NCBI Taxonomy: 114747

Haminoeidae (ncbi_taxid: 114747)

found 85 associated metabolites at family taxonomy rank level.

Ancestor: Bulloidea

Child Taxonomies: Atys, Haloa, Liloa, Bakawan, Bullacta, Haminoea, Diniatys, Roxaniella, Vellicolla, Weinkauffia, Aliculastrum, Lamprohaminoea, environmental samples, unclassified Haminoeidae

Myristic acid

tetradecanoic acid

C14H28O2 (228.2089)


Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Stearic acid

1-Heptadecanecarboxylic acid

C18H36O2 (284.2715)


Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Oleic acid

Emersol 221 low titer white oleic acid

C18H34O2 (282.2559)


Oleic acid (or 9Z)-Octadecenoic acid) is an unsaturated C-18 or an omega-9 fatty acid that is the most widely distributed and abundant fatty acid in nature. It occurs naturally in various animal and vegetable fats and oils. It is an odorless, colorless oil, although commercial samples may be yellowish. The name derives from the Latin word oleum, which means oil. Oleic acid is the most abundant fatty acid in human adipose tissue, and the second most abundant in human tissues overall, following palmitic acid. Oleic acid is a component of the normal human diet, being a part of animal fats and vegetable oils. Triglycerides of oleic acid represent the majority of olive oil (about 70\\\\%). Oleic acid triglycerides also make up 59–75\\\\% of pecan oil, 61\\\\% of canola oil, 36–67\\\\% of peanut oil, 60\\\\% of macadamia oil, 20–80\\\\% of sunflower oil, 15–20\\\\% of grape seed oil, sea buckthorn oil, 40\\\\% of sesame oil, and 14\\\\% of poppyseed oil. High oleic variants of plant sources such as sunflower (~80\\\\%) and canola oil (70\\\\%) also have been developed. consumption has been associated with decreased low-density lipoprotein (LDL) cholesterol, and possibly with increased high-density lipoprotein (HDL) cholesterol, however, the ability of oleic acid to raise HDL is still debated. Oleic acid may be responsible for the hypotensive (blood pressure reducing) effects of olive oil that is considered a health benefit. Oleic acid is used in manufacturing of surfactants, soaps, plasticizers. It is also used as an emulsifying agent in foods and pharmaceuticals. Oleic acid is used commercially in the preparation of oleates and lotions, and as a pharmaceutical solvent. Major constituent of plant oils e.g. olive oil (ca. 80\\\\%), almond oil (ca. 80\\\\%) and many others, mainly as glyceride. Constituent of tall oiland is also present in apple, melon, raspberry oil, tomato, banana, roasted peanuts, black tea, rice bran, cardamon, plum brandy, peated malt, dairy products and various animal fats. Component of citrus fruit coatings. Emulsifying agent in foods CONFIDENCE standard compound; INTERNAL_ID 290 COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

Pentadecanoic acid

n-Pentadecanoic acid

C15H30O2 (242.2246)


Pentadecanoic acid, also known as pentadecylic acid or C15:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Pentadecanoic acid (its ester is called pentadecanoate) is a saturated fatty acid that has 15 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. Pentadecanoic acid is found in plants and ruminants. Many "odd" length long-chain fatty acids, such as pentadecanoic acid, are derived from the consumption of cattle fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of pentadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID: 9701185; PMID: 11238766). A fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Pentadecanoic acid constitutes 1.05\\\\% of milk fat and 0.43\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185; PMID 11238766). Pentadecanoic acid is found in many foods, some of which are common bean, coriander, pepper (c. annuum), and hamburger. CONFIDENCE standard compound; INTERNAL_ID 248 Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.

   

Lignoceric acid (C24)

Tetracosanoic acid

C24H48O2 (368.3654)


Lignoceric acid, also known as N-tetracosanoic acid or tetraeicosanoate, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, lignoceric acid is considered to be a fatty acid lipid molecule. Lignoceric acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Lignoceric acid can be found in a number of food items such as hazelnut, cheese, rye bread, and cetacea (dolphin, porpoise, whale), which makes lignoceric acid a potential biomarker for the consumption of these food products. Lignoceric acid can be found primarily in blood and feces, as well as in human fibroblasts tissue. Lignoceric acid exists in all eukaryotes, ranging from yeast to humans. In humans, lignoceric acid is involved in a couple of metabolic pathways, which include adrenoleukodystrophy, x-linked and beta oxidation of very long chain fatty acids. Lignoceric acid is also involved in carnitine-acylcarnitine translocase deficiency, which is a metabolic disorder. Lignoceric acid, or tetracosanoic acid, is the saturated fatty acid with formula C23H47COOH. It is found in wood tar, various cerebrosides, and in small amounts in most natural fats. The fatty acids of peanut oil contain small amounts of lignoceric acid (1.1\\\\% – 2.2\\\\%). This fatty acid is also a byproduct of lignin production . Tetracosanoic acid is a C24 straight-chain saturated fatty acid. It has a role as a volatile oil component, a plant metabolite, a human metabolite and a Daphnia tenebrosa metabolite. It is a very long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetracosanoate. Tetracosanoic acid, also known as N-tetracosanoate or lignoceric acid, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tetracosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tetracosanoic acid is a potentially toxic compound. Acquisition and generation of the data is financially supported in part by CREST/JST. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

Vaccenic acid

11-Octadecenoic acid, (e)-isomer

C18H34O2 (282.2559)


Vaccenic acid is a naturally occurring trans fatty acid. It is the predominant kind of trans-fatty acid found in human milk, in the fat of ruminants, and in dairy products such as milk, butter, and yogurt. Trans fat in human milk may depend on trans fat content in food. Its IUPAC name is (11E)-11-octadecenoic acid, and its lipid shorthand name is 18:1 trans-11. The name was derived from the Latin vacca (cow). Vaccenic acid belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Vaccenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in small proportions in ruminant fats (e.g., butter) via biohydrogenation of dietary polyene acids. Vaccenic acid is found in many foods, some of which are almond, romaine lettuce, butter, and pak choy. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Nonadecanoic acid

nonadecanoic acid

C19H38O2 (298.2872)


Nonadecanoic acid, also known as n-nonadecanoic acid or nonadecylic acid or C19:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms, with nonadecanoic acid (its ester is called nonadecanoate) having 19 carbon atoms. Nonadecanoic acid is a very hydrophobic molecule, practically insoluble (in water). It is a solid with a melting point of 69.4°C. It can be found in bacteria, plants, and animals (including animal milk) (Nature 176:882; PMID: 14168161). It is secreted by termites (Rhinotermes marginalis) as part of its defence mechanism (Comp. Biochem. Physiol. B 71:731). Nonadecanoic acid is a C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. It has a role as a fungal metabolite. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a nonadecanoate. Nonadecanoic acid is a natural product found in Staphisagria macrosperma, Malva sylvestris, and other organisms with data available. An odd-numbered long chain fatty acid, likely derived from bacterial or plant sources. Nonadecanoic acid has been found in ox fats and vegetable oils. It is also used by certain insects as a phermone. [HMDB]. A C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].

   

Hexacosanoic acid

Hexacosanoate (N-C26:0)

C26H52O2 (396.3967)


Hexacosanoic acid, also known as N-hexacosanoate or c26:0, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, hexacosanoic acid is considered to be a fatty acid lipid molecule. Hexacosanoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Hexacosanoic acid can be found in a number of food items such as dandelion, potato, cottonseed, and sugar apple, which makes hexacosanoic acid a potential biomarker for the consumption of these food products. Hexacosanoic acid can be found primarily in blood, as well as in human adrenal gland and fibroblasts tissues. Hexacosanoic acid exists in all eukaryotes, ranging from yeast to humans. In humans, hexacosanoic acid is involved in a couple of metabolic pathways, which include adrenoleukodystrophy, x-linked and beta oxidation of very long chain fatty acids. Hexacosanoic acid is also involved in carnitine-acylcarnitine translocase deficiency, which is a metabolic disorder. Moreover, hexacosanoic acid is found to be associated with adrenomyeloneuropathy, peroxisomal biogenesis defect, and adrenoleukodystrophy, neonatal. Hexacosanoic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cerotic acid is also a type of very long chain fatty acid that is often associated with the disease adrenoleukodystrophy, which involves the excessive saturation of unmetabolized fatty acid chains, including cerotic acid, in the peroxisome. [In the chem box it is shown folded only because of lack of space. In fact, it is a straight-chain, saturated fatty acid.] . Treatment options for adrenoleukodystrophy (ALD) are limited. Dietary treatment is with Lorenzos oil. For the childhood cerebral form, stem cell transplant and gene therapy are options if the disease is detected early in the clinical course. Adrenal insufficiency in ALD patients can be successfully treated (T3DB). Hexacosanoic acid, or cerotic acid, is a 26-carbon long-chain saturated fatty acid with the chemical formula CH3(CH2)24COOH. It is most commonly found in beeswax and carnauba wax, and is a white crystalline solid. Cerotic acid is also a type of very long chain fatty acid that is often associated with the disease adrenoleukodystrophy, which involves the excessive saturation of unmetabolized fatty acid chains, including cerotic acid, in the peroxisome. Hexacosanoic acid, also known as C26:0 or N-hexacosanoate, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Hexacosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hexacosanoic acid is a potentially toxic compound.

   

Paullinic acid

(13Z)-Eicos-13-enoic acid

C20H38O2 (310.2872)


Paullinic acid is found in fats and oils. Paullinic acid is isolated from herring oil and rapeseed oil and from various Sapindacea Paullinic acid is a long-chain fatty acid that has been detected in multiple biofluids, such as blood and urine.

   

Hexadecenoic acid

2-hexadecenoic acid

C16H30O2 (254.2246)


A C16 straight-chain monounsaturated fatty acid having one C=C double bond.

   

Pentacosanoic acid

P-NITROPHENYLPHOSPHATETRISBUFFERSALT

C25H50O2 (382.3811)


Pentacosanoic acid, also known as pentacosanoate or hyenate, is a straight-chain saturated fatty acid and a very long-chain fatty acid. It is a conjugate acid of a pentacosanoate. Pentacosanoic acid belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Pentacosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Pentacosanoic acid is a potentially toxic compound. Pentacosanoic acid is a straight-chain saturated fatty acid and a very long-chain fatty acid. It is a conjugate acid of a pentacosanoate. Pentacosanoic acid is a natural product found in Staphisagria macrosperma, Rhizophora apiculata, and other organisms with data available. Isolated from Citrus bergamia (bergamot orange) Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1]. Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1].

   

Methyl stearate

InChI=1/C19H38O2/c1-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19(20)21-2/h3-18H2,1-2H

C19H38O2 (298.2872)


Methyl stearate appears as white crystals or chunky solid. (NTP, 1992) Methyl stearate is a fatty acid methyl ester and an octadecanoate ester. It has a role as a metabolite. Methyl stearate is a natural product found in Cinnamomum kotoense, Hedysarum polybotrys, and other organisms with data available. A fatty acid methyl ester obtained by formal condensation of the carboxy group of octadecanoic (stearic) acid with the hydroxy group of methanol. A natural product found in Neolitsea daibuensis. Antifoaming agent and fermentation nutrient. Methyl stearate is found in cloves. Methyl stearate is found in cloves. Antifoaming agent and fermentation nutrient. Methyl stearate, isolated from Rheum palmatum L. is a compopent of of soybean and rapeseed biodiesels[1]. Methyl stearate, isolated from Rheum palmatum L. is a compopent of of soybean and rapeseed biodiesels[1].

   

Heptadecanoic acid

heptadecanoic acid

C17H34O2 (270.2559)


Heptadecanoic acid, or margaric acid, is a saturated fatty acid. It occurs as a trace component of the fat and milkfat of ruminants, but it does not occur in any natural animal or vegetable fat at concentrations over half a percent. Salts and esters of heptadecanoic acid are called heptadecanoates (Wikipedia). Heptadecanoic acid is found in many foods, some of which are dandelion, potato, ginger, and green bean. Heptadecanoic acid is a constituent of Erythrina crista-galli trunkwood and bark. Common constituent of lipids, e.g. present in Physalia physalis (Portuguese-man-of-war). Heptadecanoic acid is a fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Heptadecanoic acid constitutes 0.61\\\\% of milk fat and 0.83\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185). Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

Tricosanoic acid

Tricosanoic acid, aluminum salt

C23H46O2 (354.3498)


Tricosanoic acid, also known as N-tricosanoate or 22FA, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tricosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tricosanoic acid is a potentially toxic compound. Constituent of Citrus bergamia (bergamot orange) oil Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant. Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant.

   

Sapienic acid

hexadec-6-enoic acid

C16H30O2 (254.2246)


   

C14:0

Tetradecanoic acid

C14H28O2 (228.2089)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

C17:0

HEPTADECANOIC ACID

C17H34O2 (270.2559)


Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

VACCENIC ACID

trans-Vaccenic acid

C18H34O2 (282.2559)


An octadecenoic acid having a double bond at position 11; and which can occur in cis- or trans- configurations. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

11-Eicosenoic acid

eicos-11-enoic acid

C20H38O2 (310.2872)


   

9-Hexadecenoic acid

Hexadec-9-enoic acid

C16H30O2 (254.2246)


   

Pentadec-6-enoic acid

Pentadec-6-enoic acid

C15H28O2 (240.2089)


   

HEPTADEC-8-ENOIC ACID

HEPTADEC-8-ENOIC ACID

C17H32O2 (268.2402)


   

octadec-8-enoic acid

octadec-8-enoic acid

C18H34O2 (282.2559)


   

Lignoceric acid

Tetracosanoic acid

C24H48O2 (368.3654)


A C24 straight-chain saturated fatty acid. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2]. Lignoceric acid (Tetracosanoic acid) is a 24-carbon saturated (24:0) fatty acid, which is synthesized in the developing brain. Lignoceric acid is also a by-product of lignin production. Lignoceric acid can be used for Zellweger cerebro‐hepato‐renal syndrome and adrenoleukodystrophy research[1][2].

   

PENTADECANOIC ACID

PENTADECANOIC ACID

C15H30O2 (242.2246)


A straight-chain saturated fatty acid containing fifteen-carbon atoms. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone. Pentadecylic acid is a saturated fatty acid with a 15-carbon backbone.

   

Myristic Acid

Tetradecanoic acid

C14H28O2 (228.2089)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Margaric acid

HEPTADECANOIC ACID

C17H34O2 (270.2559)


A C17 saturated fatty acid and trace component of fats in ruminants. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

TRICOSANOIC ACID

TRICOSANOIC ACID

C23H46O2 (354.3498)


A very long-chain fatty acid that is tricosane in which one of the methyl groups has been oxidised to the corresponding carboxylic acid. Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant. Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant.

   

stearic acid

stearic acid

C18H36O2 (284.2715)


Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Oleic acid

cis-9-Octadecenoic acid

C18H34O2 (282.2559)


An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry. Oleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-80-1 (retrieved 2024-07-16) (CAS RN: 112-80-1). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Elaidic acid is the major trans fat found in hydrogenated vegetable oils and can be used as a pharmaceutical solvent. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2]. Oleic acid (9-cis-Octadecenoic acid) is an abundant monounsaturated fatty acid[1]. Oleic acid is a Na+/K+ ATPase activator[2].

   

trans-Vaccenic acid

(11E)-octadec-11-enoic acid

C18H34O2 (282.2559)


The trans- isomer of vaccenic acid. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Arachidic acid

Arachidic acid

C20H40O2 (312.3028)


Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2]. Arachidonic acid (Icosanoic acid), a long-chain fatty acid, is present in all mammalian cells, typically esterified to membrane phospholipids, and is one of the most abundant polyunsaturated fatty acids present in human tissue[1][2].

   

Cerotic acid

HEXACOSANOIC ACID

C26H52O2 (396.3967)


A 26-carbon, straight-chain, saturated fatty acid.

   

Pentacosylic acid

Pentacosanoic acid

C25H50O2 (382.3811)


Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1]. Pentacosanoic acid is a 25-carbon long-chain saturated fatty acid. Pentacosanoic is a conjugate acid of a pentacosanoate[1].

   

HEPTADECANOIC ACID

HEPTADECANOIC ACID

C17H34O2 (270.2559)


   

HEXACOSANOIC ACID

HEXACOSANOIC ACID

C26H52O2 (396.3967)


   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402)


   

Octadecanoic acid

Octadecanoic acid

C18H36O2 (284.2715)


A C18 straight-chain saturated fatty acid component of many animal and vegetable lipids. As well as in the diet, it is used in hardening soaps, softening plastics and in making cosmetics, candles and plastics.

   

Tetradecanoic acid

Tetradecanoic acid

C14H28O2 (228.2089)


   

Methyl stearate

n-Octadecanoic acid, methyl ester

C19H38O2 (298.2872)


Methyl stearate, isolated from Rheum palmatum L. is a compopent of of soybean and rapeseed biodiesels[1]. Methyl stearate, isolated from Rheum palmatum L. is a compopent of of soybean and rapeseed biodiesels[1].

   

6-Pentadecenoic acid

6-Pentadecenoic acid

C15H28O2 (240.2089)


   

C23:0

TRICOSANOIC ACID

C23H46O2 (354.3498)


Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant. Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant.

   

C26:0

HEXACOSANOIC ACID

C26H52O2 (396.3967)


   

143-25-9

(11E)-octadec-11-enoic acid

C18H34O2 (282.2559)


trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Paullinic acid

Paullinic acid

C20H38O2 (310.2872)


Paullinic acid is a long-chain fatty acid that has been detected in multiple biofluids, such as blood and urine.

   

Hexadec-9-enoic acid

Hexadec-9-enoic acid

C16H30O2 (254.2246)


A hexadecenoic acid in which the double bond is located at position 9.

   

Hexadecenoate

Hexadecenoate

C16H29O2 (253.2167)


A long-chain unsaturated fatty acid anion that is the conjugate base of hexadecenoic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

Icosanoic acid

Icosanoic acid

C20H40O2 (312.3028)


A C20 striaght-chain saturated fatty acid which forms a minor constituent of peanut (L. arachis) and corn oils. Used as an organic thin film in the production of liquid crystals for a wide variety of technical applications.

   

heptadec-6-enoic acid

heptadec-6-enoic acid

C17H32O2 (268.2402)


   

(2s,4e,6e,11e)-12-(pyridin-3-yl)dodeca-4,6,11-trien-2-ol

(2s,4e,6e,11e)-12-(pyridin-3-yl)dodeca-4,6,11-trien-2-ol

C17H23NO (257.178)


   

(3e,5e,7e)-10-(4-hydroxyphenyl)deca-3,5,7-trien-1-yl acetate

(3e,5e,7e)-10-(4-hydroxyphenyl)deca-3,5,7-trien-1-yl acetate

C18H22O3 (286.1569)


   

10-[4-(acetyloxy)-3-hydroxyphenyl]deca-3,5,7-trien-1-yl acetate

10-[4-(acetyloxy)-3-hydroxyphenyl]deca-3,5,7-trien-1-yl acetate

C20H24O5 (344.1624)


   

12-(pyridin-3-yl)dodeca-5,8,10-trien-2-ol

12-(pyridin-3-yl)dodeca-5,8,10-trien-2-ol

C17H23NO (257.178)


   

10-(4-hydroxyphenyl)deca-3,5,7-trien-1-yl acetate

10-(4-hydroxyphenyl)deca-3,5,7-trien-1-yl acetate

C18H22O3 (286.1569)


   

nonadec-11-enoic acid

nonadec-11-enoic acid

C19H36O2 (296.2715)


   

(2s,4e,6e,11e)-12-(pyridin-3-yl)dodeca-4,6,11-trien-2-yl acetate

(2s,4e,6e,11e)-12-(pyridin-3-yl)dodeca-4,6,11-trien-2-yl acetate

C19H25NO2 (299.1885)


   

(2s,4e,6e,8e)-12-(pyridin-3-yl)dodeca-4,6,8-trien-2-yl acetate

(2s,4e,6e,8e)-12-(pyridin-3-yl)dodeca-4,6,8-trien-2-yl acetate

C19H25NO2 (299.1885)


   

(3e,5e,9e)-12-(pyridin-2-yl)dodeca-3,5,9-trien-1-amine

(3e,5e,9e)-12-(pyridin-2-yl)dodeca-3,5,9-trien-1-amine

C17H24N2 (256.1939)


   

(2s,4e,6e)-12-(pyridin-3-yl)dodeca-4,6-dien-2-yl acetate

(2s,4e,6e)-12-(pyridin-3-yl)dodeca-4,6-dien-2-yl acetate

C19H27NO2 (301.2042)


   

(3e,5e,7e)-10-[3-(acetyloxy)-4-hydroxyphenyl]deca-3,5,7-trien-1-yl acetate

(3e,5e,7e)-10-[3-(acetyloxy)-4-hydroxyphenyl]deca-3,5,7-trien-1-yl acetate

C20H24O5 (344.1624)


   

icos-7-enoic acid

icos-7-enoic acid

C20H38O2 (310.2872)


   

(2e,4e,6e)-12-(pyridin-3-yl)dodeca-2,4,6-trien-1-yl acetate

(2e,4e,6e)-12-(pyridin-3-yl)dodeca-2,4,6-trien-1-yl acetate

C19H25NO2 (299.1885)


   

12-(pyridin-3-yl)dodeca-4,6,8-trien-2-yl acetate

12-(pyridin-3-yl)dodeca-4,6,8-trien-2-yl acetate

C19H25NO2 (299.1885)


   

(2s,4e,6e)-12-(pyridin-3-yl)dodeca-4,6-dien-2-ol

(2s,4e,6e)-12-(pyridin-3-yl)dodeca-4,6-dien-2-ol

C17H25NO (259.1936)


   

12-(pyridin-3-yl)dodeca-4,6-dien-2-yl acetate

12-(pyridin-3-yl)dodeca-4,6-dien-2-yl acetate

C19H27NO2 (301.2042)


   

(8e,10e,12e,15e,18e)-17-hydroxy-4,6,8,10,12,14,16,18-octamethylicosa-8,10,12,15,18-pentaene-3,5-dione

(8e,10e,12e,15e,18e)-17-hydroxy-4,6,8,10,12,14,16,18-octamethylicosa-8,10,12,15,18-pentaene-3,5-dione

C28H44O3 (428.329)


   

10-[3,4-bis(acetyloxy)phenyl]deca-3,5,7-trien-1-yl acetate

10-[3,4-bis(acetyloxy)phenyl]deca-3,5,7-trien-1-yl acetate

C22H26O6 (386.1729)


   

tetradec-6-enoic acid

tetradec-6-enoic acid

C14H26O2 (226.1933)


   

(3e,5e,7e)-10-[3,4-bis(acetyloxy)phenyl]deca-3,5,7-trien-1-yl acetate

(3e,5e,7e)-10-[3,4-bis(acetyloxy)phenyl]deca-3,5,7-trien-1-yl acetate

C22H26O6 (386.1729)


   

10-[3-(acetyloxy)-4-hydroxyphenyl]deca-3,5,7-trien-1-yl acetate

10-[3-(acetyloxy)-4-hydroxyphenyl]deca-3,5,7-trien-1-yl acetate

C20H24O5 (344.1624)


   

12-(pyridin-2-yl)dodeca-3,5,9-trien-1-amine

12-(pyridin-2-yl)dodeca-3,5,9-trien-1-amine

C17H24N2 (256.1939)


   

(2s,5e,8e,10e)-12-(pyridin-3-yl)dodeca-5,8,10-trien-2-yl acetate

(2s,5e,8e,10e)-12-(pyridin-3-yl)dodeca-5,8,10-trien-2-yl acetate

C19H25NO2 (299.1885)


   

10-[4-(acetyloxy)phenyl]deca-3,5,7-trien-1-yl acetate

10-[4-(acetyloxy)phenyl]deca-3,5,7-trien-1-yl acetate

C20H24O4 (328.1675)


   

12-(pyridin-3-yl)dodeca-5,8,10-trien-2-yl acetate

12-(pyridin-3-yl)dodeca-5,8,10-trien-2-yl acetate

C19H25NO2 (299.1885)


   

(3e,5e,7e)-10-[4-(acetyloxy)-3-hydroxyphenyl]deca-3,5,7-trien-1-yl acetate

(3e,5e,7e)-10-[4-(acetyloxy)-3-hydroxyphenyl]deca-3,5,7-trien-1-yl acetate

C20H24O5 (344.1624)


   

(3e,5e,7e)-10-[4-(acetyloxy)phenyl]deca-3,5,7-trien-1-yl acetate

(3e,5e,7e)-10-[4-(acetyloxy)phenyl]deca-3,5,7-trien-1-yl acetate

C20H24O4 (328.1675)


   

(2s,5r,6r)-2-[(1s)-1-bromoethyl]-6-[(2e)-3-chloroprop-2-en-1-yl]-2,5-dimethyloxane

(2s,5r,6r)-2-[(1s)-1-bromoethyl]-6-[(2e)-3-chloroprop-2-en-1-yl]-2,5-dimethyloxane

C12H20BrClO (294.0386)


   

(2s,5e,8e,10e)-12-(pyridin-3-yl)dodeca-5,8,10-trien-2-ol

(2s,5e,8e,10e)-12-(pyridin-3-yl)dodeca-5,8,10-trien-2-ol

C17H23NO (257.178)


   

(2r,5s,6s)-2-[(1r)-1-bromoethyl]-6-[(2e)-3-chloroprop-2-en-1-yl]-2,5-dimethyloxane

(2r,5s,6s)-2-[(1r)-1-bromoethyl]-6-[(2e)-3-chloroprop-2-en-1-yl]-2,5-dimethyloxane

C12H20BrClO (294.0386)


   

2-(1-bromoethyl)-6-(3-chloroprop-2-en-1-yl)-2,5-dimethyloxane

2-(1-bromoethyl)-6-(3-chloroprop-2-en-1-yl)-2,5-dimethyloxane

C12H20BrClO (294.0386)


   

(2s,4e,6e,8e)-12-(pyridin-3-yl)dodeca-4,6,8-trien-2-ol

(2s,4e,6e,8e)-12-(pyridin-3-yl)dodeca-4,6,8-trien-2-ol

C17H23NO (257.178)


   

12-(pyridin-3-yl)dodeca-4,6-dien-2-ol

12-(pyridin-3-yl)dodeca-4,6-dien-2-ol

C17H25NO (259.1936)


   

12-(pyridin-3-yl)dodeca-4,6,8-trien-2-ol

12-(pyridin-3-yl)dodeca-4,6,8-trien-2-ol

C17H23NO (257.178)