Barking, Essex : 1987).
2019 Dec; 255(Pt 1):113155. doi:
10.1016/j.envpol.2019.113155
. [PMID: 31539850] - Yongkun Lv, Monireh Marsafari, Mattheos Koffas, Jingwen Zhou, Peng Xu. Optimizing Oleaginous Yeast Cell Factories for Flavonoids and Hydroxylated Flavonoids Biosynthesis.
ACS synthetic biology.
2019 11; 8(11):2514-2523. doi:
10.1021/acssynbio.9b00193
. [PMID: 31622552] - Chao-Lin Yang, Yu-Shih Lin, Keng-Fan Liu, Wen-Huang Peng, Chih-Ming Hsu. Hepatoprotective Mechanisms of Taxifolin on Carbon Tetrachloride-Induced Acute Liver Injury in Mice.
Nutrients.
2019 Nov; 11(11):. doi:
10.3390/nu11112655
. [PMID: 31689986] - Cheng Hu, Jiawen Ye, Licong Zhao, Xiulong Li, Yu Wang, Xinhua Liu, Lingyun Pan, Lisha You, Long Chen, Yiqun Jia, Jiaqi Zhang. 5,7,3',4'-flavan-on-ol (taxifolin) protects against acetaminophen-induced liver injury by regulating the glutathione pathway.
Life sciences.
2019 Nov; 236(?):116939. doi:
10.1016/j.lfs.2019.116939
. [PMID: 31593705] - O O Crown, O O Ogundele, A C Akinmoladun, C D Famusiwa, S S Josiah, M T Olaleye, A A Akindahunsi. Effects of Catechin, Quercetin and Taxifolin on Redox Parameters and Metabolites Linked with Renal Health in Rotenone-toxified Rats.
Nigerian journal of physiological sciences : official publication of the Physiological Society of Nigeria.
2019 Jun; 34(1):1-10. doi:
. [PMID: 31449265]
- Ji Yeong Kim, Jeong Yoon Kim, Janar Jenis, Zuo Peng Li, Yeong Jun Ban, Aizhamal Baiseitova, Ki Hun Park. Tyrosinase inhibitory study of flavonolignans from the seeds of Silybum marianum (Milk thistle).
Bioorganic & medicinal chemistry.
2019 06; 27(12):2499-2507. doi:
10.1016/j.bmc.2019.03.013
. [PMID: 30871862] - Tijith K George, Akhil Joy, K Divya, M S Jisha. In vitro and in silico docking studies of antibacterial compounds derived from endophytic Penicillium setosum.
Microbial pathogenesis.
2019 Jun; 131(?):87-97. doi:
10.1016/j.micpath.2019.03.033
. [PMID: 30951817] - M V Turovskaya, S G Gaidin, V N Mal'tseva, V P Zinchenko, E A Turovsky. Taxifolin protects neurons against ischemic injury in vitro via the activation of antioxidant systems and signal transduction pathways of GABAergic neurons.
Molecular and cellular neurosciences.
2019 04; 96(?):10-24. doi:
10.1016/j.mcn.2019.01.005
. [PMID: 30776416] - Yongkun Lv, Harley Edwards, Jingwen Zhou, Peng Xu. Combining 26s rDNA and the Cre-loxP System for Iterative Gene Integration and Efficient Marker Curation in Yarrowia lipolytica.
ACS synthetic biology.
2019 03; 8(3):568-576. doi:
10.1021/acssynbio.8b00535
. [PMID: 30695641] - Wei Zhou, Zeming Liu Min Wang Danyang Chen Ling Zhou Liang Guo. Taxifolin inhibits the scar cell carcinoma growth by inducing apoptosis, cell cycle arrest and suppression of PI3K/AKT/mTOR pathway.
Journal of B.U.ON. : official journal of the Balkan Union of Oncology.
2019 Mar; 24(2):853-858. doi:
. [PMID: 31128046]
- Zunpeng Shu, Yanni Yang, Liu Yang, Hai Jiang, Xiaojin Yu, Yi Wang. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway.
Food & function.
2019 Jan; 10(1):203-215. doi:
10.1039/c8fo01256c
. [PMID: 30525169] - Kanwal Rehman, Tahir Ali Chohan, Iqra Waheed, Zeeshan Gilani, Muhammad Sajid Hamid Akash. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α-amylase: Evidence from an in vivo and in silico studies.
Journal of cellular biochemistry.
2019 01; 120(1):425-438. doi:
10.1002/jcb.27398
. [PMID: 30191607] - Claudia Giuliani, Corrado Tani, Laura Maleci Bini, Gelsomina Fico, Roberto Colombo, Tommaso Martinelli. Localization of phenolic compounds in the fruits of Silybum marianum characterized by different silymarin chemotype and altered colour.
Fitoterapia.
2018 Oct; 130(?):210-218. doi:
10.1016/j.fitote.2018.09.002
. [PMID: 30213759] - Haixin Liu, Shuang He, Taiyi Wang, Barnabas Orang-Ojong, Qing Lu, Zhongqun Zhang, Lanlan Pan, Xin Chai, Honghua Wu, Guanwei Fan, Peng Zhang, Yuxin Feng, Yun Seon Song, Xuimei Gao, Richard H Karas, Yan Zhu. Selected Phytoestrogens Distinguish Roles of ERα Transactivation and Ligand Binding for Anti-Inflammatory Activity.
Endocrinology.
2018 09; 159(9):3351-3364. doi:
10.1210/en.2018-00275
. [PMID: 30010822] - Md Wasimul Haque, Pritha Bose, Mohd Usman Mohd Siddique, Priyashree Sunita, Antonio Lapenna, Shakti P Pattanayak. Taxifolin binds with LXR (α & β) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/PTEN pathway.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2018 Sep; 105(?):27-36. doi:
10.1016/j.biopha.2018.05.114
. [PMID: 29843042] - Muhammad Younas, Samantha Drouet, Muhammad Nadeem, Nathalie Giglioli-Guivarc'h, Christophe Hano, Bilal Haider Abbasi. Differential accumulation of silymarin induced by exposure of Silybum marianum L. callus cultures to several spectres of monochromatic lights.
Journal of photochemistry and photobiology. B, Biology.
2018 Jul; 184(?):61-70. doi:
10.1016/j.jphotobiol.2018.05.018
. [PMID: 29803074] - Yu Zhang, Quan Jin, Xia Li, Min Jiang, Ben-Wen Cui, Kai-Li Xia, Yan-Ling Wu, Li-Hua Lian, Ji-Xing Nan. Amelioration of Alcoholic Liver Steatosis by Dihydroquercetin through the Modulation of AMPK-Dependent Lipogenesis Mediated by P2X7R-NLRP3-Inflammasome Activation.
Journal of agricultural and food chemistry.
2018 May; 66(19):4862-4871. doi:
10.1021/acs.jafc.8b00944
. [PMID: 29706079] - Yue Zhu, Qingzhong Peng, Kegang Li, De-Yu Xie. Molecular Cloning and Functional Characterization of a Dihydroflavonol 4-Reductase from Vitis bellula.
Molecules (Basel, Switzerland).
2018 Apr; 23(4):. doi:
10.3390/molecules23040861
. [PMID: 29642567] - Tao Ding, Shaofei Wang, Xuyao Zhang, Wenjing Zai, Jiajun Fan, Wei Chen, Qi Bian, Jingyun Luan, Yilan Shen, Yanda Zhang, Dianwen Ju, Xiaobin Mei. Kidney protection effects of dihydroquercetin on diabetic nephropathy through suppressing ROS and NLRP3 inflammasome.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2018 Mar; 41(?):45-53. doi:
10.1016/j.phymed.2018.01.026
. [PMID: 29519318] - Xin Chen, Na Gu, Chao Xue, Ban-Ruo Li. Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells.
Molecular medicine reports.
2018 Feb; 17(2):3239-3245. doi:
10.3892/mmr.2017.8271
. [PMID: 29257319] - Géssica Alves Fraga, Sikiru Olaitan Balogun, Emilly Della Pascqua, Ruberlei Godinho de Oliveira, Guilherme Botelho, Eduarda Pavan, Thiago da Rosa Lima, Eudes Thiago Pereira Avila, Clarissa de Medeiros Amorim Krueger, Valdir Cechinel Filho, Amílcar Sabino Damazo, Domingos Tabajara de Oliveira Martins, Fabrício Azevedo Voltarelli. Heteropterys tomentosa A. Juss: Toxicological and adaptogenic effects in experimental models.
Nutrition and health.
2017 Dec; 23(4):289-298. doi:
10.1177/0260106017729908
. [PMID: 29214921] - Elina Karhu, Janne Isojärvi, Pia Vuorela, Leena Hanski, Adyary Fallarero. Identification of Privileged Antichlamydial Natural Products by a Ligand-Based Strategy.
Journal of natural products.
2017 10; 80(10):2602-2608. doi:
10.1021/acs.jnatprod.6b01052
. [PMID: 29043803] - Alena Rajnochová Svobodová, Alena Ryšavá, Michaela Psotová, Pavel Kosina, Bohumil Zálešák, Jitka Ulrichová, Jitka Vostálová. The Phototoxic Potential of the Flavonoids, Taxifolin and Quercetin.
Photochemistry and photobiology.
2017 10; 93(5):1240-1247. doi:
10.1111/php.12755
. [PMID: 28303596] - Vytis Čižinauskas, Nicolas Elie, Alain Brunelle, Vitalis Briedis. Skin Penetration Enhancement by Natural Oils for Dihydroquercetin Delivery.
Molecules (Basel, Switzerland).
2017 Sep; 22(9):. doi:
10.3390/molecules22091536
. [PMID: 28895890] - Chengyun Wu, Shuyan Cao, Tingting Hong, Yaoyao Dong, Chao Li, Qiufan Wang, Jianliang Sun, Ren-Shan Ge. Taxifolin inhibits rat and human 11β-hydroxysteroid dehydrogenase 2.
Fitoterapia.
2017 Sep; 121(?):112-117. doi:
10.1016/j.fitote.2017.07.004
. [PMID: 28709706] - Rudi Hendra, Paul A Keller. Phytochemical Studies on Two Australian Anigozanthos Plant Species.
Journal of natural products.
2017 07; 80(7):2141-2145. doi:
10.1021/acs.jnatprod.7b00063
. [PMID: 28682615] - Melanie Mülek, Lothar Seefried, Franca Genest, Petra Högger. Distribution of Constituents and Metabolites of Maritime Pine Bark Extract (Pycnogenol®) into Serum, Blood Cells, and Synovial Fluid of Patients with Severe Osteoarthritis: A Randomized Controlled Trial.
Nutrients.
2017 Apr; 9(5):. doi:
10.3390/nu9050443
. [PMID: 28452960] - Liancai Zhu, Jinqiu Chen, Jun Tan, Xi Liu, Bochu Wang. Flavonoids from Agrimonia pilosa Ledeb: Free Radical Scavenging and DNA Oxidative Damage Protection Activities and Analysis of Bioactivity-Structure Relationship Based on Molecular and Electronic Structures.
Molecules (Basel, Switzerland).
2017 Feb; 22(3):. doi:
10.3390/molecules22030195
. [PMID: 28245624] - Jianxia Li, Jieqiong Dong, Jie Ouyang, Jie Cui, Yuan Chen, Fengjun Wang, Jianzhong Wang. Synthesis, characterization, solubilization, cytotoxicity and antioxidant activity of aminomethylated dihydroquercetin.
MedChemComm.
2017 Feb; 8(2):353-363. doi:
10.1039/c6md00496b
. [PMID: 30108751]