NCBI Taxonomy: 1045134

Smilax bracteata (ncbi_taxid: 1045134)

found 88 associated metabolites at species taxonomy rank level.

Ancestor: Smilax

Child Taxonomies: Smilax bracteata var. bracteata

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). [Raw Data] CBA25_Isovitexin_neg_20eV_1-7_01_1425.txt [Raw Data] CBA25_Isovitexin_neg_10eV_1-7_01_1369.txt [Raw Data] CBA25_Isovitexin_pos_30eV_1-7_01_1399.txt [Raw Data] CBA25_Isovitexin_neg_40eV_1-7_01_1427.txt [Raw Data] CBA25_Isovitexin_neg_30eV_1-7_01_1426.txt [Raw Data] CBA25_Isovitexin_neg_50eV_1-7_01_1428.txt [Raw Data] CBA25_Isovitexin_pos_20eV_1-7_01_1398.txt [Raw Data] CBA25_Isovitexin_pos_10eV_1-7_01_1358.txt [Raw Data] CBA25_Isovitexin_pos_40eV_1-7_01_1400.txt [Raw Data] CBA25_Isovitexin_pos_50eV_1-7_01_1401.txt Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

Vitexin 6'-O-malonyl 2'-O-xyloside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin 6-o-malonyl 2-o-xyloside, also known as apigenin 8-C-glucoside or 8-glycosyl-apigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin 6-o-malonyl 2-o-xyloside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin 6-o-malonyl 2-o-xyloside can be synthesized from apigenin. Vitexin 6-o-malonyl 2-o-xyloside is also a parent compound for other transformation products, including but not limited to, vitexin 2-O-beta-L-rhamnoside, 7-O-methylvitexin 2-O-beta-L-rhamnoside, and vitexin 2-O-beta-D-glucoside. Vitexin 6-o-malonyl 2-o-xyloside can be found in common beet, which makes vitexin 6-o-malonyl 2-o-xyloside a potential biomarker for the consumption of this food product. Vitexin, also known as apigenin 8-C-glucoside or 8-glycosylapigenin, belongs to the class of organic compounds known as flavonoid 8-C-glycosides. Flavonoid 8-C-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is also described as an apigenin flavone glucoside. Vitexin has been found in passion flower, chasteberry, bamboo leaves, millet and Hawthorn. Vitexin has shown a wide range of pharmacological effects, such as antioxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects (PMID: 27693342). Vitexin has also been shown to directly inhibit thyroid peroxidase and potentially contributes to goiter (PMID: 1696490). It is sometimes called a goitrogen. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA68_Vitexin_neg_10eV.txt [Raw Data] CBA68_Vitexin_neg_30eV.txt [Raw Data] CBA68_Vitexin_pos_20eV.txt [Raw Data] CBA68_Vitexin_neg_50eV.txt [Raw Data] CBA68_Vitexin_neg_40eV.txt [Raw Data] CBA68_Vitexin_pos_40eV.txt [Raw Data] CBA68_Vitexin_pos_30eV.txt [Raw Data] CBA68_Vitexin_pos_10eV.txt [Raw Data] CBA68_Vitexin_neg_20eV.txt Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Resveratrol

(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol(E)-5-(2-(4-hydroxyphenyl)ethenyl)-1,3-benzenediol

C14H12O3 (228.0786)


Resveratrol is a stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. It has a role as a phytoalexin, an antioxidant, a glioma-associated oncogene inhibitor and a geroprotector. It is a stilbenol, a polyphenol and a member of resorcinols. Resveratrol (3,5,4-trihydroxystilbene) is a polyphenolic phytoalexin. It is a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. It exists as cis-(Z) and trans-(E) isomers. The trans- form can undergo isomerisation to the cis- form when heated or exposed to ultraviolet irradiation. In a 2004 issue of Science, Dr. Sinclair of Harvard University said resveratrol is not an easy molecule to protect from oxidation. It has been claimed that it is readily degraded by exposure to light, heat, and oxygen. However, studies find that Trans-resveratrol undergoes negligible oxidation in normal atmosphere at room temperature. Resveratrol is a plant polyphenol found in high concentrations in red grapes that has been proposed as a treatment for hyperlipidemia and to prevent fatty liver, diabetes, atherosclerosis and aging. Resveratrol use has not been associated with serum enzyme elevations or with clinically apparent liver injury. Resveratrol is a natural product found in Vitis rotundifolia, Vitis amurensis, and other organisms with data available. Resveratrol is a phytoalexin derived from grapes and other food products with antioxidant and potential chemopreventive activities. Resveratrol induces phase II drug-metabolizing enzymes (anti-initiation activity); mediates anti-inflammatory effects and inhibits cyclooxygenase and hydroperoxidase functions (anti-promotion activity); and induces promyelocytic leukemia cell differentiation (anti-progression activity), thereby exhibiting activities in three major steps of carcinogenesis. This agent may inhibit TNF-induced activation of NF-kappaB in a dose- and time-dependent manner. (NCI05) Resveratrol is a metabolite found in or produced by Saccharomyces cerevisiae. A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. Resveratrol is a polyphenolic phytoalexin. It is also classified as a stilbenoid, a derivate of stilbene, and is produced in plants with the help of the enzyme stilbene synthase. The levels of resveratrol found in food vary greatly. Red wine contains between 0.2 and 5.8 mg/L depending on the grape variety, while white wine has much less. The reason for this difference is that red wine is fermented with grape skins, allowing the wine to absorb the resveratrol, whereas white wine is fermented after the skin has been removed. Resveratrol is also sold as a nutritional supplement. A number of beneficial health effects, such as anti-cancer, antiviral, neuroprotective, anti-aging, anti-inflammatory, and life-prolonging effects have been reported for resveratrol. The fact that resveratrol is found in the skin of red grapes and as a constituent of red wine may explain the "French paradox". This paradox is based on the observation that the incidence of coronary heart disease is relatively low in southern France despite high dietary intake of saturated fats. Resveratrol is thought to achieve these cardioprotective effects by a number of different routes: (1) inhibition of vascular cell adhesion molecule expression; (2) inhibition of vascular smooth muscle cell proliferation; (3) stimulation of endothelial nitric oxide synthase (eNOS) activity; (4) inhibition of platelet aggregation; and (5) inhibition of LDL peroxidation (PMID: 17875315, 14676260, 9678525). Resveratrol is a biomarker for the consumption of grapes and raisins. A stilbenol that is stilbene in which the phenyl groups are substituted at positions 3, 5, and 4 by hydroxy groups. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9641; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 1110; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 IPB_RECORD: 1781; CONFIDENCE confident structure IPB_RECORD: 321; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

3,3',4'5-Tetrahydroxystilbene

(E)-4-[2-(3,5Dihydroxyphenyl)ethenyl]1,2-benzenediol, 3,3a?4,5a?Tetrahydroxy-trans-stilbene

C14H12O4 (244.0736)


Piceatannol is a stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. It has a role as a protein kinase inhibitor, a tyrosine kinase inhibitor, an antineoplastic agent, a plant metabolite, a hypoglycemic agent, an apoptosis inducer and a geroprotector. It is a stilbenol, a member of resorcinols, a member of catechols and a polyphenol. It derives from a hydride of a trans-stilbene. Piceatannol is a natural product found in Vitis amurensis, Smilax bracteata, and other organisms with data available. Piceatannol is a polyhydroxylated stilbene extract from the seeds of Euphorbia lagascae, which inhibits protein tyrosine kinase Syk and induces apoptosis. (NCI) Piceatannol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Wine grape (part of); Robinia pseudoacacia whole (part of); Tsuga canadensis bark (part of). 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). [HMDB] 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). A stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.0427)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Methyl caffeate

Methyl 3,4-dihydroxycinnamate

C10H10O4 (194.0579)


Methyl caffeate, an antimicrobial agent, shows moderate antimicrobial and prominent antimycobacterial activities. Methyl caffeate also exhibits α-glucosidase inhibition activity, oxidative stress inhibiting activity, anti-platelet activity, antiproliferative activity in cervix adenocarcinoma and anticancer activity in lung and leukmia cell lines[1]. Methyl caffeate, an antimicrobial agent, shows moderate antimicrobial and prominent antimycobacterial activities. Methyl caffeate also exhibits α-glucosidase inhibition activity, oxidative stress inhibiting activity, anti-platelet activity, antiproliferative activity in cervix adenocarcinoma and anticancer activity in lung and leukmia cell lines[1].

   

Tricin

5,7-Dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-1-benzopyran-4-one

C17H14O7 (330.0739)


[Raw Data] CBA24_Tricin_neg_50eV_1-6_01_1424.txt [Raw Data] CBA24_Tricin_pos_50eV_1-6_01_1397.txt [Raw Data] CBA24_Tricin_neg_10eV_1-6_01_1368.txt [Raw Data] CBA24_Tricin_pos_40eV_1-6_01_1396.txt [Raw Data] CBA24_Tricin_pos_20eV_1-6_01_1394.txt [Raw Data] CBA24_Tricin_neg_30eV_1-6_01_1422.txt [Raw Data] CBA24_Tricin_neg_20eV_1-6_01_1421.txt [Raw Data] CBA24_Tricin_pos_10eV_1-6_01_1357.txt [Raw Data] CBA24_Tricin_pos_30eV_1-6_01_1488.txt [Raw Data] CBA24_Tricin_neg_40eV_1-6_01_1423.txt Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   

Mangiferol

1,3,6,7-tetrahydroxy-2-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-9H-xanthen-9-one

C19H18O11 (422.0849)


Mangiferol, also known as alpizarin or chinomin, is a member of the class of compounds known as xanthones. Xanthones are polycyclic aromatic compounds containing a xanthene moiety conjugated to a ketone group at carbon 9. Xanthene is a tricyclic compound made up of two benzene rings linearly fused to each other through a pyran ring. Mangiferol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Mangiferol can be found in mango, which makes mangiferol a potential biomarker for the consumption of this food product. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

Dattelic acid

(3R,4R,5R)-5-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4-dihydroxycyclohex-1-ene-1-carboxylic acid

C16H16O8 (336.0845)


Isolated from Pteridium aquilinum (bracken fern) and from unripe dates (tentative ident.). Dattelic acid is found in many foods, some of which are green vegetables, fruits, date, and blackcurrant. Dattelic acid is found in blackcurrant. Dattelic acid is isolated from Pteridium aquilinum (bracken fern) and from unripe dates (tentative ident.). 5-O-Caffeoylshikimic acid can be used in the study for NSCLC[1][2]. 5-O-Caffeoylshikimic acid can be used in the study for NSCLC[1][2].

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin is an apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet It has a role as a platelet aggregation inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an antineoplastic agent and a plant metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a vitexin-7-olate. Vitexin is a natural product found in Itea chinensis, Salacia chinensis, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Cytisus scoparius flowering top (part of); Fenugreek seed (part of) ... View More ... An apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Moracin M

InChI=1/C14H10O4/c15-10-2-1-8-5-13(18-14(8)7-10)9-3-11(16)6-12(17)4-9/h1-7,15-17

C14H10O4 (242.0579)


Moracin M is a member of benzofurans. Moracin M is a natural product found in Morus insignis, Morus mesozygia, and other organisms with data available. Moracin M is found in fruits. Moracin M is isolated from Morus alba (white mulberry) infected with Fusarium solani. Isolated from Morus alba (white mulberry) infected with Fusarium solani. Moracin M is found in fruits. Moracin M, a phenolic component in the skin of Morus alba Linn., is a potent phosphodiesterase-4 (PDE4) inhibitor with IC50 values of 2.9, 4.5, >40, and >100 μM for PDE4D2, PDE4B2, PDE5A1, and PDE9A2, respectively. Moracin M has anti-inflammatory activity[1]. Moracin M, a phenolic component in the skin of Morus alba Linn., is a potent phosphodiesterase-4 (PDE4) inhibitor with IC50 values of 2.9, 4.5, >40, and >100 μM for PDE4D2, PDE4B2, PDE5A1, and PDE9A2, respectively. Moracin M has anti-inflammatory activity[1].

   

Naringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0685)


Naringenin is a trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. 5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one is a natural product found in Prunus mume, Helichrysum cephaloideum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists A trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Vitexin

8-beta-D-Glucopyranosyl-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C21H20O10 (432.1056)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Mangiferin

1,3,6,7-tetrahydroxy-2-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-9H-xanthen-9-one

C19H18O11 (422.0849)


Mangiferin is found in fruits. Mangiferin is a constituent of Mangifera indica (mango) Constituent of Mangifera indica (mango). Mangiferin is found in mango and fruits. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

Methyl 3,4-dihydroxycinnamate

Methyl 3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


   

1,3-Benzenediol, 5-[(1Z)-2-(4-hydroxyphenyl)ethenyl]-

5-[2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol

C14H12O3 (228.0786)


Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

9-Arabinofuranosyladenine

2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


   

Quercetin 3-O-rhamnoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O11 (448.1006)


   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin can be found in a number of food items such as flaxseed, prairie turnip, mung bean, and tree fern, which makes vitexin a potential biomarker for the consumption of these food products. Vitexin is an apigenin flavone glucoside, a chemical compound found in the passion flower, Vitex agnus-castus (chaste tree or chasteberry), in the Phyllostachys nigra bamboo leaves, in the pearl millet (Pennisetum millet), and in Hawthorn . Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Piceatannol

4-[(Z)-2-(3,5-dihydroxyphenyl)ethenyl]benzene-1,2-diol

C14H12O4 (244.0736)


Piceatannol, also known as (Z)-3,5,3,4-tetrahydroxystilbene, is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Piceatannol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Piceatannol can be synthesized from cis-stilbene. Piceatannol can also be synthesized into cis-astringin. Piceatannol can be found in common grape and grape wine, which makes piceatannol a potential biomarker for the consumption of these food products. Piceatannol is a stilbenoid, a type of phenolic compound .

   

Quercetin 3,7-dirhamnoside

2-(3,4-dihydroxyphenyl)-5-hydroxy-3,7-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C27H30O15 (594.1585)


Quercetin 3,7-dirhamnoside is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Quercetin 3,7-dirhamnoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 3,7-dirhamnoside can be found in medlar, which makes quercetin 3,7-dirhamnoside a potential biomarker for the consumption of this food product.

   

Resveratrol

3,4,5-Trihydroxystilbene

C14H12O3 (228.0786)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants CONFIDENCE standard compound; EAWAG_UCHEM_ID 3241 C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Mangiferin

1,3,6,7-Tetrahydroxy-2-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-9H-xanthen-9-one

C19H18O11 (422.0849)


Mangiferin is a C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. It has a role as a hypoglycemic agent, an antioxidant, an anti-inflammatory agent and a plant metabolite. It is a C-glycosyl compound and a member of xanthones. It is functionally related to a xanthone. It is a conjugate acid of a mangiferin(1-). Mangiferin is a natural product found in Salacia chinensis, Smilax bracteata, and other organisms with data available. See also: Mangifera indica bark (part of). A C-glycosyl compound consisting of 1,3,6,7-tetrahydroxyxanthen-9-one having a beta-D-glucosyl residue at the 6-position. Origin: Plant Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O10 (432.1056)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.0427)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Tricin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-HYDROXY-3,5-DIMETHOXYPHENYL)-

C17H14O7 (330.0739)


3,5-di-O-methyltricetin is the 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. It has a role as an EC 1.14.99.1 (prostaglandin-endoperoxide synthase) inhibitor and a metabolite. It is a trihydroxyflavone, a dimethoxyflavone and a member of 3-methoxyflavones. It is functionally related to a tricetin. It is a conjugate acid of a 3,5-di-O-methyltricetin(1-). Tricin is a natural product found in Carex fraseriana, Smilax bracteata, and other organisms with data available. See also: Arnica montana Flower (part of); Elymus repens root (part of). The 3,5-di-O-methyl ether of tricetin. Known commonly as tricin, it is a constituent of rice bran and has been found to potently inhibit colon cancer cell growth. Isolated from Triticum dicoccum (emmer). Tricin 5-diglucoside is found in wheat and cereals and cereal products. From leaves of Oryza sativa (rice). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one, also known as 3,5-O-dimethyltricetin or 5,7,4-trihydroxy-3,5-dimethoxy-flavone, is a member of the class of compounds known as 3-o-methylated flavonoids. 3-o-methylated flavonoids are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be synthesized from tricetin. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, tricin 7-O-glucoside, 4-O-beta-glucosyl-7-O-(6-O-sinapoylglucosyl)tricin, and tricin 7-O-(6-O-malonyl)-beta-D-glucopyranoside. 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one can be found in barley, common wheat, oat, and rice, which makes 5,7-dihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3]. Tricin is a natural flavonoid present in large amounts in Triticum aestivum. Tricin can inhibit human cytomegalovirus (HCMV) replication by inhibiting CDK9. Tricin inhibits the proliferation and invasion of C6 glioma cells via the upregulation of focal-adhesion-finase (FAK)-targeting microRNA-7[1][2][3].

   

Methyl 3,4-dihydroxybenzoate

Methyl 3,4-dihydroxybenzoate

C8H8O4 (168.0423)


   

Dattelic acid

1-Cyclohexene-1-carboxylic acid, 5-((3-(3,4-dihydroxyphenyl)-1-oxo-2-p ropenyl)oxy)-3,4-dihydroxy-, (3R-(3alpha,4alpha,5beta))-

C16H16O8 (336.0845)


5-[(E)-caffeoyl]shikimic acid is a carboxylic ester obtained by formal condensation of the carboxy group of (E)-caffeic acid with the 5-hydroxy group of shikimic acid. It has a role as a plant metabolite. It is an alpha,beta-unsaturated monocarboxylic acid, a cyclohexenecarboxylic acid, a member of catechols and a carboxylic ester. It is functionally related to a shikimic acid and a trans-caffeic acid. It is a conjugate acid of a 5-[(E)-caffeoyl]shikimate. 5-O-Caffeoylshikimic acid is a natural product found in Smilax bracteata, Smilax corbularia, and other organisms with data available. See also: Stevia rebaudiuna Leaf (part of). Isolated from Pteridium aquilinum (bracken fern) and from unripe dates (tentative ident.). Dattelic acid is found in many foods, some of which are green vegetables, fruits, date, and blackcurrant. Dattelic acid is found in blackcurrant. Dattelic acid is isolated from Pteridium aquilinum (bracken fern) and from unripe dates (tentative ident.). 5-O-Caffeoylshikimic acid can be used in the study for NSCLC[1][2]. 5-O-Caffeoylshikimic acid can be used in the study for NSCLC[1][2].

   

Resveratrol

trans-resveratrol

C14H12O3 (228.0786)


Resveratrol, also known as 3,4,5-trihydroxystilbene or trans-resveratrol, is a member of the class of compounds known as stilbenes. Stilbenes are organic compounds containing a 1,2-diphenylethylene moiety. Stilbenes (C6-C2-C6 ) are derived from the common phenylpropene (C6-C3) skeleton building block. The introduction of one or more hydroxyl groups to a phenyl ring lead to stilbenoids. Thus, resveratrol is considered to be an aromatic polyketide lipid molecule. Resveratrol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Resveratrol is a bitter tasting compound and can be found in a number of food items such as broccoli, yellow wax bean, bilberry, and turnip, which makes resveratrol a potential biomarker for the consumption of these food products. Resveratrol can be found primarily in urine, as well as throughout most human tissues. Resveratrol exists in all eukaryotes, ranging from yeast to humans. Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a stilbenoid, a type of natural phenol, and a phytoalexin produced by several plants in response to injury or, when the plant is under attack by pathogens such as bacteria or fungi. Sources of resveratrol in food include the skin of grapes, blueberries, raspberries, mulberries . Resveratrol suppresses NF-kappaB (NF-kappaB) activation in HSV infected cells. Reports have indicated that HSV activates NF-kappaB during productive infection and this may be an essential aspect of its replication scheme [PMID: 9705914] (DrugBank). relative retention time with respect to 9-anthracene Carboxylic Acid is 0.738 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.740 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.730 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.733 Acquisition and generation of the data is financially supported by the Max-Planck-Society COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS IPB_RECORD: 2101; CONFIDENCE confident structure IPB_RECORD: 2901; CONFIDENCE confident structure Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

Adenosine

(2R,3R,4S,5R)-2-(6-aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C - Cardiovascular system > C01 - Cardiac therapy Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C10H13N5O4; Bottle Name:Adenosine; PRIME Parent Name:Adenosine; PRIME in-house No.:0040 R0018, Purines MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OIRDTQYFTABQOQ_STSL_0143_Adenosine_0500fmol_180430_S2_LC02_MS02_33; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.113 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.109 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.097 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.096 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2621; CONFIDENCE confident structure Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). A C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. Isovitexin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isovitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isovitexin can be found in a number of food items such as common salsify, winged bean, flaxseed, and common buckwheat, which makes isovitexin a potential biomarker for the consumption of these food products. Isovitexin (or homovitexin, saponaretin) is a flavone. the apigenin-6-C-glucoside. It can be found in the passion flower, Cannabis, and the açaí palm . Constituent of Cucumis sativus (cucumber). Isovitexin 2-(6-p-coumaroylglucoside) 4-glucoside is found in cucumber and fruits. Constituent of young green barley leaves (Hordeum vulgare variety nudum). Isovitexin 7-(6-sinapoylglucoside) is found in barley and cereals and cereal products. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

Piceatannol

1,2-Benzenediol, {4-[2-(3,} 5-dihydroxyphenyl)ethenyl]-, (E)-

C14H12O4 (244.0736)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].

   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


Annotation level-1

   

Asahina

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0685)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Moracin M

InChI=1\C14H10O4\c15-10-2-1-8-5-13(18-14(8)7-10)9-3-11(16)6-12(17)4-9\h1-7,15-17

C14H10O4 (242.0579)


Moracin M, a phenolic component in the skin of Morus alba Linn., is a potent phosphodiesterase-4 (PDE4) inhibitor with IC50 values of 2.9, 4.5, >40, and >100 μM for PDE4D2, PDE4B2, PDE5A1, and PDE9A2, respectively. Moracin M has anti-inflammatory activity[1]. Moracin M, a phenolic component in the skin of Morus alba Linn., is a potent phosphodiesterase-4 (PDE4) inhibitor with IC50 values of 2.9, 4.5, >40, and >100 μM for PDE4D2, PDE4B2, PDE5A1, and PDE9A2, respectively. Moracin M has anti-inflammatory activity[1].

   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.0427)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Chinoinin

1,3,6,7-tetrahydroxy-2-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-9-xanthenone

C19H18O11 (422.0849)


Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3]. Mangiferin is a Nrf2 activator. Mangiferin suppresses nuclear translocation of the NF-κB subunits p65 and p50. Mangiferin exhibits antioxidant, antidiabetic, antihyperuricemic, antiviral, anticancer and antiinflammatory activities[1][2][3].

   

SRT-501

InChI=1\C14H12O3\c15-12-5-3-10(4-6-12)1-2-11-7-13(16)9-14(17)8-11\h1-9,15-17H\b2-1

C14H12O3 (228.0786)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors C1892 - Chemopreventive Agent > C54630 - Phase II Enzymes Inducer D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7]. Resveratrol (trans-Resveratrol; SRT501), a natural polyphenolic phytoalexin that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. Resveratrol (SRT 501) has a wide spectrum of targets including mTOR, JAK, β-amyloid, Adenylyl cyclase, IKKβ, DNA polymerase. Resveratrol also is a specific SIRT1 activator[1][2][3][4]. Resveratrol is a potent pregnane X receptor (PXR) inhibitor[5]. Resveratrol is an Nrf2 activator, ameliorates aging-related progressive renal injury in mice model[6]. Resveratrol increases production of NO in endothelial cells[7].

   

(2s,3r,4s,5s,6r)-2-(4-hydroxy-3-methoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-(4-hydroxy-3-methoxyphenoxy)-6-(hydroxymethyl)oxane-3,4,5-triol

C13H18O8 (302.1002)


   

[(2r,3r,4s,5s)-3-hydroxy-5-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-3-hydroxy-5-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C41H44O19 (840.2477)


   

(5-{[3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxy-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(5-{[3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxy-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C42H44O19 (852.2477)


   

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxy-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxy-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C42H44O19 (852.2477)


   

[(2r,3s,4s,5s)-5-{[(2r,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4-hydroxy-3-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3s,4s,5s)-5-{[(2r,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-4-hydroxy-3-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C42H44O19 (852.2477)


   

2-(3,4-dihydroxyphenyl)-5-hydroxy-3,7-bis({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})chromen-4-one

2-(3,4-dihydroxyphenyl)-5-hydroxy-3,7-bis({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})chromen-4-one

C27H30O15 (594.1585)


   

3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzofuran-5-carbaldehyde

3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzofuran-5-carbaldehyde

C21H16O5 (348.0998)


   

(3-hydroxy-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(3-hydroxy-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C40H42O18 (810.2371)


   

(3-hydroxy-4-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(3-hydroxy-4-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C42H46O20 (870.2582)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r)-3,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-6-methyl-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r)-3,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-6-methyl-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H28O11 (480.1632)


   

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5r,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-(hydroxymethyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5r,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-(hydroxymethyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C34H40O18 (736.2215)


   

(5-{[3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxy-4-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(5-{[3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxy-4-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C43H46O20 (882.2582)


   

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxy-5-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxy-5-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C43H46O20 (882.2582)


   

5-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4-dihydroxycyclohex-1-ene-1-carboxylic acid

5-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4-dihydroxycyclohex-1-ene-1-carboxylic acid

C16H16O8 (336.0845)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C21H20O11 (448.1006)


   

[5-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-3-hydroxy-4-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-(hydroxymethyl)oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[5-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-3-hydroxy-4-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-(hydroxymethyl)oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C34H40O18 (736.2215)


   

[(2r,3r,4s,5s)-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C41H44O19 (840.2477)


   

[(2r,3s,4s,5s)-4-hydroxy-3-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3s,4s,5s)-4-hydroxy-3-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C40H42O18 (810.2371)


   

[5-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-3-hydroxy-5-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[5-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-3-hydroxy-5-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C43H46O20 (882.2582)


   

[(2r,3s,4s,5s)-3,4-dihydroxy-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3s,4s,5s)-3,4-dihydroxy-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C31H36O16 (664.2003)


   

[5-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-3-hydroxy-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[5-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-3-hydroxy-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C42H44O19 (852.2477)


   

5-[(2r,3r)-2-(3,4-dihydroxyphenyl)-6-hydroxy-4-[(1e)-2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol

5-[(2r,3r)-2-(3,4-dihydroxyphenyl)-6-hydroxy-4-[(1e)-2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol

C28H22O7 (470.1365)


   

[(2r,3s,4s,5s)-4-hydroxy-3-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3s,4s,5s)-4-hydroxy-3-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C42H46O20 (870.2582)


   

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxy-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxy-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C42H44O19 (852.2477)


   

5-[(2s,3s)-2-(3,4-dihydroxyphenyl)-6-hydroxy-4-[(1e)-2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol

5-[(2s,3s)-2-(3,4-dihydroxyphenyl)-6-hydroxy-4-[(1e)-2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol

C28H22O7 (470.1365)


   

[(2r,3s,4s,5s)-4-hydroxy-5-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3s,4s,5s)-4-hydroxy-5-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-{[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C41H44O19 (840.2477)


   

[(2r,3r,4s,5s)-3-hydroxy-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-3-hydroxy-4-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C40H42O18 (810.2371)


   

2-{[3,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-6-methyl-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[3,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-6-methyl-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H28O11 (480.1632)


   

5-[2-(3,4-dihydroxyphenyl)-6-hydroxy-4-[2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol

5-[2-(3,4-dihydroxyphenyl)-6-hydroxy-4-[2-(4-hydroxyphenyl)ethenyl]-2,3-dihydro-1-benzofuran-3-yl]benzene-1,3-diol

C28H22O7 (470.1365)


   

(3-hydroxy-4-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(3-hydroxy-4-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-(hydroxymethyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C32H38O17 (694.2109)


   

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C43H46O20 (882.2582)


   

[(2r,3r,4s,5s)-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C42H46O20 (870.2582)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r)-3,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methyl-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r)-3,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methyl-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H28O11 (480.1632)


   

(3-hydroxy-4-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(3-hydroxy-4-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl)methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C41H44O19 (840.2477)


   

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-(hydroxymethyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-5-{[(2r,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-(hydroxymethyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C34H40O18 (736.2215)


   

[(2r,3s,4s,5s)-5-{[(2r,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-hydroxy-3-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3s,4s,5s)-5-{[(2r,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-hydroxy-3-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C43H46O20 (882.2582)


   

[(2r,3s,4s,5s)-5-{[(2r,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-hydroxy-3-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3s,4s,5s)-5-{[(2r,3r,4s,5s,6r)-3-(acetyloxy)-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4-hydroxy-3-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C42H44O19 (852.2477)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

C21H20O10 (432.1056)


   

(2r,3r)-3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzofuran-5-carbaldehyde

(2r,3r)-3-(3,5-dihydroxyphenyl)-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzofuran-5-carbaldehyde

C21H16O5 (348.0998)


   

[(2r,3r,4s,5s)-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-(hydroxymethyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r,4s,5s)-3-hydroxy-4-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5-(hydroxymethyl)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C32H38O17 (694.2109)


   

[3,4-dihydroxy-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[3,4-dihydroxy-5-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C31H36O16 (664.2003)


   

2-{[3,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methyl-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[3,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methyl-3,4-dihydro-2h-1-benzopyran-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H28O11 (480.1632)


   

[3-hydroxy-5-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[3-hydroxy-5-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-4-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C41H44O19 (840.2477)


   

[(2r,3s,4s,5s)-5-{[(2r,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3s,4s,5s)-5-{[(2r,3r,4s,5s,6r)-6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl]oxy}-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C24H32O15 (560.1741)


   

tocilizumab

tocilizumab

C14H12O3 (228.0786)


   

[5-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[5-({6-[(acetyloxy)methyl]-3,4,5-trihydroxyoxan-2-yl}oxy)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C24H32O15 (560.1741)