NCBI Taxonomy: 49857

Annona montana (ncbi_taxid: 49857)

found 132 associated metabolites at species taxonomy rank level.

Ancestor: Annona

Child Taxonomies: none taxonomy data.

Parietin

1,8-Dihydroxy-3-methoxy-6-methylanthraquinone, Emodin-3-methyl ether

C16H12O5 (284.0684702)


Physcion is a dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. It has a role as an apoptosis inducer, an antineoplastic agent, a hepatoprotective agent, an anti-inflammatory agent, an antibacterial agent, an antifungal agent and a metabolite. It is functionally related to a 2-methylanthraquinone. Physcion is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. [Raw Data] CBA82_Physcion_pos_10eV.txt [Raw Data] CBA82_Physcion_pos_30eV.txt [Raw Data] CBA82_Physcion_pos_50eV.txt [Raw Data] CBA82_Physcion_pos_40eV.txt [Raw Data] CBA82_Physcion_pos_20eV.txt

   

Moupinamide

(Z,2E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C18H19NO4 (313.1314014)


N-feruloyltyramine is a member of tyramines. It has a role as a metabolite. Moupinamide is a natural product found in Zanthoxylum beecheyanum, Polyalthia suberosa, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Alkaloid from Piper nigrum. Moupinamide is found in many foods, some of which are nutmeg, amaranth, sapodilla, and orange bell pepper. Moupinamide is found in eggplant. Moupinamide is an alkaloid from Piper nigru CASMI2013 Challenge_1 MS2 data; [MS1] MSJ00001 CASMI2013 Challenge_1 MS1 data; [MS2] MSJ00002 N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1]. N-trans-Feruloyltyramine (N-feruloyltyramine), an alkaloid from Piper nigru, is an inhibitor of COX1 and COX2, with potential antioxidant properties. N-trans-Feruloyltyramine possesses anti-inflammatory activity[1].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Asitrilobin B

2(5H)-FURANONE, 5-METHYL-3-((2R,8R,13R)-2,8,13-TRIHYDROXY-13-((2R,5R)-TETRAHYDRO-5-((1R)-1-HYDROXYTRIDECYL)-2-FURANYL)TRIDECYL)-, (5S)-

C35H64O7 (596.4651794)


Annonacin is a natural product found in Xylopia aromatica, Asimina triloba, and other organisms with data available. Asitrilobin B is found in fruits. Asitrilobin B is a constituent of the seeds of Asimina triloba (pawpaw). Constituent of the seeds of Asimina triloba (pawpaw). Asitrilobin B is found in fruits.

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582404)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. Liriodenine, also known as oxoushinsunine or micheline b, is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Liriodenine is practically insoluble (in water) and a strong basic compound (based on its pKa). Liriodenine can be found in cherimoya and custard apple, which makes liriodenine a potential biomarker for the consumption of these food products. Liriodenine is a bio-active isolate of the Chinese medicinal herb Zanthoxylum nitidum .

   

(+)-Syringaresinol

4-[(1S,3aR,4S,6aR)-4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1627596)


(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.

   

corytuberine

(S)-corytuberine

C19H21NO4 (327.14705060000006)


An aporphine alkaloid that is aporphine which is substituted by hydroxy groups at positions 1 and 11, and by methoxy groups at positions 2 and 10 (the S enantiomer).

   

Prenol

3-Methyl-2-butenyl alcohol

C5H10O (86.07316100000001)


Prenol is found in blackcurrant. Prenol is a constituent of ylang-ylang and hop oils. Prenol is found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Prenol is a flavouring ingredient Constituent of ylang-ylang and hop oils. Found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Flavouring ingredient. 3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

Syringaldehyde

InChI=1/C9H10O4/c1-12-7-3-6(5-10)4-8(13-2)9(7)11/h3-5,11H,1-2H

C9H10O4 (182.057906)


Syringaldehyde is a hydroxybenzaldehyde that is 4-hydroxybenzaldehyde substituted by methoxy groups at positions 3 and 5. Isolated from Pisonia aculeata and Panax japonicus var. major, it exhibits hypoglycemic activity. It has a role as a hypoglycemic agent and a plant metabolite. It is a hydroxybenzaldehyde and a dimethoxybenzene. Syringaldehyde is a natural product found in Ficus septica, Mikania laevigata, and other organisms with data available. Syringaldehyde is a metabolite found in or produced by Saccharomyces cerevisiae. A hydroxybenzaldehyde that is 4-hydroxybenzaldehyde substituted by methoxy groups at positions 3 and 5. Isolated from Pisonia aculeata and Panax japonicus var. major, it exhibits hypoglycemic activity. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

N-(p-Hydroxyphenyl)ethyl p-hydroxycinnamide

(Z,2E)-3-(4-hydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C17H17NO3 (283.1208372)


Trans-N-p-coumaroyl tyramine is a hydroxycinnamic acid. It has a role as a metabolite. p-Coumaroyltyramine is a natural product found in Ophiopogon japonicus, Polyalthia suberosa, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Ipomoea aquatica leaf (part of). Constituent of Chinese onion (Allium chinense) and broad bean (Vicia faba). N-(p-Hydroxyphenyl)ethyl p-hydroxycinnamide is found in onion-family vegetables and pulses. N-p-cis-Coumaroyltyramine is found in onion-family vegetables. N-p-cis-Coumaroyltyramine is a constituent of Chinese onion Allium chinense. A natural product found particularly in Solanum melongena and Asimina triloba. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2]. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2].

   

Lirioresinol A

4-[6-(4-hydroxy-3,5-dimethoxy-phenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2,6-dimethoxy-phenol

C22H26O8 (418.1627596)


Syringaresinol is a lignan that is 7,9:7,9-diepoxylignane substituted by hydroxy groups at positions 4 and 4 and methoxy groups at positions 3, 3, 5 and 5 respectively. It has a role as a plant metabolite. It is a lignan, a polyphenol, an aromatic ether, a furofuran and a polyether. Syringaresinol is a natural product found in Dracaena draco, Ficus septica, and other organisms with data available. A lignan that is 7,9:7,9-diepoxylignane substituted by hydroxy groups at positions 4 and 4 and methoxy groups at positions 3, 3, 5 and 5 respectively. Isolated from Artemisia absinthium (wormwood). Lirioresinol A is found in alcoholic beverages and herbs and spices. Lirioresinol A is found in alcoholic beverages. Lirioresinol A is isolated from Artemisia absinthium (wormwood).

   

N-cis-Caffeoyltyramine

(E,2E)-3-(3,4-dihydroxyphenyl)-N-[2-(4-hydroxyphenyl)ethyl]prop-2-enimidic acid

C17H17NO4 (299.11575220000003)


N-cis-Caffeoyltyramine is a member of catechols. n-Caffeoyltyramine is a natural product found in Lycium chinense, Limoniastrum guyonianum, and other organisms with data available. See also: Tobacco Leaf (part of); Cannabis sativa subsp. indica top (part of); Cocoa (part of) ... View More ... N-cis-Caffeoyltyramine is found in fruits. N-cis-Caffeoyltyramine is an alkaloid from stems of cherimoya (Annona cherimola). Alkaloid from stems of cherimoya (Annona cherimola). N-cis-Caffeoyltyramine is found in fruits. N-TRANS-CaffeoyLtyramine is an effective inflammatory response regulator, which has antioxidant activity and anticoagulation effects[1]. N-TRANS-CaffeoyLtyramine is an effective inflammatory response regulator, which has antioxidant activity and anticoagulation effects[1].

   

Methyl caprylate

Methyl caprylate, United States Pharmacopeia (USP) Reference Standard

C9H18O2 (158.1306728)


Methyl octanoate appears as a colorless liquid. Insoluble in water and about the same density as water. Used to make other chemicals. Methyl octanoate is a fatty acid methyl ester resulting from the formal condensation of the carboxy group of octanoic acid with the hydroxy group of methanol. It has a role as a metabolite. It is a fatty acid methyl ester and an octanoate ester. Methyl octanoate is a natural product found in Astragalus mongholicus, Achillea millefolium, and other organisms with data available. Methyl octanoate is a metabolite found in or produced by Saccharomyces cerevisiae. Methyl caprylate is found in chinese cinnamon. Methyl caprylate is a flavouring agent. Methyl caprylate is present in many fruits, e.g. apple, apricot, grape, blackberry, cherimoya etc Methyl caprylate is a flavouring agent. Present in many fruits, e.g. apple, apricot, grape, blackberry, cherimoya etc. It is also found in tea, chinese cinnamon and pepper (spice). A fatty acid methyl ester resulting from the formal condensation of the carboxy group of octanoic acid with the hydroxy group of methanol. Methyl octanoate, a volatile compound, is an aroma component persimmon wine[1]. Methyl octanoate, a volatile compound, is an aroma component persimmon wine[1].

   

Methyl hexanoate

Methyl ester OF hexanoic acid

C7H14O2 (130.09937440000002)


Methyl hexanoate, also known as methyl caproate or methyl hexoic acid, belongs to the class of organic compounds known as fatty acid methyl esters. Fatty acid methyl esters are compounds containing a fatty acid that is esterified with a methyl group. They have the general structure RC(=O)OR, where R=fatty aliphatic tail or organyl group and R=methyl group. Methyl hexanoate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Present in wine grapes, melon, raspberry, blackberry, plum, quince, apple brandy, wines, Bourbon vanilla, coffee, black tea, potato, tomato, cheeses, rye bread, meats and other foodstuffs. Flavouring agent. Methyl hexanoate is found in many foods, some of which are milk and milk products, fruits, pineapple, and apple.

   

Annomutacin

5-methyl-3-{2,8,15-trihydroxy-15-[5-(1-hydroxytridecyl)oxolan-2-yl]pentadecyl}-2,5-dihydrofuran-2-one

C37H68O7 (624.4964778000001)


cis-Annomontacin is found in fruits. cis-Annomontacin is a constituent of the seeds of Annona muricata (soursop). Constituent of the seeds of Asimina triloba (pawpaw). Asitrilobin A is found in fruits.

   

Murisolin

3-{2,13-dihydroxy-13-[5-(1-hydroxytridecyl)oxolan-2-yl]tridecyl}-5-methyl-2,5-dihydrofuran-2-one

C35H64O6 (580.4702644)


Murisolin A is found in fruits. Murisolin A is a constituent of Asimina triloba (pawpaw).

   

cis-Goniothalamicin

5-methyl-3-{2,8,11-trihydroxy-11-[5-(1-hydroxypentadecyl)oxolan-2-yl]undecyl}-2,5-dihydrofuran-2-one

C35H64O7 (596.4651794)


cis-Goniothalamicin is found in fruits. cis-Goniothalamicin is a constituent of Annona muricata (soursop). Constituent of Annona muricata (soursop). cis-Goniothalamicin is found in fruits.

   
   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

physcion

9,10-Anthracenedione, 1,8-dihydroxy-3-methoxy-6-methyl- (9CI)

C16H12O5 (284.0684702)


Physcion, also known as emodin monomethyl ether or parienin, is a member of the class of compounds known as anthraquinones. Anthraquinones are organic compounds containing either anthracene-9,10-quinone, 1,4-anthraquinone, or 1,2-anthraquinone. Physcion is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Physcion can be synthesized from 2-methylanthraquinone. Physcion can also be synthesized into torososide B and physcion 8-gentiobioside. Physcion can be found in common sage, garden rhubarb, and sorrel, which makes physcion a potential biomarker for the consumption of these food products. Physcion has also been shown to protect lichens against UV-B light, at high altitudes in Alpine regions. The UV-B light stimulates production of parietin and the parietin protects the lichens from damage. Lichens in arctic regions such as Svarlbard retain this capability though they do not encounter damaging levels of UV-B, a capability that could help protect the lichens in case of Ozone layer thinning .

   

Syringaldehyde

Syringaldehyde

C9H10O4 (182.057906)


Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 303; CONFIDENCE confident structure Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

Liriodenine

3,5-dioxa-11-azapentacyclo[10.7.1.0^{2,6.0^{8,20.0^{14,19]icosa-1(20),2(6),7,9,11,14,16,18-octaen-13-one

C17H9NO3 (275.0582404)


Liriodenine is an oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities. It has a role as a metabolite, an antineoplastic agent, an antimicrobial agent, an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an antifungal agent. It is a cyclic ketone, an oxacycle, an organic heteropentacyclic compound, an alkaloid antibiotic and an oxoaporphine alkaloid. It is functionally related to an aporphine. Liriodenine is a natural product found in Magnolia mexicana, Annona purpurea, and other organisms with data available. An oxoaporphine alkaloid that is 4,5,6,6a-tetradehydronoraporphin-7-one substituted by a methylenedioxy group across positions 1 and 2. It is isolated from Annona glabra and has been shown to exhibit antimicrobial and cytotoxic activities.

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   
   

Syringaresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2,6-DIMETHOXY-, (1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.)-(+/-)-

C22H26O8 (418.1627596)


(+)-syringaresinol is the (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol. It has a role as an antineoplastic agent. It is an enantiomer of a (-)-syringaresinol. (+)-Syringaresinol is a natural product found in Dracaena draco, Diospyros eriantha, and other organisms with data available. See also: Acai fruit pulp (part of). The (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol.

   

Lirioresinol b

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2,6-DIMETHOXY-, (1R-(1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.))-

C22H26O8 (418.1627596)


(-)-syringaresinol is the (7beta,7beta,8beta,8beta)-stereoisomer of syringaresinol. It is an enantiomer of a (+)-syringaresinol. (-)-Syringaresinol is a natural product found in Pittosporum illicioides, Cinnamomum kotoense, and other organisms with data available. The (7beta,7beta,8beta,8beta)-stereoisomer of syringaresinol. (-)-Syringaresinol, found in stems of Annona Montana, possesses anti-cancer activity[1]. (-)-Syringaresinol, found in stems of Annona Montana, possesses anti-cancer activity[1].

   

syringaresinol

4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1627596)


   

Prenol

4-01-00-02129 (Beilstein Handbook Reference)

C5H10O (86.07316100000001)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

Uniphat A20

4-02-00-00986 (Beilstein Handbook Reference)

C9H18O2 (158.1306728)


Methyl octanoate, a volatile compound, is an aroma component persimmon wine[1]. Methyl octanoate, a volatile compound, is an aroma component persimmon wine[1].

   

Annomutacin

5-methyl-3-{2,8,15-trihydroxy-15-[5-(1-hydroxytridecyl)oxolan-2-yl]pentadecyl}-2,5-dihydrofuran-2-one

C37H68O7 (624.4964778000001)


   

Murisolin

3-{2,13-dihydroxy-13-[5-(1-hydroxytridecyl)oxolan-2-yl]tridecyl}-5-methyl-2,5-dihydrofuran-2-one

C35H64O6 (580.4702644)


   

Methyl hexoate

Methyl ester OF hexanoic acid

C7H14O2 (130.09937440000002)


A fatty acid methyl ester derived from hexanoic (caproic acid).

   

Paprazine

(2e)-3-(4-hydroxyphenyl)-n-[2-(4-hydroxyphenyl)ethyl]prop-2-enamide

C17H17NO3 (283.1208372)


N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2]. N-p-trans-Coumaroyltyramine is a cinnamoylphenethyl amide isolated from polygonum hyrcanicum, acts as an acetylcholinesterase (AChE) inhibitor with an an IC50 of 122 μM. N-p-trans-Coumaroyltyramine exhibits anti-trypanosomal activity with an IC50 of 13.3 μM for T. brucei rhodesiense[1][2].

   

cis-Goniothalamicin

5-methyl-3-{2,8,11-trihydroxy-11-[5-(1-hydroxypentadecyl)oxolan-2-yl]undecyl}-2,5-dihydrofuran-2-one

C35H64O7 (596.4651794)


   

FOH 5:1

3-METHYL-3-BUTEN-1-OL

C5H10O (86.07316100000001)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

SFE 7:0

Methyl 4-methylpentanoate

C7H14O2 (130.09937440000002)


   

Cinnamamide, p-hydroxy-N-(p-hydroxyphenethyl)-

Cinnamamide, p-hydroxy-N-(p-hydroxyphenethyl)-

C17H17NO3 (283.1208372)


   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

AI3-28796

InChI=1\C9H10O4\c1-12-7-3-6(5-10)4-8(13-2)9(7)11\h3-5,11H,1-2H

C9H10O4 (182.057906)


Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

106-70-7

InChI=1\C7H14O2\c1-3-4-5-6-7(8)9-2\h3-6H2,1-2H

C7H14O2 (130.09937440000002)


   

3-METHYL-2-BUTEN-1-OL

3-METHYL-2-BUTEN-1-OL

C5H10O (86.07316100000001)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

(5s)-5-methyl-3-[(2r,8r,15r)-2,8,15-trihydroxy-15-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]pentadecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,8r,15r)-2,8,15-trihydroxy-15-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]pentadecyl]-5h-furan-2-one

C37H68O7 (624.4964778000001)


   

4-{9h-pyrido[3,4-b]indol-1-yl}-1h-pyrimidin-2-imine

4-{9h-pyrido[3,4-b]indol-1-yl}-1h-pyrimidin-2-imine

C15H11N5 (261.1014406)


   

(5r)-3-[(2s,13r)-2,13-dihydroxy-13-[(2s,5r)-5-[(1s)-1-hydroxytridecyl]oxolan-2-yl]tridecyl]-5-methyl-5h-furan-2-one

(5r)-3-[(2s,13r)-2,13-dihydroxy-13-[(2s,5r)-5-[(1s)-1-hydroxytridecyl]oxolan-2-yl]tridecyl]-5-methyl-5h-furan-2-one

C35H64O6 (580.4702644)


   

(5s)-5-methyl-3-[(2r,5r,6r)-2,5,6-trihydroxy-11-[(2s,5r)-5-[(1s)-1-hydroxypentadecyl]oxolan-2-yl]undecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,5r,6r)-2,5,6-trihydroxy-11-[(2s,5r)-5-[(1s)-1-hydroxypentadecyl]oxolan-2-yl]undecyl]-5h-furan-2-one

C35H64O7 (596.4651794)


   

(5s)-3-{[(2s,6r)-6-[(7s)-7-hydroxy-7-[(2s,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-2-oxoheptyl]oxan-2-yl]methyl}-5-methyl-5h-furan-2-one

(5s)-3-{[(2s,6r)-6-[(7s)-7-hydroxy-7-[(2s,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-2-oxoheptyl]oxan-2-yl]methyl}-5-methyl-5h-furan-2-one

C35H60O7 (592.4338809999999)


   

(5s)-5-methyl-3-[(2s,5r,6s)-2,5,6-trihydroxy-9-[(2r,5r)-5-[(1s,4r,5r)-1,4,5-trihydroxyheptadecyl]oxolan-2-yl]nonyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2s,5r,6s)-2,5,6-trihydroxy-9-[(2r,5r)-5-[(1s,4r,5r)-1,4,5-trihydroxyheptadecyl]oxolan-2-yl]nonyl]-5h-furan-2-one

C35H64O9 (628.4550094)


   

(5s)-5-methyl-3-[(2r,5r,7s,13r)-2,5,7,13-tetrahydroxy-13-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]tridecyl]-5h-furan-2-one

(5s)-5-methyl-3-[(2r,5r,7s,13r)-2,5,7,13-tetrahydroxy-13-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]tridecyl]-5h-furan-2-one

C35H64O8 (612.4600944)


   

(5s)-3-[(2r,13r)-2,13-dihydroxy-13-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-8-oxotridecyl]-5-methyl-5h-furan-2-one

(5s)-3-[(2r,13r)-2,13-dihydroxy-13-[(2r,5r)-5-[(1r)-1-hydroxytridecyl]oxolan-2-yl]-8-oxotridecyl]-5-methyl-5h-furan-2-one

C35H62O7 (594.4495302)


   

3-{10,15-dihydroxy-15-[5-(1-hydroxytridecyl)oxolan-2-yl]pentadecyl}-5-methyl-5h-furan-2-one

3-{10,15-dihydroxy-15-[5-(1-hydroxytridecyl)oxolan-2-yl]pentadecyl}-5-methyl-5h-furan-2-one

C37H68O6 (608.5015628000001)


   

(5r)-5-methyl-3-[(2s,6s,11r,13r)-2,6,11,13-tetrahydroxy-13-[(2s,5r)-5-[(1s)-1-hydroxytridecyl]oxolan-2-yl]tridecyl]-5h-furan-2-one

(5r)-5-methyl-3-[(2s,6s,11r,13r)-2,6,11,13-tetrahydroxy-13-[(2s,5r)-5-[(1s)-1-hydroxytridecyl]oxolan-2-yl]tridecyl]-5h-furan-2-one

C35H64O8 (612.4600944)


   

(9s)-4,15-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene-3,16-diol

(9s)-4,15-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaene-3,16-diol

C19H21NO4 (327.14705060000006)


   

2-[(6s,9s,12s,15s,18r,23as)-6-[(2s)-butan-2-yl]-1,4,7,10,13,16-hexahydroxy-18-[(1r)-1-hydroxyethyl]-15-(1h-indol-3-ylmethyl)-12-methyl-19-oxo-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-9-yl]ethanimidic acid

2-[(6s,9s,12s,15s,18r,23as)-6-[(2s)-butan-2-yl]-1,4,7,10,13,16-hexahydroxy-18-[(1r)-1-hydroxyethyl]-15-(1h-indol-3-ylmethyl)-12-methyl-19-oxo-3h,6h,9h,12h,15h,18h,21h,22h,23h,23ah-pyrrolo[1,2-a]1,4,7,10,13,16,19-heptaazacyclohenicosan-9-yl]ethanimidic acid

C35H49N9O9 (739.3653064)


   

5-methyl-3-{2,6,13-trihydroxy-13-[5-(1-hydroxytridecyl)oxolan-2-yl]-8-oxotridecyl}-5h-furan-2-one

5-methyl-3-{2,6,13-trihydroxy-13-[5-(1-hydroxytridecyl)oxolan-2-yl]-8-oxotridecyl}-5h-furan-2-one

C35H62O8 (610.4444452)


   

(5r)-5-methyl-3-[(2s,8r,13r)-2,8,13-trihydroxy-13-[(2s,5r)-5-[(1s)-1-hydroxytridecyl]oxolan-2-yl]tridecyl]-5h-furan-2-one

(5r)-5-methyl-3-[(2s,8r,13r)-2,8,13-trihydroxy-13-[(2s,5r)-5-[(1s)-1-hydroxytridecyl]oxolan-2-yl]tridecyl]-5h-furan-2-one

C35H64O7 (596.4651794)


   

5-methyl-3-{2,5,11-trihydroxy-11-[5-(1-hydroxyheptadec-4-en-1-yl)oxolan-2-yl]undecyl}-5h-furan-2-one

5-methyl-3-{2,5,11-trihydroxy-11-[5-(1-hydroxyheptadec-4-en-1-yl)oxolan-2-yl]undecyl}-5h-furan-2-one

C37H66O7 (622.4808286)