NCBI Taxonomy: 2007181

Bryothamnion (ncbi_taxid: 2007181)

found 11 associated metabolites at genus taxonomy rank level.

Ancestor: Rhodomelaceae

Child Taxonomies: Bryothamnion triquetrum, Bryothamnion seaforthii

Cinnamic acid

Cinnamic acid, United States Pharmacopeia (USP) Reference Standard

C9H8O2 (148.0524)


Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID C016 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].

   

Ferulic acid

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Cinnamic acid

cinnamic acid, 14C-labeled cpd (E)-isomer

C9H8O2 (148.0524)


Cinnamic acid, also known as (Z)-cinnamate or 3-phenyl-acrylate, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Cinnamic acid can be obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is a weakly acidic compound (based on its pKa). It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Cinnamic acid exists in all living organisms, ranging from bacteria to plants to humans. Outside of the human body, cinnamic acid has been detected, but not quantified in, chinese cinnamons. In plants, cinnamic acid is a central intermediate in the biosynthesis of myriad natural products include lignols (precursors to lignin and lignocellulose), flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3778; ORIGINAL_PRECURSOR_SCAN_NO 3776 CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3783; ORIGINAL_PRECURSOR_SCAN_NO 3781 Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. cis-Cinnamic acid is found in chinese cinnamon. CONFIDENCE standard compound; INTERNAL_ID 183 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].

   

Cinnamic Acid

trans-cinnamic acid

C9H8O2 (148.0524)


Trans-cinnamic acid, also known as (2e)-3-phenyl-2-propenoic acid or (E)-cinnamate, is a member of the class of compounds known as cinnamic acids. Cinnamic acids are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Trans-cinnamic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Trans-cinnamic acid is a sweet, balsam, and honey tasting compound and can be found in a number of food items such as maitake, mustard spinach, common wheat, and barley, which makes trans-cinnamic acid a potential biomarker for the consumption of these food products. Trans-cinnamic acid can be found primarily in saliva. Trans-cinnamic acid exists in all living species, ranging from bacteria to humans. Trans-cinnamic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cinnamic acid is an organic compound with the formula C6H5CHCHCO2H. It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Classified as an unsaturated carboxylic acid, it occurs naturally in a number of plants. It exists as both a cis and a trans isomer, although the latter is more common . Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].

   

Ferulic acid

4-hydroxy-3-methoxycinnamic acid

C10H10O4 (194.0579)


(E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

3-methoxy-6-methyloxane-2,5-diol

3-methoxy-6-methyloxane-2,5-diol

C7H14O4 (162.0892)


   

6-(methoxymethyl)oxane-2,3,4,5-tetrol

6-(methoxymethyl)oxane-2,3,4,5-tetrol

C7H14O6 (194.079)


   

(2r,3r,4s,5r,6r)-6-(methoxymethyl)oxane-2,3,4,5-tetrol

(2r,3r,4s,5r,6r)-6-(methoxymethyl)oxane-2,3,4,5-tetrol

C7H14O6 (194.079)


   

(2s,3r,5r,6r)-2-methoxy-6-methyloxane-3,5-diol

(2s,3r,5r,6r)-2-methoxy-6-methyloxane-3,5-diol

C7H14O4 (162.0892)


   

2-methoxy-6-methyloxane-3,5-diol

2-methoxy-6-methyloxane-3,5-diol

C7H14O4 (162.0892)


   

(2r,3s,5s,6s)-3-methoxy-6-methyloxane-2,5-diol

(2r,3s,5s,6s)-3-methoxy-6-methyloxane-2,5-diol

C7H14O4 (162.0892)