Myristic acid (BioDeep_00000000466)

 

Secondary id: BioDeep_00000229601, BioDeep_00000400543, BioDeep_00000860523

human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite PANOMIX LipidSearch BioNovoGene_Lab2019 Volatile Flavor Compounds natural product


代谢物信息卡片


tetradecanoic acid

化学式: C14H28O2 (228.20891880000002)
中文名称: 正十四碳酸, 十四酸, 肉豆蔻酸, 十四烷酸
谱图信息: 最多检出来源 Homo sapiens(feces) 0.36%

Reviewed

Last reviewed on 2024-06-29.

Cite this Page

Myristic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/myristic_acid (retrieved 2024-11-24) (BioDeep RN: BioDeep_00000000466). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(=O)(O)CCCCCCCCCCCCC
InChI: InChI=1S/C14H28O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14(15)16/h2-13H2,1H3,(H,15,16)

描述信息

Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992)
Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate.
Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available.
Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat.
Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia).
myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae.
A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed)
See also: Cod Liver Oil (part of); Saw Palmetto (part of).
Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair.
Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair .
A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat.

Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15]
Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.
Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

同义名列表

88 个代谢物同义名

Myristic acid, Pharmaceutical Secondary Standard; Certified Reference Material; Tetradecanoic acid; 1-Tridecanecarboxylic acid; n-Tetradecanoic acid; Myristic acid, United States Pharmacopeia (USP) Reference Standard; MYRISTIC ACID (CONSTITUENT OF SAW PALMETTO) [DSC]; 4-02-00-01126 (Beilstein Handbook Reference); Myristic acid, Vetec(TM) reagent grade, 98\\%; MYRISTIC ACID (CONSTITUENT OF SAW PALMETTO); Myristic acid, Sigma Grade, >=99\\%; Myristic acid, analytical standard; Myristic acid, >=95\\%, FCC, FG; Tetradecanoic (Myristic) acid; 1-tetradecanecarboxylic acid; Myristic acid, >=98.0\\% (GC); 1-Tridecanecarboxylic acid; IS_D27-TETRADECANOIC ACID; Tetradecanoic acid (9CI); tridecanecarboxylic acid; 1-Tetradecanecarboxylate; n-Tetradecan-1-oic acid; Myristic acid (natural); Myristic Acid, Reagent; 1-Tridecanecarboxylate; Myristic acid, puriss.; MYRISTIC ACID [USP-RS]; Myristic acid, natural; MYRISTIC ACID (USP-RS); acide tetradecanoique; MYRISTIC ACID (MART.); MYRISTIC ACID [MART.]; MYRISTIC-14-13C ACID; Myristic acid, ?99\\%; MYRISTIC ACID [INCI]; MYRISTIC ACID [FHFI]; MYRISTIC ACID [HSDB]; n-Tetradecanoic acid; n-tetradecan-1-oate; Acid, Tetradecanoic; Myristic acid, pure; Myristic acid, 95\\%; MYRISTIC ACID [FCC]; Myristic acid (8CI); Tetradecanoic acid; Myristic acid pure; MYRISTIC ACID [II]; MYRISTIC ACID (II); n-Tetradecoic acid; MyristicAcid-13C14; MYRISTIC ACID [MI]; Myristic acid [NF]; Tetradecanoicacid; MAGNESIUMARSENATE; tetradecoic acid; n-Tetradecanoate; CH3-(CH2)12-COOH; CH3-[CH2]12-COOH; TETRADECANSAEURE; UNII-0I3V7S25AW; n-Myristic acid; fatty acid 14:0; ACIDO MYNISTICO; Myristinsaeure; N-Tetradecoate; Tetradecanoate; myristoic acid; Acid, Myristic; Myristic Acid; Tetradecoate; Tox21_302781; Tox21_201852; Edenor C 14; myristoate; 0I3V7S25AW; Myristate; AI3-15381; WLN: QV13; Crodacid; FA(14:0); FA 14:0; 14:00; C14:0; 3usx; 3v2n; 3w9k; 14:0; C14; Myristic acid; Tetradecanoic acid; Myristic acid



数据库引用编号

40 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

10 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(1)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(9)

PharmGKB(0)

1156 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。



文献列表

  • Kazuki Kurima, Haruhiko Jimbo, Takashi Fujihara, Masakazu Saito, Toshiki Ishikawa, Hajime Wada. High Myristic Acid in Glycerolipids Enhances the Repair of Photodamaged Photosystem II under Strong Light. Plant & cell physiology. 2024 May; 65(5):790-797. doi: 10.1093/pcp/pcae021. [PMID: 38441322]
  • Ting Hu, Wen Zhang, Feifei Han, Rui Zhao, Hongchuan Liu, Zhuoling An. Machine learning reveals serum myristic acid, palmitic acid and heptanoylcarnitine as biomarkers of coronary artery disease risk in patients with type 2 diabetes mellitus. Clinica chimica acta; international journal of clinical chemistry. 2024 Mar; 556(?):117852. doi: 10.1016/j.cca.2024.117852. [PMID: 38438006]
  • Eric M Rosenberg, Xiaoying Jian, Olivier Soubias, Rebekah A Jackson, Erin Gladu, Emily Andersen, Lothar Esser, Alexander J Sodt, Di Xia, R Andrew Byrd, Paul A Randazzo. Point mutations in Arf1 reveal cooperative effects of the N-terminal extension and myristate for GTPase-activating protein catalytic activity. PloS one. 2024; 19(4):e0295103. doi: 10.1371/journal.pone.0295103. [PMID: 38574162]
  • Yuanyuan Jiang, Hongfei Wu, Paul Chi Lui Ho, Xuemei Tang, Hui Ao, Lu Chen, Jinjin Cai. GC-MS Fingerprinting Combined with Chemical Pattern-Recognition Analysis Reveals Novel Chemical Markers of the Medicinal Seahorse. Molecules (Basel, Switzerland). 2023 Nov; 28(23):. doi: 10.3390/molecules28237824. [PMID: 38067553]
  • Samaneh Davoudi, Koen Raemdonck, Kevin Braeckmans, An Ghysels. Capric Acid and Myristic Acid Permeability Enhancers in Curved Liposome Membranes. Journal of chemical information and modeling. 2023 11; 63(21):6789-6806. doi: 10.1021/acs.jcim.3c00936. [PMID: 37917127]
  • Mushawah Abdullah Almushawah, Jegan Athinarayanan, Vaiyapuri Subbarayan Periasamy, Ali Alshatwi A. Fabrication of Myristic acid - Potato Starch Complex Nanostructures and Assessment of Their Cytotoxic Behavior. Journal of the science of food and agriculture. 2023 Oct; ?(?):. doi: 10.1002/jsfa.13071. [PMID: 37872732]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Paul Monassa, Frédéric Rivière, Cyril Dian, Frédéric Frottin, Carmela Giglione, Thierry Meinnel. Biochemical and structural analysis of N-myristoyltransferase mediated protein tagging. Methods in enzymology. 2023; 684(?):135-166. doi: 10.1016/bs.mie.2023.02.016. [PMID: 37230587]
  • Katyayanee Neopane, Natalie Kozlov, Florentina Negoita, Lisa Murray-Segal, Robert Brink, Ashfaqul Hoque, Ashley J Ovens, Gavin Tjin, Luke M McAloon, Dingyi Yu, Naomi X Y Ling, Matthew J Sanders, Jonathan S Oakhill, John W Scott, Gregory R Steinberg, Kim Loh, Bruce E Kemp, Kei Sakamoto, Sandra Galic. Blocking AMPK β1 myristoylation enhances AMPK activity and protects mice from high-fat diet-induced obesity and hepatic steatosis. Cell reports. 2022 12; 41(12):111862. doi: 10.1016/j.celrep.2022.111862. [PMID: 36543129]
  • Frédéric Rivière, Cyril Dian, Rémi F Dutheil, Paul Monassa, Carmela Giglione, Thierry Meinnel. Structural and Large-scale Analysis Unveil the Intertwined Paths Promoting NMT-catalyzed Lysine and Glycine Myristoylation. Journal of molecular biology. 2022 11; 434(22):167843. doi: 10.1016/j.jmb.2022.167843. [PMID: 36181773]
  • Eric Soupene, Frans A Kuypers. Dual Role of ACBD6 in the Acylation Remodeling of Lipids and Proteins. Biomolecules. 2022 11; 12(12):. doi: 10.3390/biom12121726. [PMID: 36551154]
  • Dasheng Sun, Xueping Yang, Yi Wang, Yu Fan, Pengcheng Ding, Xi'E Song, Xiangyang Yuan, Xuefang Yang. Stronger mutualistic interactions with arbuscular mycorrhizal fungi help Asteraceae invaders outcompete the phylogenetically related natives. The New phytologist. 2022 11; 236(4):1487-1496. doi: 10.1111/nph.18435. [PMID: 35975696]
  • Sônia do Socorro do C Oliveira, Edmilson Dos S Sarmento, Victor H Marinho, Rayanne R Pereira, Luis P Fonseca, Irlon M Ferreira. Green Extraction of Annatto Seed Oily Extract and Its Use as a Pharmaceutical Material for the Production of Lipid Nanoparticles. Molecules (Basel, Switzerland). 2022 Aug; 27(16):. doi: 10.3390/molecules27165187. [PMID: 36014427]
  • Kang Du, Ling Sun, Zichen Luo, Yang Cao, Qiushi Sun, Kangzhen Zhang, Ahmed Faizy, Daniele Piomelli, Xiang Lu, Jinjun Shan, Qin Yang. Reduced DMPC and PMPC in lung surfactant promote SARS-CoV-2 infection in obesity. Metabolism: clinical and experimental. 2022 06; 131(?):155181. doi: 10.1016/j.metabol.2022.155181. [PMID: 35311662]
  • Witold Gładkowski, Aleksandra Włoch, Hanna Pruchnik, Anna Chojnacka, Aleksandra Grudniewska, Agnieszka Wysota, Anna Dunal, Daniel Rubiano Castro, Magdalena Rudzińska. Acylglycerols of Myristic Acid as New Candidates for Effective Stigmasterol Delivery-Design, Synthesis, and the Influence on Physicochemical Properties of Liposomes. Molecules (Basel, Switzerland). 2022 May; 27(11):. doi: 10.3390/molecules27113406. [PMID: 35684341]
  • Viswanathan Saraswathi, Narendra Kumar, Weilun Ai, Thiyagarajan Gopal, Saumya Bhatt, Edward N Harris, Geoffrey A Talmon, Cyrus V Desouza. Myristic Acid Supplementation Aggravates High Fat Diet-Induced Adipose Inflammation and Systemic Insulin Resistance in Mice. Biomolecules. 2022 05; 12(6):. doi: 10.3390/biom12060739. [PMID: 35740864]
  • Betül Oskaybaş-Emlek, Ayşe Özbey, Levent Yurdaer Aydemir, Kevser Kahraman. Production of buckwheat starch-myristic acid complexes and effect of reaction conditions on the physicochemical properties, X-ray pattern and FT-IR spectra. International journal of biological macromolecules. 2022 May; 207(?):978-989. doi: 10.1016/j.ijbiomac.2022.03.189. [PMID: 35378155]
  • N T Hamdan, S Abdalkareem Jasim, A Khayoon Abed Al-Abboodi. Pharmacognostic Profile and Screening of Anti-Proliferative Potential of Methanolic Extract of Tripterygium wilfordii Plant on WRL-68 Cell Line and Function of Polycystin-1. Archives of Razi Institute. 2022 Apr; 77(2):753-760. doi: 10.22092/ari.2021.356860.1931. [PMID: 36284975]
  • Marina Masetto Antunes, Guilherme Godoy, Rui Curi, Jesuí Vergílio Visentainer, Roberto Barbosa Bazotte. The Myristic Acid:Docosahexaenoic Acid Ratio Versus the n-6 Polyunsaturated Fatty Acid:n-3 Polyunsaturated Fatty Acid Ratio as Nonalcoholic Fatty Liver Disease Biomarkers. Metabolic syndrome and related disorders. 2022 03; 20(2):69-78. doi: 10.1089/met.2021.0107. [PMID: 34813379]
  • Cigdem Sahin, Lilia Magomedova, Thais A M Ferreira, Jiabao Liu, Jens Tiefenbach, Priscilla S Alves, Fellipe J G Queiroz, Andressa S de Oliveira, Mousumi Bhattacharyya, Julie Grouleff, Patrícia C N Nogueira, Edilberto R Silveira, Daniel C Moreira, José Roberto Souza de Almeida Leite, Guilherme D Brand, David Uehling, Gennady Poda, Henry Krause, Carolyn L Cummins, Luiz A S Romeiro. Phenolic Lipids Derived from Cashew Nut Shell Liquid to Treat Metabolic Diseases. Journal of medicinal chemistry. 2022 02; 65(3):1961-1978. doi: 10.1021/acs.jmedchem.1c01542. [PMID: 35089724]
  • Felipe Andrade-Villalobos, Daniel Zúñiga-Núñez, Denis Fuentealba, Angelica Fierro. Binding of toluidine blue-myristic acid derivative to cucurbit[7]uril and human serum albumin: computational and biophysical insights towards a biosupramolecular assembly. Physical chemistry chemical physics : PCCP. 2022 Feb; 24(5):3222-3230. doi: 10.1039/d1cp04307b. [PMID: 35044390]
  • Yong-Guy Kim, Jin-Hyung Lee, Sunyoung Park, Sanghun Kim, Jintae Lee. Inhibition of polymicrobial biofilm formation by saw palmetto oil, lauric acid and myristic acid. Microbial biotechnology. 2022 02; 15(2):590-602. doi: 10.1111/1751-7915.13864. [PMID: 34156757]
  • Sachiko Tanaka, Kayo Hashimoto, Yuuki Kobayashi, Koji Yano, Taro Maeda, Hiromu Kameoka, Tatsuhiro Ezawa, Katsuharu Saito, Kohki Akiyama, Masayoshi Kawaguchi. Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Communications biology. 2022 01; 5(1):43. doi: 10.1038/s42003-021-02967-5. [PMID: 35022540]
  • Carmela Giglione, Thierry Meinnel. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Progress in lipid research. 2022 01; 85(?):101139. doi: 10.1016/j.plipres.2021.101139. [PMID: 34793862]
  • Angel Josabad Alonso-Castro, Roberto Serrano-Vega, Salud Pérez Gutiérrez, Mario Alberto Isiordia-Espinoza, Cesar Rogelio Solorio-Alvarado. Myristic acid reduces skin inflammation and nociception. Journal of food biochemistry. 2022 01; 46(1):e14013. doi: 10.1111/jfbc.14013. [PMID: 34811755]
  • Toshihiko Utsumi, Takuro Hosokawa, Mayu Shichita, Misato Nishiue, Natsuko Iwamoto, Haruna Harada, Aya Kiwado, Manami Yano, Motoaki Otsuka, Koko Moriya. ANKRD22 is an N-myristoylated hairpin-like monotopic membrane protein specifically localized to lipid droplets. Scientific reports. 2021 09; 11(1):19233. doi: 10.1038/s41598-021-98486-8. [PMID: 34584137]
  • Patricio R Orrego, Mayela Serrano-Rodríguez, Mauro Cortez, Jorge E Araya. In Silico Characterization of Calcineurin from Pathogenic Obligate Intracellular Trypanosomatids: Potential New Biological Roles. Biomolecules. 2021 09; 11(9):. doi: 10.3390/biom11091322. [PMID: 34572535]
  • Alexej Dick, Simon Cocklin. Subtype Differences in the Interaction of HIV-1 Matrix with Calmodulin: Implications for Biological Functions. Biomolecules. 2021 08; 11(9):. doi: 10.3390/biom11091294. [PMID: 34572507]
  • Ajlaa Sofya Mohd Khalil, Nelli Giribabu, Suseela Yelumalai, Huma Shahzad, Eswar Kumar Kilari, Naguib Salleh. Myristic acid defends against testicular oxidative stress, inflammation, apoptosis: Restoration of spermatogenesis, steroidogenesis in diabetic rats. Life sciences. 2021 Aug; 278(?):119605. doi: 10.1016/j.lfs.2021.119605. [PMID: 33989665]
  • Bao-Jian Ding, Yi-Han Xia, Hong-Lei Wang, Fredrik Andersson, Erik Hedenström, Jürgen Gross, Christer Löfstedt. Biosynthesis of the Sex Pheromone Component (E,Z)-7,9-Dodecadienyl Acetate in the European Grapevine Moth, Lobesia botrana, Involving ∆11 Desaturation and an Elusive ∆7 Desaturase. Journal of chemical ecology. 2021 Mar; 47(3):248-264. doi: 10.1007/s10886-021-01252-3. [PMID: 33779878]
  • Oscar A Shepperson, Alan J Cameron, Carol J Wang, Paul W R Harris, John A Taylor, Margaret A Brimble. Thiol-ene enabled preparation of S-lipidated anti-HBV peptides. Organic & biomolecular chemistry. 2021 01; 19(1):220-232. doi: 10.1039/d0ob01997f. [PMID: 33185215]
  • Lin-Hai Chen, Qing Zhang, Xin Xie, Fa-Jun Nan. Modulation of the G-Protein-Coupled Receptor 84 (GPR84) by Agonists and Antagonists. Journal of medicinal chemistry. 2020 12; 63(24):15399-15409. doi: 10.1021/acs.jmedchem.0c01378. [PMID: 33267584]
  • Hayeong Kwon, Moonjeong Choi, Yujin Ahn, Yunbae Pak. N-myristoylation regulates insulin-induced phosphorylation and ubiquitination of Caveolin-2 for insulin signaling. Biochemical and biophysical research communications. 2020 11; 532(4):535-540. doi: 10.1016/j.bbrc.2020.08.072. [PMID: 32896381]
  • Oliviero Olivieri, Giulia Speziali, Annalisa Castagna, Patrizia Pattini, Silvia Udali, Francesca Pizzolo, Laura Liesinger, Juergen Gindlhuber, Tamara Tomin, Matthias Schittmayer, Ruth Birner-Gruenberger, Daniela Cecconi, Domenico Girelli, Simonetta Friso, Nicola Martinelli. The Positive Association between Plasma Myristic Acid and ApoCIII Concentrations in Cardiovascular Disease Patients Is Supported by the Effects of Myristic Acid in HepG2 Cells. The Journal of nutrition. 2020 10; 150(10):2707-2715. doi: 10.1093/jn/nxaa202. [PMID: 32710763]
  • Maria Luz Fernandez. The Positive Association of Plasma Myristic Acid and Apolipoprotein CIII Concentrations. The Journal of nutrition. 2020 10; 150(10):2613-2614. doi: 10.1093/jn/nxaa228. [PMID: 32805056]
  • Aikaterini Lalatsa, Yujiao Sun, Jose Ignacio Gamboa, Shira Knafo. Preformulation Studies of a Stable PTEN-PDZ Lipopeptide Able to Cross an In Vitro Blood-Brain-Barrier Model as a Potential Therapy for Alzheimer's Disease. Pharmaceutical research. 2020 Sep; 37(10):183. doi: 10.1007/s11095-020-02915-8. [PMID: 32888078]
  • Matthias C Rillig, Carlos A Aguilar-Trigueros, Ian C Anderson, Janis Antonovics, Max-Bernhard Ballhausen, Joana Bergmann, Milos Bielcik, V Bala Chaudhary, Coline Deveautour, Leonie Grünfeld, Stefan Hempel, Milica Lakovic, Daniel R Lammel, Anika Lehmann, Johannes Lehmann, Eva F Leifheit, Yun Liang, Erqin Li, Yudi M Lozano, Annette Manntschke, India Mansour, Peter Oviatt, Liliana Pinek, Jeff R Powell, Julien Roy, Masahiro Ryo, Moisés A Sosa-Hernández, Stavros D Veresoglou, Dongwei Wang, Gaowen Yang, Haiyang Zhang. Myristate and the ecology of AM fungi: significance, opportunities, applications and challenges. The New phytologist. 2020 09; 227(6):1610-1614. doi: 10.1111/nph.16527. [PMID: 32147825]
  • Songhwa Choi, Justin M Snider, Chris P Cariello, Johana M Lambert, Andrea K Anderson, L Ashley Cowart, Ashley J Snider. Sphingosine kinase 1 is required for myristate-induced TNFα expression in intestinal epithelial cells. Prostaglandins & other lipid mediators. 2020 08; 149(?):106423. doi: 10.1016/j.prostaglandins.2020.106423. [PMID: 32006664]
  • Thomas Hegyi, Barry Weinberger, Naureen Memon, Mary Carayannopoulos, Andrew H Huber, Alan M Kleinfeld. Plasma unbound free fatty acid profiles in premature infants before and after intralipid infusion. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians. 2020 Jul; 33(14):2320-2325. doi: 10.1080/14767058.2018.1548599. [PMID: 30554540]
  • Janae B Brown, Holly R Summers, Lola A Brown, Jan Marchant, Paige N Canova, Colin T O'Hern, Sophia T Abbott, Constance Nyaunu, Simon Maxwell, Talayah Johnson, Morgan B Moser, Sherimay D Ablan, Hannah Carter, Eric O Freed, Michael F Summers. Structural and Mechanistic Studies of the Rare Myristoylation Signal of the Feline Immunodeficiency Virus. Journal of molecular biology. 2020 06; 432(14):4076-4091. doi: 10.1016/j.jmb.2020.05.008. [PMID: 32442659]
  • Agnieszka Szkudlarek, Michał Wilk, Małgorzata Maciążek-Jurczyk. In Vitro Investigations of Acetohexamide Binding to Glycated Serum Albumin in the Presence of Fatty Acid. Molecules (Basel, Switzerland). 2020 May; 25(10):. doi: 10.3390/molecules25102340. [PMID: 32429512]
  • Satish Kanhar, Partha Pratim Roy, Atish Kumar Sahoo. Computational and experimental validation of free radical scavenging properties of high-performance thin-layer chromatography quantified phenyl myristate in Homalium nepalense. Journal of separation science. 2020 Apr; 43(8):1566-1575. doi: 10.1002/jssc.201901178. [PMID: 32053742]
  • Meryem Köse, Thanigaimalai Pillaiyar, Vigneshwaran Namasivayam, Elisabetta De Filippo, Katharina Sylvester, Trond Ulven, Ivar von Kügelgen, Christa E Müller. An Agonist Radioligand for the Proinflammatory Lipid-Activated G Protein-Coupled Receptor GPR84 Providing Structural Insights. Journal of medicinal chemistry. 2020 03; 63(5):2391-2410. doi: 10.1021/acs.jmedchem.9b01339. [PMID: 31721581]
  • Cyril Dian, Inmaculada Pérez-Dorado, Frédéric Rivière, Thomas Asensio, Pierre Legrand, Markus Ritzefeld, Mengjie Shen, Ernesto Cota, Thierry Meinnel, Edward W Tate, Carmela Giglione. High-resolution snapshots of human N-myristoyltransferase in action illuminate a mechanism promoting N-terminal Lys and Gly myristoylation. Nature communications. 2020 02; 11(1):1132. doi: 10.1038/s41467-020-14847-3. [PMID: 32111831]
  • Viktoriia E Baksheeva, Ekaterina L Nemashkalova, Alexander M Firsov, Arthur O Zalevsky, Vasily I Vladimirov, Natalia K Tikhomirova, Pavel P Philippov, Andrey A Zamyatnin, Dmitry V Zinchenko, Yuri N Antonenko, Sergey E Permyakov, Evgeni Yu Zernii. Membrane Binding of Neuronal Calcium Sensor-1: Highly Specific Interaction with Phosphatidylinositol-3-Phosphate. Biomolecules. 2020 01; 10(2):. doi: 10.3390/biom10020164. [PMID: 31973069]
  • Auguste Dargent, Jean-Paul Pais De Barros, Elea Ksiazek, Isabelle Fournel, Alois Dusuel, Anne Laure Rerole, Hélène Choubley, David Masson, Laurent Lagrost, Jean-Pierre Quenot. Improved quantification of plasma lipopolysaccharide (LPS) burden in sepsis using 3-hydroxy myristate (3HM): a cohort study. Intensive care medicine. 2019 11; 45(11):1678-1680. doi: 10.1007/s00134-019-05749-0. [PMID: 31451860]
  • Kai Iwata, Hiromichi Sakai, Daisuke Takahashi, Fumio Sakane. Myristic acid specifically stabilizes diacylglycerol kinase δ protein in C2C12 skeletal muscle cells. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2019 07; 1864(7):1031-1038. doi: 10.1016/j.bbalip.2019.04.003. [PMID: 30980919]
  • Lianshuai Ding, Wenbin Guo, Xinhua Chen. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3. Applied microbiology and biotechnology. 2019 Jul; 103(13):5367-5377. doi: 10.1007/s00253-019-09792-1. [PMID: 31053917]
  • Barbara Barylko, Yu-Ju Chen, Jared Hennen, Isaac Angert, Yan Chen, Joachim D Mueller, Hui-Qiao Sun, Clinton A Taylor, Jen Liou, Helen Yin, Joseph P Albanesi. Myristoylation-Dependent Palmitoylation of the Receptor Tyrosine Kinase Adaptor FRS2α. Biochemistry. 2019 06; 58(25):2809-2813. doi: 10.1021/acs.biochem.9b00299. [PMID: 31184863]
  • Yukie Yamamoto, Daisuke Morita, Yoko Shima, Akihiro Midorikawa, Tatsuaki Mizutani, Juri Suzuki, Naoki Mori, Takashi Shiina, Hidetoshi Inoko, Yoshimasa Tanaka, Bunzo Mikami, Masahiko Sugita. Identification and Structure of an MHC Class I-Encoded Protein with the Potential to Present N-Myristoylated 4-mer Peptides to T Cells. Journal of immunology (Baltimore, Md. : 1950). 2019 06; 202(12):3349-3358. doi: 10.4049/jimmunol.1900087. [PMID: 31043477]
  • Renee J Tran, Matthew S Lalonde, Krystal L Sly, John C Conboy. Mechanistic Investigation of HIV-1 Gag Association with Lipid Membranes. The journal of physical chemistry. B. 2019 06; 123(22):4673-4687. doi: 10.1021/acs.jpcb.9b02655. [PMID: 31084006]
  • Reza Mahmoudi, Majid Ghareghani, Kazem Zibara, Maryam Tajali Ardakani, Yahya Jand, Hassan Azari, Jafar Nikbakht, Amir Ghanbari. Alyssum homolocarpum seed oil (AHSO), containing natural alpha linolenic acid, stearic acid, myristic acid and β-sitosterol, increases proliferation and differentiation of neural stem cells in vitro. BMC complementary and alternative medicine. 2019 Jun; 19(1):113. doi: 10.1186/s12906-019-2518-4. [PMID: 31159797]
  • Borja Belda-Palazon, Jose Julian, Alberto Coego, Qian Wu, Xu Zhang, Oliver Batistic, Saleh A Alquraishi, Joerg Kudla, Chengcai An, Pedro L Rodriguez. ABA inhibits myristoylation and induces shuttling of the RGLG1 E3 ligase to promote nuclear degradation of PP2CA. The Plant journal : for cell and molecular biology. 2019 06; 98(5):813-825. doi: 10.1111/tpj.14274. [PMID: 30730075]
  • Lorene Armstrong, Marcelo Gomes Marçal Vieira Vaz, Diego Bonaldo Genuário, Marli Fátima Fiore, Hosana Maria Debonsi. Volatile Compounds Produced by Cyanobacteria Isolated from Mangrove Environment. Current microbiology. 2019 May; 76(5):575-582. doi: 10.1007/s00284-019-01658-z. [PMID: 30868211]
  • Xiangrong Chen, Xingchen Zhao, Yanhong Deng, Xiujuan Bu, Haiqing Ye, Na Guo. Antimicrobial potential of myristic acid against Listeria monocytogenes in milk. The Journal of antibiotics. 2019 05; 72(5):298-305. doi: 10.1038/s41429-019-0152-5. [PMID: 30787402]
  • Yunlu He, Yanbo Luo, Huan Chen, Jian Chen, Yaning Fu, Hongwei Hou, Qingyuan Hu. Profiling of carboxyl-containing metabolites in smokers and non-smokers by stable isotope labeling combined with LC-MS/MS. Analytical biochemistry. 2019 03; 569(?):1-9. doi: 10.1016/j.ab.2018.12.006. [PMID: 30543805]
  • Yifei Li, Olivier Soubias, Jess Li, Shangjin Sun, Paul A Randazzo, R Andrew Byrd. Functional Expression and Characterization of Human Myristoylated-Arf1 in Nanodisc Membrane Mimetics. Biochemistry. 2019 03; 58(10):1423-1431. doi: 10.1021/acs.biochem.8b01323. [PMID: 30735034]
  • Meshal Nazeer, Humera Waheed, Maria Saeed, Saman Yousuf Ali, M Iqbal Choudhary, Zaheer Ul-Haq, Aftab Ahmed. Purification and Characterization of a Nonspecific Lipid Transfer Protein 1 (nsLTP1) from Ajwain (Trachyspermum ammi) Seeds. Scientific reports. 2019 03; 9(1):4148. doi: 10.1038/s41598-019-40574-x. [PMID: 30858403]
  • N M Stanczyk, V A Brugman, V Austin, F Sanchez-Roman Teran, S A Gezan, M Emery, T M Visser, J T Dessens, W Stevens, R C Smallegange, W Takken, H Hurd, John Caulfield, M Birkett, J Pickett, J G Logan. Species-specific alterations in Anopheles mosquito olfactory responses caused by Plasmodium infection. Scientific reports. 2019 03; 9(1):3396. doi: 10.1038/s41598-019-40074-y. [PMID: 30833618]
  • Eric Soupene, Frans A Kuypers. ACBD6 protein controls acyl chain availability and specificity of the N-myristoylation modification of proteins. Journal of lipid research. 2019 03; 60(3):624-635. doi: 10.1194/jlr.m091397. [PMID: 30642881]
  • Emmanuelle Hoareau, Nicolas Belley, Kristina Klinker, Bernard Desbat, Élodie Boisselier. Characterization of neurocalcin delta membrane binding by biophysical methods. Colloids and surfaces. B, Biointerfaces. 2019 Feb; 174(?):291-299. doi: 10.1016/j.colsurfb.2018.11.017. [PMID: 30469050]
  • Nadine Kaiser, Tom Mejuch, Roman Fedoryshchak, Petra Janning, Edward W Tate, Herbert Waldmann. Photoactivatable Myristic Acid Probes for UNC119-Cargo Interactions. Chembiochem : a European journal of chemical biology. 2019 01; 20(2):134-139. doi: 10.1002/cbic.201800406. [PMID: 30129686]
  • A Yu Lyudinina, G E Ivankova, E R Bojko. Priority use of medium-chain fatty acids during high-intensity exercise in cross-country skiers. Journal of the International Society of Sports Nutrition. 2018 Dec; 15(1):57. doi: 10.1186/s12970-018-0265-4. [PMID: 30526607]
  • Yuzhen Mei, Yaqin Wang, Tao Hu, Xiuling Yang, Rosa Lozano-Duran, Garry Sunter, Xueping Zhou. Nucleocytoplasmic Shuttling of Geminivirus C4 Protein Mediated by Phosphorylation and Myristoylation Is Critical for Viral Pathogenicity. Molecular plant. 2018 12; 11(12):1466-1481. doi: 10.1016/j.molp.2018.10.004. [PMID: 30523782]
  • Izabella Brand, Karl-Wilhelm Koch. Impact of the protein myristoylation on the structure of a model cell membrane in a protein bound state. Bioelectrochemistry (Amsterdam, Netherlands). 2018 Dec; 124(?):13-21. doi: 10.1016/j.bioelechem.2018.06.006. [PMID: 29990597]
  • Izabella Brand, Dorota Matyszewska, Karl-Wilhelm Koch. Binding of a Myristoylated Protein to the Lipid Membrane Influenced by Interactions with the Polar Head Group Region. Langmuir : the ACS journal of surfaces and colloids. 2018 11; 34(46):14022-14032. doi: 10.1021/acs.langmuir.8b02265. [PMID: 30360613]
  • Kim Potvin-Fournier, Geneviève Valois-Paillard, Marie-Claude Gagnon, Thierry Lefèvre, Pierre Audet, Line Cantin, Jean-François Paquin, Christian Salesse, Michèle Auger. Novel approaches to probe the binding of recoverin to membranes. European biophysics journal : EBJ. 2018 Sep; 47(6):679-691. doi: 10.1007/s00249-018-1304-4. [PMID: 29691610]
  • Masakazu Saito, Kaichiro Endo, Koichi Kobayashi, Mai Watanabe, Masahiko Ikeuchi, Akio Murakami, Norio Murata, Hajime Wada. High myristic acid content in the cyanobacterium Cyanothece sp. PCC 8801 results from substrate specificity of lysophosphatidic acid acyltransferase. Biochimica et biophysica acta. Molecular and cell biology of lipids. 2018 09; 1863(9):939-947. doi: 10.1016/j.bbalip.2018.05.011. [PMID: 29793056]
  • Takehiro Sugawara, Sakura Onoue, Hiroaki Takimoto, Kazuyoshi Kawahara. Modification of lipid A structure and activity by the introduction of palmitoyltransferase gene to the acyltransferase-knockout mutant of Escherichia coli. Microbiology and immunology. 2018 Aug; 62(8):497-506. doi: 10.1111/1348-0421.12631. [PMID: 29932223]
  • Christy R Gaines, Emre Tkacik, Amalia Rivera-Oven, Phoebe Somani, Alecia Achimovich, Tawakalitou Alabi, Angela Zhu, Noel Getachew, Ae Lim Yang, Matthew McDonough, Tarik Hawkins, Zoe Spadaro, Michael F Summers. HIV-1 Matrix Protein Interactions with tRNA: Implications for Membrane Targeting. Journal of molecular biology. 2018 07; 430(14):2113-2127. doi: 10.1016/j.jmb.2018.04.042. [PMID: 29752967]
  • Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Scientific reports. 2018 07; 8(1):10056. doi: 10.1038/s41598-018-28477-9. [PMID: 29968805]
  • Giulia Speziali, Laura Liesinger, Juergen Gindlhuber, Christina Leopold, Bettina Pucher, Jessica Brandi, Annalisa Castagna, Tamara Tomin, Petra Krenn, Gerhard G Thallinger, Oliviero Olivieri, Nicola Martinelli, Dagmar Kratky, Matthias Schittmayer, Ruth Birner-Gruenberger, Daniela Cecconi. Myristic acid induces proteomic and secretomic changes associated with steatosis, cytoskeleton remodeling, endoplasmic reticulum stress, protein turnover and exosome release in HepG2 cells. Journal of proteomics. 2018 06; 181(?):118-130. doi: 10.1016/j.jprot.2018.04.008. [PMID: 29654920]
  • Shunya Saito, Shin Hamamoto, Koko Moriya, Aiko Matsuura, Yoko Sato, Jun Muto, Hiroto Noguchi, Seiji Yamauchi, Yuzuru Tozawa, Minoru Ueda, Kenji Hashimoto, Philipp Köster, Qiuyan Dong, Katrin Held, Jörg Kudla, Toshihiko Utsumi, Nobuyuki Uozumi. N-myristoylation and S-acylation are common modifications of Ca2+ -regulated Arabidopsis kinases and are required for activation of the SLAC1 anion channel. The New phytologist. 2018 06; 218(4):1504-1521. doi: 10.1111/nph.15053. [PMID: 29498046]
  • Jung Mi Lim, Jung Chae Lim, Geumsoo Kim, Rodney L Levine. Myristoylated methionine sulfoxide reductase A is a late endosomal protein. The Journal of biological chemistry. 2018 05; 293(19):7355-7366. doi: 10.1074/jbc.ra117.000473. [PMID: 29593096]
  • Bingyu Yang, Chang Wang, Yiyu Xie, Liangjing Xu, Xiaojin Wu, Depei Wu. Monitoring tyrosine kinase inhibitor therapeutic responses with a panel of metabolic biomarkers in chronic myeloid leukemia patients. Cancer science. 2018 Mar; 109(3):777-784. doi: 10.1111/cas.13500. [PMID: 29316075]
  • Jacopo Troisi, Laura Sarno, Annamaria Landolfi, Giovanni Scala, Pasquale Martinelli, Roberta Venturella, Annalisa Di Cello, Fulvio Zullo, Maurizio Guida. Metabolomic Signature of Endometrial Cancer. Journal of proteome research. 2018 02; 17(2):804-812. doi: 10.1021/acs.jproteome.7b00503. [PMID: 29235868]
  • Akane Maeda, Moe Uchida, Sumire Nishikawa, Tasuku Nishino, Hiroaki Konishi. Role of N-myristoylation in stability and subcellular localization of the CLPABP protein. Biochemical and biophysical research communications. 2018 01; 495(1):1249-1256. doi: 10.1016/j.bbrc.2017.11.112. [PMID: 29180010]
  • Daiki Shirane, Hiroki Tanaka, Yuta Nakai, Hiroki Yoshioka, Hidetaka Akita. Development of an Alcohol Dilution-Lyophilization Method for Preparing Lipid Nanoparticles Containing Encapsulated siRNA. Biological & pharmaceutical bulletin. 2018; 41(8):1291-1294. doi: 10.1248/bpb.b18-00208. [PMID: 30068880]
  • Katarzyna Turek, Jacek Domagała, Monika Wszołek. Fatty acid profile and oxidation tests of fat extracted from yogurt using rose hip seed oil. Acta scientiarum polonorum. Technologia alimentaria. 2018 Jan; 17(1):51-58. doi: 10.17306/j.afs.0526. [PMID: 29514429]
  • Toshihiko Utsumi, Kanako Matsuzaki, Aya Kiwado, Ayane Tanikawa, Yuki Kikkawa, Takuro Hosokawa, Aoi Otsuka, Yoshihito Iuchi, Hirotsugu Kobuchi, Koko Moriya. Identification and characterization of protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25. PloS one. 2018; 13(11):e0206355. doi: 10.1371/journal.pone.0206355. [PMID: 30427857]
  • German Günther, Vanesa Herlax, M Pilar Lillo, Catalina Sandoval-Altamirano, Libnny N Belmar, Susana A Sánchez. Study of rabbit erythrocytes membrane solubilization by sucrose monomyristate using laurdan and phasor analysis. Colloids and surfaces. B, Biointerfaces. 2018 Jan; 161(?):375-385. doi: 10.1016/j.colsurfb.2017.10.068. [PMID: 29102849]
  • Miso Kang, Ayoung Lee, Hye Jin Yoo, Minjoo Kim, Minkyung Kim, Dong Yeob Shin, Jong Ho Lee. Association between increased visceral fat area and alterations in plasma fatty acid profile in overweight subjects: a cross-sectional study. Lipids in health and disease. 2017 Dec; 16(1):248. doi: 10.1186/s12944-017-0642-z. [PMID: 29258511]
  • Behnoosh Tajik-Ahmadabad, Anastasios Polyzos, Frances Separovic, Fazel Shabanpoor. Amphiphilic lipopeptide significantly enhances uptake of charge-neutral splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts. International journal of pharmaceutics. 2017 Oct; 532(1):21-28. doi: 10.1016/j.ijpharm.2017.08.116. [PMID: 28864392]
  • Andrew J Witten, Karin F K Ejendal, Lindsey M Gengelbach, Meghan A Traore, Xu Wang, David M Umulis, Sarah Calve, Tamara L Kinzer-Ursem. Fluorescent imaging of protein myristoylation during cellular differentiation and development. Journal of lipid research. 2017 10; 58(10):2061-2070. doi: 10.1194/jlr.d074070. [PMID: 28754825]
  • Rennan Feng, Chao Luo, Chunlong Li, Shanshan Du, Akinkunmi Paul Okekunle, Yanchuan Li, Yang Chen, Tianqi Zi, Yucun Niu. Free fatty acids profile among lean, overweight and obese non-alcoholic fatty liver disease patients: a case - control study. Lipids in health and disease. 2017 Sep; 16(1):165. doi: 10.1186/s12944-017-0551-1. [PMID: 28870233]
  • Kim Potvin-Fournier, Geneviève Valois-Paillard, Thierry Lefèvre, Line Cantin, Christian Salesse, Michèle Auger. Membrane fluidity is a driving force for recoverin myristoyl immobilization in zwitterionic lipids. Biochemical and biophysical research communications. 2017 09; 490(4):1268-1273. doi: 10.1016/j.bbrc.2017.07.005. [PMID: 28684313]
  • Naoyuki Toriyabe, Yu Sakurai, Akari Kato, Shoshiro Yamamoto, Kota Tange, Yuta Nakai, Hidetaka Akita, Hideyoshi Harahsima. The Delivery of Small Interfering RNA to Hepatic Stellate Cells Using a Lipid Nanoparticle Composed of a Vitamin A-Scaffold Lipid-Like Material. Journal of pharmaceutical sciences. 2017 08; 106(8):2046-2052. doi: 10.1016/j.xphs.2017.04.042. [PMID: 28456722]
  • Antonios D Konitsiotis, Lisaweta Roßmannek, Angel Stanoev, Malte Schmick, Philippe I H Bastiaens. Spatial cycles mediated by UNC119 solubilisation maintain Src family kinases plasma membrane localisation. Nature communications. 2017 07; 8(1):114. doi: 10.1038/s41467-017-00116-3. [PMID: 28740133]
  • Michael Lykke Hvam, Yunpeng Cai, Frederik Dagnæs-Hansen, Jesper Sejrup Nielsen, Jesper Wengel, Jørgen Kjems, Kenneth A Howard. Fatty Acid-Modified Gapmer Antisense Oligonucleotide and Serum Albumin Constructs for Pharmacokinetic Modulation. Molecular therapy : the journal of the American Society of Gene Therapy. 2017 07; 25(7):1710-1717. doi: 10.1016/j.ymthe.2017.05.009. [PMID: 28641935]
  • Yuanyan Tan, Wei Wang, Chunlei Wu, Zhengyin Pan, Guiyang Yao, Lijing Fang, Wu Su. Myristic acid-modified thymopentin for enhanced plasma stability and immune-modulating activity. International immunopharmacology. 2017 Jun; 47(?):88-94. doi: 10.1016/j.intimp.2017.03.025. [PMID: 28365509]
  • Murthy Jonnada, Guadalupe Davila El Rassi, Ziad El Rassi. Selective precolumn derivatization of fatty acids with the fluorescent tag 6-aminoquinoline and their determination in some food samples by reversed-phase chromatography. Electrophoresis. 2017 06; 38(12):1592-1601. doi: 10.1002/elps.201600544. [PMID: 28130913]
  • Sadaf Fatima, Priyankar Sen, P Sneha, C George Priyadoss. Hydrophobic Interaction Between Domain I of Albumin and B Chain of Detemir May Support Myristate-Dependent Detemir-Albumin Binding. Applied biochemistry and biotechnology. 2017 May; 182(1):82-96. doi: 10.1007/s12010-016-2312-4. [PMID: 27854036]
  • Govindaraj Dev Kumar, Shirley A Micallef. Susceptibility of Salmonella enterica Isolates from Tomato Farm Environments to Fatty Acids Naturally Found on Tomato Fruit. Foodborne pathogens and disease. 2017 05; 14(5):293-301. doi: 10.1089/fpd.2016.2239. [PMID: 28398868]
  • Stanislav Vosolsobě, Jan Petrášek, Kateřina Schwarzerová. Evolutionary plasticity of plasma membrane interaction in DREPP family proteins. Biochimica et biophysica acta. Biomembranes. 2017 May; 1859(5):686-697. doi: 10.1016/j.bbamem.2017.01.017. [PMID: 28108158]
  • Francesca Rampoldi, Fabian Brunk, Mahnaz Bonrouhi, Giuseppina Federico, Damir Krunic, Stefan Porubsky, Hermann-Josef Gröne, Zoran V Popovic. Deficiency of N-myristoylation reveals calcineurin activity as regulator of IFN-γ-producing γδ T cells. Journal of leukocyte biology. 2017 04; 101(4):1005-1014. doi: 10.1189/jlb.1a0616-264r. [PMID: 28062573]
  • Meng Yu, Hong-Mei Jia, Feng-Xia Cui, Yong Yang, Yang Zhao, Mao-Hua Yang, Zhong-Mei Zou. The Effect of Chinese Herbal Medicine Formula mKG on Allergic Asthma by Regulating Lung and Plasma Metabolic Alternations. International journal of molecular sciences. 2017 Mar; 18(3):. doi: 10.3390/ijms18030602. [PMID: 28287417]
  • Andrew H Huber, Alan M Kleinfeld. Unbound free fatty acid profiles in human plasma and the unexpected absence of unbound palmitoleate. Journal of lipid research. 2017 03; 58(3):578-585. doi: 10.1194/jlr.m074260. [PMID: 28082409]
  • Huanyao Gao, Wei Sun, Zhiquan Song, Yanbao Yu, Li Wang, Xian Chen, Qisheng Zhang. A Method to Generate and Analyze Modified Myristoylated Proteins. Chembiochem : a European journal of chemical biology. 2017 02; 18(3):324-330. doi: 10.1002/cbic.201600608. [PMID: 27925692]
  • Siri C van Keulen, Ursula Rothlisberger. Effect of N-Terminal Myristoylation on the Active Conformation of Gαi1-GTP. Biochemistry. 2017 Jan; 56(1):271-280. doi: 10.1021/acs.biochem.6b00388. [PMID: 27936598]