NCBI Taxonomy: 128738

Gaillardia pulchella (ncbi_taxid: 128738)

found 69 associated metabolites at species taxonomy rank level.

Ancestor: Gaillardia

Child Taxonomies: Gaillardia pulchella var. pulchella, Gaillardia pulchella var. drummondii

Vitexin 6'-O-malonyl 2'-O-xyloside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.105642)


Vitexin 6-o-malonyl 2-o-xyloside, also known as apigenin 8-C-glucoside or 8-glycosyl-apigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin 6-o-malonyl 2-o-xyloside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin 6-o-malonyl 2-o-xyloside can be synthesized from apigenin. Vitexin 6-o-malonyl 2-o-xyloside is also a parent compound for other transformation products, including but not limited to, vitexin 2-O-beta-L-rhamnoside, 7-O-methylvitexin 2-O-beta-L-rhamnoside, and vitexin 2-O-beta-D-glucoside. Vitexin 6-o-malonyl 2-o-xyloside can be found in common beet, which makes vitexin 6-o-malonyl 2-o-xyloside a potential biomarker for the consumption of this food product. Vitexin, also known as apigenin 8-C-glucoside or 8-glycosylapigenin, belongs to the class of organic compounds known as flavonoid 8-C-glycosides. Flavonoid 8-C-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is also described as an apigenin flavone glucoside. Vitexin has been found in passion flower, chasteberry, bamboo leaves, millet and Hawthorn. Vitexin has shown a wide range of pharmacological effects, such as antioxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects (PMID: 27693342). Vitexin has also been shown to directly inhibit thyroid peroxidase and potentially contributes to goiter (PMID: 1696490). It is sometimes called a goitrogen. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA68_Vitexin_neg_10eV.txt [Raw Data] CBA68_Vitexin_neg_30eV.txt [Raw Data] CBA68_Vitexin_pos_20eV.txt [Raw Data] CBA68_Vitexin_neg_50eV.txt [Raw Data] CBA68_Vitexin_neg_40eV.txt [Raw Data] CBA68_Vitexin_pos_40eV.txt [Raw Data] CBA68_Vitexin_pos_30eV.txt [Raw Data] CBA68_Vitexin_pos_10eV.txt [Raw Data] CBA68_Vitexin_neg_20eV.txt Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Orientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.100557)


Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). Orientin is found in barley. Orientin is isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops).Orientin is a flavone, a chemical flavonoid-like compound found in the passion flower, the palm and Anadenanthera peregrina. Orientin is also reported in millets and in the Phyllostachys nigra bamboo leaves Isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops) [Raw Data] CBA20_Orientin_pos_40eV_1-2_01_1380.txt [Raw Data] CBA20_Orientin_neg_20eV_1-2_01_1405.txt [Raw Data] CBA20_Orientin_neg_50eV_1-2_01_1408.txt [Raw Data] CBA20_Orientin_neg_40eV_1-2_01_1407.txt [Raw Data] CBA20_Orientin_pos_50eV_1-2_01_1381.txt [Raw Data] CBA20_Orientin_neg_30eV_1-2_01_1406.txt [Raw Data] CBA20_Orientin_pos_20eV_1-2_01_1378.txt [Raw Data] CBA20_Orientin_pos_30eV_1-2_01_1379.txt [Raw Data] CBA20_Orientin_pos_10eV_1-2_01_1353.txt [Raw Data] CBA20_Orientin_neg_10eV_1-2_01_1364.txt Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

Swertisin

5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C22H22O10 (446.1212912)


Swertisin is a flavone C-glycoside that is 7-O-methylapigenin in which the hydrogen at position 6 has been replaced by a beta-D-glucosyl residue. It has a role as a plant metabolite, an adenosine A1 receptor antagonist, an anti-inflammatory agent, an antioxidant and a hypoglycemic agent. It is a flavone C-glycoside, a monosaccharide derivative, a polyphenol, a monomethoxyflavone and a dihydroxyflavone. It is functionally related to an apigenin. Swertisin is a natural product found in Carex fraseriana, Gentiana orbicularis, and other organisms with data available. A flavone C-glycoside that is 7-O-methylapigenin in which the hydrogen at position 6 has been replaced by a beta-D-glucosyl residue. Swertisin, a C-glucosylflavone isolated from Iris tectorum, is known to have antidiabetic, anti-inflammatory and antioxidant effects. Swertisin is an adenosine A1 receptor antagonist[1][2].

   

Florilenalin

(3aR,5aS,6S,8R,8aR,9aR)-6,8-dihydroxy-8-methyl-1,5-dimethylidene-3a,4,5a,6,7,8a,9,9a-octahydroazuleno[6,5-b]furan-2-one

C15H20O4 (264.13615200000004)


Florilenalin is a sesquiterpene lactone. Florilenalin is a natural product found in Gaillardia pulchella, Hymenoxys odorata, and other organisms with data available.

   

Methyl caffeate

Methyl 3,4-dihydroxycinnamate

C10H10O4 (194.057906)


Methyl caffeate, an antimicrobial agent, shows moderate antimicrobial and prominent antimycobacterial activities. Methyl caffeate also exhibits α-glucosidase inhibition activity, oxidative stress inhibiting activity, anti-platelet activity, antiproliferative activity in cervix adenocarcinoma and anticancer activity in lung and leukmia cell lines[1]. Methyl caffeate, an antimicrobial agent, shows moderate antimicrobial and prominent antimycobacterial activities. Methyl caffeate also exhibits α-glucosidase inhibition activity, oxidative stress inhibiting activity, anti-platelet activity, antiproliferative activity in cervix adenocarcinoma and anticancer activity in lung and leukmia cell lines[1].

   

Gaillardin

acetic acid [(3aS,5aS,6S,8R,8aR,9aR)-8-hydroxy-2-keto-5,8-dimethyl-1-methylene-5a,6,7,8a,9,9a-hexahydro-3aH-azuleno[5,6-d]furan-6-yl] ester

C17H22O5 (306.1467162)


   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.105642)


Vitexin is an apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet It has a role as a platelet aggregation inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an antineoplastic agent and a plant metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a vitexin-7-olate. Vitexin is a natural product found in Itea chinensis, Salacia chinensis, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Cytisus scoparius flowering top (part of); Fenugreek seed (part of) ... View More ... An apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Vitexin

8-beta-D-Glucopyranosyl-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C21H20O10 (432.105642)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Methyl 3,4-dihydroxycinnamate

Methyl 3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C10H10O4 (194.057906)


   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.105642)


Vitexin is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin can be found in a number of food items such as flaxseed, prairie turnip, mung bean, and tree fern, which makes vitexin a potential biomarker for the consumption of these food products. Vitexin is an apigenin flavone glucoside, a chemical compound found in the passion flower, Vitex agnus-castus (chaste tree or chasteberry), in the Phyllostachys nigra bamboo leaves, in the pearl millet (Pennisetum millet), and in Hawthorn . Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O10 (432.105642)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Lutexin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O11 (448.100557)


Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

Orientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.100557)


Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). A C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

4,9-bis(acetyloxy)-5-hydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-7-yl 3-methylbutanoate

4,9-bis(acetyloxy)-5-hydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-7-yl 3-methylbutanoate

C24H34O9 (466.2202714)


   

4,9-dihydroxy-4a-methyl-5-[(2-methylbut-2-enoyl)oxy]-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-7-yl 2-methylbut-2-enoate

4,9-dihydroxy-4a-methyl-5-[(2-methylbut-2-enoyl)oxy]-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-7-yl 2-methylbut-2-enoate

C24H32O8 (448.20970719999997)


   

(3ar,4ar,5r,7s,7as,9ar)-5-hydroxy-5-methyl-3,8-dimethylidene-2-oxo-octahydroazuleno[6,5-b]furan-7-yl acetate

(3ar,4ar,5r,7s,7as,9ar)-5-hydroxy-5-methyl-3,8-dimethylidene-2-oxo-octahydroazuleno[6,5-b]furan-7-yl acetate

C17H22O5 (306.1467162)


   

4,7-dihydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-5-yl 2-methylbut-2-enoate

4,7-dihydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-5-yl 2-methylbut-2-enoate

C20H28O6 (364.1885788)


   

4-(acetyloxy)-5,9-dihydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-7-yl 2-methylbut-2-enoate

4-(acetyloxy)-5,9-dihydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-7-yl 2-methylbut-2-enoate

C22H30O8 (422.194058)


   

(3ar,4as,5r,7s,7as,8r,9ar)-5,7-dihydroxy-4a,8-dimethyl-3-methylidene-octahydro-3ah-azuleno[6,5-b]furan-2-one

(3ar,4as,5r,7s,7as,8r,9ar)-5,7-dihydroxy-4a,8-dimethyl-3-methylidene-octahydro-3ah-azuleno[6,5-b]furan-2-one

C15H22O4 (266.1518012)


   

5,7-dihydroxy-4a,8-dimethyl-3-methylidene-octahydro-3ah-azuleno[6,5-b]furan-2-one

5,7-dihydroxy-4a,8-dimethyl-3-methylidene-octahydro-3ah-azuleno[6,5-b]furan-2-one

C15H22O4 (266.1518012)


   

(3ar,4as,5r,7r,7as,8r,9as)-5,7-dihydroxy-4a,8-dimethyl-3-methylidene-octahydro-3ah-azuleno[6,5-b]furan-2-one

(3ar,4as,5r,7r,7as,8r,9as)-5,7-dihydroxy-4a,8-dimethyl-3-methylidene-octahydro-3ah-azuleno[6,5-b]furan-2-one

C15H22O4 (266.1518012)


   

(3as,4r,4as,5r,7s,7as,8s,9r,9ar)-4-(acetyloxy)-5,9-dihydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-7-yl 2-methylpropanoate

(3as,4r,4as,5r,7s,7as,8s,9r,9ar)-4-(acetyloxy)-5,9-dihydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-7-yl 2-methylpropanoate

C21H30O8 (410.194058)


   

5,7-dihydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-4-yl acetate

5,7-dihydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-4-yl acetate

C17H24O6 (324.1572804)


   

(3ar,4s,4as,5r,7s,7as,8r,9as)-5,7-dihydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-4-yl (2z)-2-methylbut-2-enoate

(3ar,4s,4as,5r,7s,7as,8r,9as)-5,7-dihydroxy-4a,8-dimethyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-4-yl (2z)-2-methylbut-2-enoate

C20H28O6 (364.1885788)


   

5,7-dihydroxy-5-methyl-3,8-dimethylidene-octahydroazuleno[6,5-b]furan-2-one

5,7-dihydroxy-5-methyl-3,8-dimethylidene-octahydroazuleno[6,5-b]furan-2-one

C15H20O4 (264.13615200000004)


   

(3ar,5r,7s,7as,8r,9as)-5,7-dihydroxy-5,8-dimethyl-3-methylidene-3ah,6h,7h,7ah,8h,9h,9ah-azuleno[6,5-b]furan-2-one

(3ar,5r,7s,7as,8r,9as)-5,7-dihydroxy-5,8-dimethyl-3-methylidene-3ah,6h,7h,7ah,8h,9h,9ah-azuleno[6,5-b]furan-2-one

C15H20O4 (264.13615200000004)


   

4,5,9-trihydroxy-4a-methyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-7-yl 2-methylbut-2-enoate

4,5,9-trihydroxy-4a-methyl-3-methylidene-2-oxo-octahydro-3ah-azuleno[6,5-b]furan-7-yl 2-methylbut-2-enoate

C19H26O7 (366.16784459999997)