Isoorientin 7-O-(6'-O-(E)-feruloyl)glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O11 (448.100557)


Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside, also known as homoorientin or luteolin-6-C-beta-D-glucoside, is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be synthesized from luteolin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is also a parent compound for other transformation products, including but not limited to, isoorientin 7-O-glucoside, 7-O-[alpha-L-rhamnosyl-(1->2)-beta-D-glucosyl]isoorientin, and 7-O-(6-sinapoylglucosyl)isoorientin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be found in barley, which makes isoorientin 7-o-(6-o-(e)-feruloyl)glucoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA21_Isoorientin_neg_20eV_1-3_01_1409.txt [Raw Data] CBA21_Isoorientin_pos_20eV_1-3_01_1382.txt [Raw Data] CBA21_Isoorientin_pos_50eV_1-3_01_1385.txt [Raw Data] CBA21_Isoorientin_neg_40eV_1-3_01_1411.txt [Raw Data] CBA21_Isoorientin_neg_10eV_1-3_01_1365.txt [Raw Data] CBA21_Isoorientin_neg_50eV_1-3_01_1412.txt [Raw Data] CBA21_Isoorientin_pos_10eV_1-3_01_1354.txt [Raw Data] CBA21_Isoorientin_pos_40eV_1-3_01_1384.txt [Raw Data] CBA21_Isoorientin_pos_30eV_1-3_01_1383.txt [Raw Data] CBA21_Isoorientin_neg_30eV_1-3_01_1410.txt Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Orientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.100557)


Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). Orientin is found in barley. Orientin is isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops).Orientin is a flavone, a chemical flavonoid-like compound found in the passion flower, the palm and Anadenanthera peregrina. Orientin is also reported in millets and in the Phyllostachys nigra bamboo leaves Isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops) [Raw Data] CBA20_Orientin_pos_40eV_1-2_01_1380.txt [Raw Data] CBA20_Orientin_neg_20eV_1-2_01_1405.txt [Raw Data] CBA20_Orientin_neg_50eV_1-2_01_1408.txt [Raw Data] CBA20_Orientin_neg_40eV_1-2_01_1407.txt [Raw Data] CBA20_Orientin_pos_50eV_1-2_01_1381.txt [Raw Data] CBA20_Orientin_neg_30eV_1-2_01_1406.txt [Raw Data] CBA20_Orientin_pos_20eV_1-2_01_1378.txt [Raw Data] CBA20_Orientin_pos_30eV_1-2_01_1379.txt [Raw Data] CBA20_Orientin_pos_10eV_1-2_01_1353.txt [Raw Data] CBA20_Orientin_neg_10eV_1-2_01_1364.txt Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402172)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one

C26H28O14 (564.1478988)


5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]-8-(3,4,5-trihydroxytetrahydro-2H-pyran-2-yl)-4H-chromen-4-one is a member of flavonoids and a C-glycosyl compound. 5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one is a natural product found in Cymbidium kanran, Acanthus, and other organisms with data available. 6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin is found in herbs and spices. 6-beta-D-Glucopyranosyl-8-beta-D-ribopyranosylapigenin is a constituent of Passiflora incarnata (maypops). Constituent of Passiflora incarnata (maypops). Apigenin 6-C-glucoside 8-C-riboside is found in herbs and spices. Neoschaftoside is a flavone C-glycoside that is apigenin attached to a beta-D-glucopyranosyl and a beta-L-arabinopyranosyl residues at positions 6 and 8 respectively via C-glycosidic linkage. It has a role as a plant metabolite. It is a flavone C-glycoside and a dihydroxyflavone. It is functionally related to an apigenin. Neoschaftoside is a natural product found in Radula complanata, Artemisia judaica, and other organisms with data available. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1].

   

Carlina oxide

Carlina oxide

C13H10O (182.073161)


   

FA 18:1

7-(2-octylcyclopropyl)heptanoic acid

C18H34O2 (282.2558664)


trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Schaftoside

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one

C26H28O14 (564.1478988)


Apigenin 6-c-glucoside 8-c-riboside is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Apigenin 6-c-glucoside 8-c-riboside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 6-c-glucoside 8-c-riboside can be found in herbs and spices, which makes apigenin 6-c-glucoside 8-c-riboside a potential biomarker for the consumption of this food product. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1]. Schaftoside is a flavonoid found in a variety of Chinese herbal medicines, such as Eleusine indica. Schaftoside inhibits the expression of TLR4 and Myd88. Schaftoside also decreases Drp1 expression and phosphorylation, and reduces mitochondrial fission[1].

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.100557)


Isoorientin is a flavone C-glycoside consisting of luteolin having a beta-D-glucosyl residue at the 6-position. It has a role as a radical scavenger and an antineoplastic agent. It is a tetrahydroxyflavone and a flavone C-glycoside. It is functionally related to a luteolin. It is a conjugate acid of an isoorientin(1-). Isoorientin is a natural product found in Carex fraseriana, Itea chinensis, and other organisms with data available. See also: Acai fruit pulp (part of). A C-glycosyl compound consisting of luteolin having a beta-D-glucosyl residue at the 6-position. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.105642)


Vitexin is an apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet It has a role as a platelet aggregation inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an antineoplastic agent and a plant metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a vitexin-7-olate. Vitexin is a natural product found in Itea chinensis, Salacia chinensis, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Cytisus scoparius flowering top (part of); Fenugreek seed (part of) ... View More ... An apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Vitexin

8-beta-D-Glucopyranosyl-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C21H20O10 (432.105642)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Isoorientin

Luteolin 6-C-glucoside

C21H20O11 (448.100557)


Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Corymboside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)-4H-chromen-4-one

C26H28O14 (564.1478988)


Corymboside is found in cereals and cereal products. Corymboside is isolated from Triticum aestivum (wheat) (as acyl derivatives) Isolated from Triticum aestivum (wheat) (as acyl derivs.). Corymboside is found in wheat and cereals and cereal products.

   

(Z)-5-Hexadecenoic acid

(5E)-hexadec-5-enoic acid

C16H30O2 (254.224568)


(Z)-5-Hexadecenoic acid is found in fruits. (Z)-5-Hexadecenoic acid is isolated from Dioscoreophyllum cumminsii (serendipity berry Isolated from Dioscoreophyllum cumminsii (serendipity berry). (Z)-5-Hexadecenoic acid is found in fruits.

   

Octadec-5-enoic acid

octadec-5-enoic acid

C18H34O2 (282.2558664)


   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O11 (448.100557)


   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.105642)


Vitexin is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin can be found in a number of food items such as flaxseed, prairie turnip, mung bean, and tree fern, which makes vitexin a potential biomarker for the consumption of these food products. Vitexin is an apigenin flavone glucoside, a chemical compound found in the passion flower, Vitex agnus-castus (chaste tree or chasteberry), in the Phyllostachys nigra bamboo leaves, in the pearl millet (Pennisetum millet), and in Hawthorn . Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

3E,5E,11E-Trideca-1,3,5,11-tetraene-7,9-diyne

(3E,5E,11E)-trideca-1,3,5,11-tetraen-7,9-diyne

C13H12 (168.0938952)


3e,5e,11e-trideca-1,3,5,11-tetraene-7,9-diyne is a member of the class of compounds known as enynes. Enynes are hydrocarbons containing an alkene and an alkyne group. 3e,5e,11e-trideca-1,3,5,11-tetraene-7,9-diyne can be found in safflower, which makes 3e,5e,11e-trideca-1,3,5,11-tetraene-7,9-diyne a potential biomarker for the consumption of this food product.

   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402172)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

corymboside

6-alpha-L-Arabinopyranosyl-8-beta-D-galactopyranosyl-5,7-dihydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C26H28O14 (564.1478988)


   

Neocorymboside

5,7,4-Trihydroxyflavone 6-C-beta-L-arabinofuranoside-8-C-galactoside

C26H28O14 (564.1478988)


   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O10 (432.105642)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Lutexin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O11 (448.100557)


Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-4-chromenone

C21H20O11 (448.100557)


Isolated from wheat leaves (Triticum species). Isoorientin 6-diglucoside is found in wheat and cereals and cereal products. Isoorientin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin can be found in a number of food items such as oat, prairie turnip, common buckwheat, and common salsify, which makes isoorientin a potential biomarker for the consumption of these food products. Isoorientin (or homoorientin) is a flavone, a chemical flavonoid-like compound. It is the luteolin-6-C-glucoside. Bioassay-directed fractionation techniques led to isolation of isoorientin as the main hypoglycaemic component in Gentiana olivieri . Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

octadec-5-enoic acid

octadec-5-enoic acid

C18H34O2 (282.2558664)


   

Orientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.100557)


Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). A C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

NCGC00180115-02!5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C26H28O14 (564.1478988)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

NCGC00169650-03!5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C26H28O14 (564.1478988)


   

5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

5,7-Dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C26H28O14 (564.1478988)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-(3,4,5-trihydroxyoxan-2-yl)chromen-4-one

C26H28O14 (564.1478988)


   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402172)


   

5Z-octadecenoic acid

trans-5-octadecenoic acid

C18H34O2 (282.2558664)


   
   

Lucenin-2

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6,8-bis[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C27H30O16 (610.153378)


   

(3E,5E,11E)-trideca-1,3,5,11-tetraen-7,9-diyne

(3E,5E,11E)-trideca-1,3,5,11-tetraen-7,9-diyne

C13H12 (168.0938952)


   

1-methyl-6-methylidene-4-(propan-2-ylidene)-1,2,3,4a,5,8a-hexahydronaphthalene

1-methyl-6-methylidene-4-(propan-2-ylidene)-1,2,3,4a,5,8a-hexahydronaphthalene

C15H22 (202.1721412)


   

(4r,5r,7r,9r,10r,13s,14r)-14-formyl-7-hydroxy-9-methyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(4r,5r,7r,9r,10r,13s,14r)-14-formyl-7-hydroxy-9-methyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C19H28O4 (320.19874880000003)


   

(5z)-hexadec-5-enoic acid

(5z)-hexadec-5-enoic acid

C16H30O2 (254.224568)


   

trideca-2,10,12-trien-4,6,8-triyn-1-ol

trideca-2,10,12-trien-4,6,8-triyn-1-ol

C13H10O (182.073161)


   

2-(nona-6,8-dien-2,4-diyn-1-ylidene)-5h-furan

2-(nona-6,8-dien-2,4-diyn-1-ylidene)-5h-furan

C13H10O (182.073161)


   

(1r,4as,8ar)-1-methyl-6-methylidene-4-(propan-2-ylidene)-1,2,3,4a,5,8a-hexahydronaphthalene

(1r,4as,8ar)-1-methyl-6-methylidene-4-(propan-2-ylidene)-1,2,3,4a,5,8a-hexahydronaphthalene

C15H22 (202.1721412)


   

(5z)-octadec-5-enoic acid

(5z)-octadec-5-enoic acid

C18H34O2 (282.2558664)


   

7-(3-hydroxyphenyl)hept-2-en-4,6-diyn-1-yl acetate

7-(3-hydroxyphenyl)hept-2-en-4,6-diyn-1-yl acetate

C15H12O3 (240.0786402)


   

(2e,10z)-trideca-2,10,12-trien-4,6,8-triynal

(2e,10z)-trideca-2,10,12-trien-4,6,8-triynal

C13H8O (180.0575118)


   

(2e)-7-[3-(acetyloxy)phenyl]hept-2-en-4,6-diyn-1-yl acetate

(2e)-7-[3-(acetyloxy)phenyl]hept-2-en-4,6-diyn-1-yl acetate

C17H14O4 (282.0892044)


   

(2z,10z)-trideca-2,10,12-trien-4,6,8-triyn-1-yl acetate

(2z,10z)-trideca-2,10,12-trien-4,6,8-triyn-1-yl acetate

C15H12O2 (224.0837252)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-[(2r,3r,4r,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-[(2r,3r,4r,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

C26H28O14 (564.1478988)


   

trideca-2,8,10,12-tetraen-4,6-diyn-1-yl acetate

trideca-2,8,10,12-tetraen-4,6-diyn-1-yl acetate

C15H14O2 (226.09937440000002)


   

(2e,8e,10e)-trideca-2,8,10,12-tetraen-4,6-diyn-1-yl acetate

(2e,8e,10e)-trideca-2,8,10,12-tetraen-4,6-diyn-1-yl acetate

C15H14O2 (226.09937440000002)


   

(2z)-7-(3-methoxyphenyl)hept-2-en-4,6-diyn-1-yl acetate

(2z)-7-(3-methoxyphenyl)hept-2-en-4,6-diyn-1-yl acetate

C16H14O3 (254.0942894)


   

2-[3-(2-methoxyphenyl)prop-1-yn-1-yl]furan

2-[3-(2-methoxyphenyl)prop-1-yn-1-yl]furan

C14H12O2 (212.0837252)


   

trideca-1,3,5,11-tetraen-7,9-diyne

trideca-1,3,5,11-tetraen-7,9-diyne

C13H12 (168.0938952)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2r,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2r,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2r,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2r,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

C26H28O14 (564.1478988)


   

(2z,10z)-trideca-2,10,12-trien-4,6,8-triynal

(2z,10z)-trideca-2,10,12-trien-4,6,8-triynal

C13H8O (180.0575118)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

C21H20O10 (432.105642)


   

2-(3-phenylpropa-1,2-dien-1-yl)furan

2-(3-phenylpropa-1,2-dien-1-yl)furan

C13H10O (182.073161)


   

7-[3-(acetyloxy)phenyl]hept-2-en-4,6-diyn-1-yl acetate

7-[3-(acetyloxy)phenyl]hept-2-en-4,6-diyn-1-yl acetate

C17H14O4 (282.0892044)


   

(2e)-2-[(6e)-nona-6,8-dien-2,4-diyn-1-ylidene]-5h-furan

(2e)-2-[(6e)-nona-6,8-dien-2,4-diyn-1-ylidene]-5h-furan

C13H10O (182.073161)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2s,3r,4r,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-6-[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

C26H28O14 (564.1478988)


   

(1r,5r,7r,9r,13r,15s)-15-hydroxy-7-{[(2r,3r,4r,5r,6r)-6-(hydroxymethyl)-3-[(3-methylbutanoyl)oxy]-4,5-bis(sulfooxy)oxan-2-yl]oxy}-9-methyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1r,5r,7r,9r,13r,15s)-15-hydroxy-7-{[(2r,3r,4r,5r,6r)-6-(hydroxymethyl)-3-[(3-methylbutanoyl)oxy]-4,5-bis(sulfooxy)oxan-2-yl]oxy}-9-methyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C30H46O16S2 (726.2227156)


   

(2z,10z)-trideca-2,10,12-trien-4,6,8-triyn-1-ol

(2z,10z)-trideca-2,10,12-trien-4,6,8-triyn-1-ol

C13H10O (182.073161)


   

(1s,4r,9r,10s,13r)-15-hydroxy-7-{[6-(hydroxymethyl)-3-[(3-methylbutanoyl)oxy]-4,5-bis(sulfooxy)oxan-2-yl]oxy}-9-methyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5,5-dicarboxylic acid

(1s,4r,9r,10s,13r)-15-hydroxy-7-{[6-(hydroxymethyl)-3-[(3-methylbutanoyl)oxy]-4,5-bis(sulfooxy)oxan-2-yl]oxy}-9-methyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5,5-dicarboxylic acid

C31H46O18S2 (770.2125456000001)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6,8-bis[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6,8-bis[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one

C27H30O16 (610.153378)


   

(2e)-7-(3-hydroxyphenyl)hept-2-en-4,6-diyn-1-yl acetate

(2e)-7-(3-hydroxyphenyl)hept-2-en-4,6-diyn-1-yl acetate

C15H12O3 (240.0786402)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2r,3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-8-[(2r,3s,4r,5s)-3,4,5-trihydroxyoxan-2-yl]chromen-4-one

C26H28O14 (564.1478988)


   

(2e,10e)-trideca-2,10,12-trien-4,6,8-triyn-1-yl acetate

(2e,10e)-trideca-2,10,12-trien-4,6,8-triyn-1-yl acetate

C15H12O2 (224.0837252)


   

trideca-2,10,12-trien-4,6,8-triynal

trideca-2,10,12-trien-4,6,8-triynal

C13H8O (180.0575118)


   

(2z)-7-(3-hydroxyphenyl)hept-2-en-4,6-diyn-1-yl acetate

(2z)-7-(3-hydroxyphenyl)hept-2-en-4,6-diyn-1-yl acetate

C15H12O3 (240.0786402)


   

trideca-2,10,12-trien-4,6,8-triyn-1-yl acetate

trideca-2,10,12-trien-4,6,8-triyn-1-yl acetate

C15H12O2 (224.0837252)


   

(2e,10e)-trideca-2,10,12-trien-4,6,8-triyn-1-ol

(2e,10e)-trideca-2,10,12-trien-4,6,8-triyn-1-ol

C13H10O (182.073161)


   

7-(3-methoxyphenyl)hept-2-en-4,6-diyn-1-yl acetate

7-(3-methoxyphenyl)hept-2-en-4,6-diyn-1-yl acetate

C16H14O3 (254.0942894)