Lauric acid (BioDeep_00000405319)
Main id: BioDeep_00000002377
PANOMIX_OTCML-2023 PANOMIX LipidSearch natural product BioNovoGene_Lab2019
代谢物信息卡片
化学式: C12H24O2 (200.1776)
中文名称: 月桂酸, 十二烷酸
谱图信息:
最多检出来源 not specific(not specific) 0%
Last reviewed on 2024-07-01.
Cite this Page
Lauric acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/lauric_acid (retrieved
2024-12-22) (BioDeep RN: BioDeep_00000405319). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CCCCCCCCCCCC(=O)O
InChI: InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14)
描述信息
Lauric acid, systematically dodecanoic acid, is a saturated fatty acid with a 12-carbon atom chain, thus having many properties of medium-chain fatty acids.[6] It is a bright white, powdery solid with a faint odor of bay oil or soap. The salts and esters of lauric acid are known as laurates.
Lauric acid, as a component of triglycerides, comprises about half of the fatty-acid content in coconut milk, coconut oil, laurel oil, and palm kernel oil (not to be confused with palm oil),[10][11] Otherwise, it is relatively uncommon. It is also found in human breast milk (6.2\\\\% of total fat), cow's milk (2.9\\\\%), and goat's milk (3.1\\\\%).
Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.
Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.
同义名列表
4 个代谢物同义名
数据库引用编号
25 个数据库交叉引用编号
- ChEBI: CHEBI:30805
- KEGG: C02679
- KEGGdrug: D10714
- PubChem: 3893
- DrugBank: DB03017
- ChEMBL: CHEMBL108766
- CAS: 143-07-7
- MoNA: FiehnHILIC002795
- MoNA: HMDB0000638_ms_ms_872
- MoNA: HMDB0000638_ms_ms_870
- MoNA: HMDB0000638_ms_ms_871
- ChEBI: CHEBI:18262
- LipidMAPS: LMFA01010012
- KNApSAcK: C00001221
- PDB-CCD: DAO
- 3DMET: B00483
- NIKKAJI: J2.548H
- RefMet: Lauric acid
- PANOMIX LipidSearch: C12
- medchemexpress: HY-Y0366
- HMDB: HMDB0000638
- LOTUS: LTS0051907
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-587
- PubChem: 5649
- KNApSAcK: 18262
分类词条
相关代谢途径
Reactome(5)
BioCyc(0)
PlantCyc(0)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
615 个相关的物种来源信息
- 4185 - Acanthaceae: LTS0051907
- 385023 - Acanthophora: LTS0051907
- 385024 - Acanthophora spicifera: 10.1016/S0031-9422(98)00171-X
- 385024 - Acanthophora spicifera: LTS0051907
- 169205 - Achyranthes: LTS0051907
- 240005 - Achyranthes aspera: 10.1002/LIPI.19850870507
- 240005 - Achyranthes aspera: LTS0051907
- 4206 - Adoxaceae: LTS0051907
- 654 - Aeromonas veronii: 10.3389/FCIMB.2020.00044
- 43363 - Aesculus: LTS0051907
- 43364 - Aesculus hippocastanum: 10.1016/S0031-9422(00)85174-2
- 43364 - Aesculus hippocastanum: LTS0051907
- 155619 - Agaricomycetes: LTS0051907
- 39509 - Agave: LTS0051907
- 2695036 - Agave decipiens: 10.1016/S0367-326X(99)00057-X
- 2695036 - Agave decipiens: LTS0051907
- 57912 - Agrimonia Eupatoria: -
- 9645 - Ailuropoda: LTS0051907
- 9646 - Ailuropoda melanoleuca: 10.1371/JOURNAL.PONE.0143417
- 9646 - Ailuropoda melanoleuca: LTS0051907
- 25641 - Aloe: -
- 34199 - Aloe vera: 10.1271/BBB.57.1350
- 94326 - Alpinia: LTS0051907
- 299928 - Alpinia latilabris: 10.1080/10412905.1994.9698447
- 299928 - Alpinia latilabris: LTS0051907
- 145744 - Althaea: LTS0051907
- 446321 - Althaea armeniaca: 10.1007/BF01165189
- 145745 - Althaea officinalis: 10.1007/BF01165189
- 145745 - Althaea officinalis: LTS0051907
- 3563 - Amaranthaceae: LTS0051907
- 4668 - Amaryllidaceae: LTS0051907
- 4011 - Anacardiaceae: LTS0051907
- 6340 - Annelida: LTS0051907
- 22140 - Annonaceae: LTS0051907
- 99027 - Anthemis: LTS0051907
- 589713 - Anthemis aciphylla: 10.1248/CPB.54.222
- 589713 - Anthemis aciphylla: LTS0051907
- 4037 - Apiaceae: LTS0051907
- 7458 - Apidae: LTS0051907
- 7459 - Apis: LTS0051907
- 7461 - Apis cerana: 10.1371/JOURNAL.PONE.0175573
- 7461 - Apis cerana: LTS0051907
- 4056 - Apocynaceae: LTS0051907
- 3701 - Arabidopsis: LTS0051907
- 3702 - Arabidopsis thaliana:
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: LTS0051907
- 4454 - Araceae: LTS0051907
- 13345 - Ardisia crenata: 10.3389/FMOLB.2021.683671
- 115440 - Areca: LTS0051907
- 184783 - Areca catechu:
- 184783 - Areca catechu: 10.1002/PTR.2650030406
- 184783 - Areca catechu: 10.1248/CPB.35.2880
- 184783 - Areca catechu: LTS0051907
- 184783 - Areca catechu L.: -
- 4710 - Arecaceae: LTS0051907
- 50230 - Arisaema: LTS0051907
- 175759 - Arisaema tortuosum: 10.1055/S-0028-1097819
- 175759 - Arisaema tortuosum: LTS0051907
- 4246 - Arnica: LTS0051907
- 436207 - Arnica montana: 10.1055/S-0028-1099547
- 436207 - Arnica montana: LTS0051907
- 4219 - Artemisia: LTS0051907
- 72348 - Artemisia monosperma: 10.1016/S0031-9422(00)88402-2
- 72348 - Artemisia monosperma: LTS0051907
- 6656 - Arthropoda: LTS0051907
- 4890 - Ascomycota: LTS0051907
- 40552 - Asparagaceae: LTS0051907
- 4210 - Asteraceae: LTS0051907
- 20400 - Astragalus: LTS0051907
- 20414 - Astragalus hamosus: 10.1021/NP50075A009
- 20414 - Astragalus hamosus: LTS0051907
- 115444 - Attalea: LTS0051907
- 1933363 - Attalea colenda: 10.1007/BF03183920
- 1933363 - Attalea colenda: LTS0051907
- 145700 - Attalea speciosa: 10.1021/JF00120A031
- 145700 - Attalea speciosa: LTS0051907
- 43152 - Azima: LTS0051907
- 43153 - Azima tetracantha: 10.1007/BF02657547
- 43153 - Azima tetracantha: LTS0051907
- 2 - Bacteria: LTS0051907
- 31345 - Bangiaceae: LTS0051907
- 2797 - Bangiophyceae: LTS0051907
- 3588 - Basella: LTS0051907
- 3589 - Basella alba: 10.1016/0889-1575(91)90017-Z
- 3589 - Basella alba: LTS0051907
- 3587 - Basellaceae: LTS0051907
- 5204 - Basidiomycota: LTS0051907
- 41491 - Bellis: LTS0051907
- 41492 - Bellis perennis: 10.1016/0031-9422(95)00183-8
- 41492 - Bellis perennis: LTS0051907
- 24079 - Bignoniaceae: LTS0051907
- 72181 - Bocconia: LTS0051907
- 72182 - Bocconia frutescens: 10.1139/V65-086
- 72182 - Bocconia frutescens: LTS0051907
- 2200776 - Bocconia latisepala: 10.1139/V65-086
- 2200776 - Bocconia latisepala: LTS0051907
- 21571 - Boraginaceae: LTS0051907
- 121095 - Brachystegia: LTS0051907
- 2879473 - Brachystegia nigerica: LTS0051907
- 3700 - Brassicaceae: LTS0051907
- 4014 - Burseraceae: LTS0051907
- 43690 - Canarium: LTS0051907
- 300208 - Canarium album: 10.5650/JOS1956.25.561
- 300208 - Canarium album: LTS0051907
- 3822 - Canavalia: LTS0051907
- 3823 - Canavalia ensiformis: 10.1007/BF02540958
- 3823 - Canavalia ensiformis: LTS0051907
- 301453 - Capparaceae: LTS0051907
- 13394 - Capparis: LTS0051907
- 65558 - Capparis spinosa: 10.1055/S-0028-1099537
- 65558 - Capparis spinosa: LTS0051907
- 1819373 - Capparis spinosa var. ovata: 10.1055/S-0028-1099537
- 4071 - Capsicum: LTS0051907
- 4072 - Capsicum annuum: LTS0051907
- 40321 - Capsicum annuum var. annuum: 10.1021/JF60227A034
- 40321 - Capsicum annuum var. annuum: LTS0051907
- 165789 - Capsicum annuum var. glabriusculum: 10.1021/JF60227A034
- 165789 - Capsicum annuum var. glabriusculum: LTS0051907
- 4222 - Carthamus tinctorius L.: -
- 53851 - Cassia: LTS0051907
- 53852 - Cassia fistula: 10.21608/BFSA.1985.75705
- 53852 - Cassia fistula: LTS0051907
- 508996 - Cassia javanica: 10.21608/BFSA.1985.75705
- 508996 - Cassia javanica: LTS0051907
- 4057 - Catharanthus: LTS0051907
- 4058 - Catharanthus roseus: 10.1002/FFJ.958
- 4058 - Catharanthus roseus: LTS0051907
- 3321 - Cedrus: LTS0051907
- 93692 - Cedrus libani: 10.1016/J.PHYMED.2007.03.013
- 93692 - Cedrus libani: LTS0051907
- 4305 - Celastraceae: LTS0051907
- 85180 - Celastrus: LTS0051907
- 994668 - Celastrus paniculatus: 10.1002/LIPI.19870890308
- 994668 - Celastrus paniculatus: LTS0051907
- 124768 - Celosia cristata L.: -
- 3051 - Chlamydomonadaceae: LTS0051907
- 3052 - Chlamydomonas: LTS0051907
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0051907
- 3166 - Chlorophyceae: LTS0051907
- 3041 - Chlorophyta: LTS0051907
- 7711 - Chordata: LTS0051907
- 1890464 - Chroococcaceae: LTS0051907
- 13428 - Cinnamomum: LTS0051907
- 119260 - Cinnamomum aromaticum: 10.1039/JR9380001610
- 1155220 - Cinnamomum iners: 10.1039/JR9380001610
- 1132458 - Cinnamomum kotoense: 10.1021/NP0580210
- 1132458 - Cinnamomum kotoense: LTS0051907
- 128608 - Cinnamomum verum: 10.1039/JR9380001610
- 2706 - Citrus: 10.1002/LIPI.19860880806
- 2706 - Citrus: LTS0051907
- 558547 - Citrus deliciosa: 10.1002/LIPI.19860880806
- 85571 - Citrus Reticulata: -
- 85571 - Citrus reticulata: 10.1002/LIPI.19860880806
- 85571 - Citrus reticulata: LTS0051907
- 301454 - Cleomaceae: LTS0051907
- 25782 - Cleome: LTS0051907
- 1077932 - Cleome amblyocarpa: 10.1016/0031-9422(94)00848-N
- 1077932 - Cleome amblyocarpa: LTS0051907
- 42113 - Clitellata: LTS0051907
- 86864 - Codonopsis pilosula Nannf.var.modesta(Nannf).L.Shen: -
- 3954 - Combretaceae: LTS0051907
- 4118 - Convolvulaceae: LTS0051907
- 16906 - Cornus Officinalis Sieb. Et Zucc.: -
- 1238147 - Corydalis bungeana Turcz.: -
- 3781 - Crassulaceae: LTS0051907
- 58949 - Crocus: LTS0051907
- 82528 - Crocus sativus: 10.3109/13880209.2010.547206
- 82528 - Crocus sativus: LTS0051907
- 497687 - Croton tiglium L.: -
- 63467 - Cryptostegia: LTS0051907
- 63468 - Cryptostegia grandiflora: 10.1016/S0926-6690(99)00036-9
- 63468 - Cryptostegia grandiflora: LTS0051907
- 3655 - Cucumis: LTS0051907
- 3656 - Cucumis melo:
- 3656 - Cucumis melo: 10.1016/S0031-9422(00)83494-9
- 3656 - Cucumis melo: LTS0051907
- 3660 - Cucurbita: LTS0051907
- 184136 - Cucurbita foetidissima: 10.1021/JF60216A022
- 184136 - Cucurbita foetidissima: LTS0051907
- 3661 - Cucurbita maxima: 10.1021/JF00073A014
- 3661 - Cucurbita maxima: LTS0051907
- 3650 - Cucurbitaceae: LTS0051907
- 3929 - Cuphea: LTS0051907
- 312566 - Cuphea carthagenensis: 10.1055/S-2006-959585
- 312566 - Cuphea carthagenensis: LTS0051907
- 312572 - Cuphea epilobiifolia: 10.1055/S-2006-959585
- 312572 - Cuphea epilobiifolia: LTS0051907
- 3028117 - Cyanophyceae: LTS0051907
- 4609 - Cyperaceae: LTS0051907
- 4610 - Cyperus: LTS0051907
- 31412 - Cystocloniaceae: LTS0051907
- 257570 - Cystoclonium: LTS0051907
- 257571 - Cystoclonium purpureum: 10.1016/S0031-9422(00)85526-0
- 257571 - Cystoclonium purpureum: LTS0051907
- 46246 - Delphinium: LTS0051907
- 2864 - Dinophyceae: LTS0051907
- 3731 - Diplotaxis: LTS0051907
- 308281 - Diplotaxis harra: 10.1002/(SICI)1099-1573(199906)13:4<329::AID-PTR458>3.0.CO;2-U
- 308281 - Diplotaxis harra: LTS0051907
- 53872 - Dipteryx: LTS0051907
- 1079072 - Dipteryx lacunifera: 10.1016/S0031-9422(00)86884-3
- 1079072 - Dipteryx lacunifera: LTS0051907
- 72452 - Dovyalis: LTS0051907
- 77055 - Dovyalis caffra: 10.1002/LIPI.19850870507
- 77055 - Dovyalis caffra: LTS0051907
- 313930 - Duhaldea: LTS0051907
- 313931 - Duhaldea cappa: 10.1007/S10600-010-9595-4
- 313931 - Duhaldea cappa: LTS0051907
- 25996 - Elaeagnaceae: LTS0051907
- 36776 - Elaeagnus: LTS0051907
- 36777 - Elaeagnus angustifolia: 10.1007/BF02249647
- 36777 - Elaeagnus angustifolia: LTS0051907
- 51952 - Elaeis: LTS0051907
- 51953 - Elaeis guineensis: 10.1016/S0031-9422(00)85489-8
- 51953 - Elaeis guineensis: LTS0051907
- 543 - Enterobacteriaceae: LTS0051907
- 13054 - Epilobium: LTS0051907
- 33136 - Epilobium dodonaei: 10.1007/BF00579976
- 41574 - Erigeron: LTS0051907
- 1532809 - Erigeron alpinus: 10.1007/BF00630128
- 1532809 - Erigeron alpinus: LTS0051907
- 1611304 - Erigeron caucasicus: LTS0051907
- 1611305 - Erigeron caucasicus subsp. venustus: 10.1007/BF00630128
- 1611305 - Erigeron caucasicus subsp. venustus: LTS0051907
- 72930 - Erigeron philadelphicus: 10.1271/BBB1961.45.507
- 72930 - Erigeron philadelphicus: LTS0051907
- 308316 - Erucaria: LTS0051907
- 1078594 - Erucaria microcarpa: 10.1002/(SICI)1099-1573(199906)13:4<329::AID-PTR458>3.0.CO;2-U
- 1078594 - Erucaria microcarpa: LTS0051907
- 43070 - Eryngium: LTS0051907
- 477864 - Eryngium foetidum: 10.1080/10412905.1992.9698097
- 477864 - Eryngium foetidum: LTS0051907
- 22118 - Erythroxylaceae: LTS0051907
- 13511 - Erythroxylum: LTS0051907
- 591145 - Erythroxylum monogynum: 10.1002/LIPI.19860880806
- 591145 - Erythroxylum monogynum: LTS0051907
- 561 - Escherichia: LTS0051907
- 562 - Escherichia coli: LTS0051907
- 188487 - Etlingera: LTS0051907
- 188493 - Etlingera elatior: 10.1080/10412905.1993.9698191
- 188493 - Etlingera elatior: LTS0051907
- 2759 - Eukaryota: LTS0051907
- 6818 - Euphausia: LTS0051907
- 6819 - Euphausia superba: 10.1021/JF00071A034
- 6819 - Euphausia superba: LTS0051907
- 6817 - Euphausiidae: LTS0051907
- 3803 - Fabaceae: LTS0051907
- 3616 - Fagopyrum: LTS0051907
- 3617 - Fagopyrum esculentum: 10.1007/BF00579976
- 3617 - Fagopyrum esculentum: LTS0051907
- 260310 - Fernandoa: LTS0051907
- 1818589 - Fernandoa adenophylla: 10.1055/S-0028-1099423
- 1818589 - Fernandoa adenophylla: LTS0051907
- 4605 - Festuca: LTS0051907
- 52153 - Festuca rubra: 10.1016/0031-9422(91)84185-U
- 52153 - Festuca rubra: LTS0051907
- 2806 - Florideophyceae: LTS0051907
- 36668 - Formicidae: LTS0051907
- 3746 - Fragaria: 10.1021/JF60199A018
- 3746 - Fragaria: LTS0051907
- 4751 - Fungi: LTS0051907
- 5506 - Fusarium: LTS0051907
- 5127 - Fusarium fujikuroi: 10.1016/0031-9422(91)83625-U
- 5127 - Fusarium fujikuroi: LTS0051907
- 1236 - Gammaproteobacteria: LTS0051907
- 5314 - Ganoderma: -
- 5314 - Ganoderma: LTS0051907
- 5315 - Ganoderma lucidum:
- 5315 - Ganoderma lucidum: LTS0051907
- 4027 - Geraniaceae: LTS0051907
- 54873 - Gleditsia: LTS0051907
- 54874 - Gleditsia triacanthos: 10.3109/13880208309070615
- 54874 - Gleditsia triacanthos: LTS0051907
- 46347 - Glycyrrhiza: LTS0051907
- 49827 - Glycyrrhiza glabra: 10.1271/NOGEIKAGAKU1924.61.1119
- 49827 - Glycyrrhiza glabra: LTS0051907
- 57113 - Goupia: LTS0051907
- 39314 - Goupia glabra: 10.1039/CT8987300226
- 39314 - Goupia glabra: LTS0051907
- 216853 - Goupiaceae: LTS0051907
- 66801 - Gymnodiniaceae: LTS0051907
- 2955 - Gymnodinium: LTS0051907
- 671128 - Gymnodinium nagasakiense: 10.1016/0031-9422(92)80160-G
- 671128 - Gymnodinium nagasakiense: LTS0051907
- 429674 - Heterophragma: LTS0051907
- 429675 - Heterophragma adenophyllum: 10.1055/S-0028-1099423
- 47605 - Hibiscus: LTS0051907
- 229543 - Hibiscus cannabinus: 10.1002/1099-1565(200011/12)11:6<345::AID-PCA540>3.0.CO;2-T
- 229543 - Hibiscus cannabinus: LTS0051907
- 183260 - Hibiscus sabdariffa: 10.1021/JF00123A022
- 183260 - Hibiscus sabdariffa: LTS0051907
- 9606 - Homo sapiens:
- 629714 - Hypericaceae: LTS0051907
- 55962 - Hypericum: LTS0051907
- 269006 - Hypericum maculatum: 10.1016/S0305-1978(02)00076-5
- 269006 - Hypericum maculatum: LTS0051907
- 282549 - Hypericum olympicum: 10.1016/S0305-1978(02)00076-5
- 282549 - Hypericum olympicum: LTS0051907
- 65561 - Hypericum perforatum: 10.1016/S0305-1978(02)00076-5
- 65561 - Hypericum perforatum: LTS0051907
- 50557 - Insecta: LTS0051907
- 41589 - Inula: LTS0051907
- 1548589 - Inula grandis: 10.1007/BF00564338
- 1548589 - Inula grandis: LTS0051907
- 4119 - Ipomoea: LTS0051907
- 89648 - Ipomoea leptophylla: 10.1021/NP030197J
- 89648 - Ipomoea leptophylla: LTS0051907
- 26339 - Iridaceae: LTS0051907
- 26378 - Iris: 10.1021/JF60231A019
- 26378 - Iris: LTS0051907
- 79318 - Irvingia: LTS0051907
- 79319 - Irvingia gabonensis: 10.1016/B978-0-9830791-2-5.50018-9
- 79319 - Irvingia gabonensis: LTS0051907
- 629715 - Irvingiaceae: LTS0051907
- 161755 - Isatis: LTS0051907
- 161756 - Isatis tinctoria: 10.1055/S-2006-958019
- 161756 - Isatis tinctoria: LTS0051907
- 4147 - Jasminum: LTS0051907
- 1239738 - Jasminum azoricum: 10.1021/NP50034A036
- 1239738 - Jasminum azoricum: LTS0051907
- 84810 - Jasminum fluminense: 10.1021/NP50034A036
- 84810 - Jasminum fluminense: LTS0051907
- 225107 - Karenia mikimotoi: 10.1016/0031-9422(92)80160-G
- 4136 - Lamiaceae: LTS0051907
- 87005 - Lantana: LTS0051907
- 126435 - Lantana camara: 10.1248/CPB.51.134
- 126435 - Lantana camara: LTS0051907
- 3433 - Lauraceae: LTS0051907
- 39207 - Leea: LTS0051907
- 39334 - Leea guineensis: 10.1002/1099-1026(200005/06)15:3<182::AID-FFJ888>3.0.CO;2-X
- 19205 - Lepidium: LTS0051907
- 153348 - Lepidium meyenii: 10.1016/S0090-4295(99)00549-X
- 153348 - Lepidium meyenii: LTS0051907
- 128634 - Licaria: LTS0051907
- 4447 - Liliopsida: LTS0051907
- 55957 - Lindera: LTS0051907
- 2654225 - Lindera neesiana: 10.1023/B:CONC.0000018118.52743.A8
- 2654225 - Lindera neesiana: LTS0051907
- 22042 - Litsea: LTS0051907
- 136122 - Litsea glutinosa: 10.1039/JR9380001610
- 136122 - Litsea glutinosa: LTS0051907
- 4606 - Lolium arundinaceum: 10.1016/0031-9422(91)84185-U
- 6392 - Lumbricidae: LTS0051907
- 6397 - Lumbricus: LTS0051907
- 6398 - Lumbricus terrestris: 10.1271/BBB1961.52.2379
- 6398 - Lumbricus terrestris: LTS0051907
- 3928 - Lythraceae: LTS0051907
- 3398 - Magnoliopsida: LTS0051907
- 6681 - Malacostraca: LTS0051907
- 3629 - Malvaceae: LTS0051907
- 40674 - Mammalia: LTS0051907
- 24647 - Mandragora: LTS0051907
- 389206 - Mandragora autumnalis:
- 389206 - Mandragora autumnalis: 10.1016/J.PHYTOCHEM.2005.07.016
- 389206 - Mandragora autumnalis: 10.1080/10412905.1998.9700991
- 389206 - Mandragora autumnalis: LTS0051907
- 33117 - Mandragora officinarum:
- 33117 - Mandragora officinarum: 10.1016/J.PHYTOCHEM.2005.07.016
- 33117 - Mandragora officinarum: 10.1080/10412905.1998.9700991
- 33117 - Mandragora officinarum: LTS0051907
- 23461 - Mangifera: LTS0051907
- 29780 - Mangifera indica: 10.1007/BF02541638
- 29780 - Mangifera indica: LTS0051907
- 3877 - Medicago: LTS0051907
- 3879 - Medicago sativa: 10.1016/S0031-9422(00)88688-4
- 3879 - Medicago sativa: LTS0051907
- 21819 - Mentha: LTS0051907
- 29719 - Mentha spicata: 10.1007/BF02249628
- 29719 - Mentha spicata: LTS0051907
- 1890428 - Merismopediaceae: LTS0051907
- 33208 - Metazoa: LTS0051907
- 102786 - Mikania: LTS0051907
- 60380 - Mitracarpus: LTS0051907
- 1620150 - Mitracarpus hirtus: 10.1002/FFJ.2730080506
- 1620150 - Mitracarpus hirtus: LTS0051907
- 3671 - Momordica: LTS0051907
- 3673 - Momordica charantia:
- 3673 - Momordica charantia: 10.1002/LIPI.19850870809
- 3673 - Momordica charantia: 10.1021/JF00010A013
- 3673 - Momordica charantia: LTS0051907
- 2364055 - Monteverdia: LTS0051907
- 1081520 - Monteverdia ilicifolia: 10.1016/J.FITOTE.2003.12.006
- 1081520 - Monteverdia ilicifolia: LTS0051907
- 1825850 - Monteverdia truncata: 10.1016/J.FITOTE.2003.12.006
- 4640 - Musa: LTS0051907
- 89151 - Musa × paradisiaca: 10.1016/S0031-9422(00)82556-X
- 4637 - Musaceae: LTS0051907
- 3931 - Myrtaceae: LTS0051907
- 114201 - Nartheciaceae: LTS0051907
- 114203 - Narthecium: LTS0051907
- 114204 - Narthecium ossifragum: 10.1016/0031-9422(86)88045-1
- 114204 - Narthecium ossifragum: LTS0051907
- 110618 - Nectriaceae: LTS0051907
- 128654 - Neolitsea: LTS0051907
- 384321 - Neolitsea aciculata: 10.1039/J39700000973
- 230708 - Neolitsea cassia: 10.1039/JR9380001610
- 128655 - Neolitsea sericea: 10.1039/J39700001547
- 128655 - Neolitsea sericea: LTS0051907
- 1009496 - Neolitsea umbrosa: 10.1039/JR9380001610
- 1504467 - Neolitsea zeylanica: 10.1039/JR9380001610
- 39172 - Nepeta: LTS0051907
- 39347 - Nepeta cataria: 10.2307/30047228
- 39347 - Nepeta cataria: LTS0051907
- 54731 - Nepeta racemosa: 10.1080/10412905.1993.9698205
- 54731 - Nepeta racemosa: LTS0051907
- 555479 - Nigella sativa: 10.1515/ZNC-2003-9-1004
- 84546 - Oecophylla: LTS0051907
- 84561 - Oecophylla smaragdina: 10.1271/BBB1961.54.3335
- 84561 - Oecophylla smaragdina: LTS0051907
- 4144 - Oleaceae: LTS0051907
- 3934 - Onagraceae: LTS0051907
- 44586 - Panax Notoginseng (Burk.) F. H. Chen Ex C. Chow: -
- 3465 - Papaveraceae: LTS0051907
- 3684 - Passiflora: LTS0051907
- 159425 - Passiflora incarnata: 10.1080/10412905.1992.9698081
- 159425 - Passiflora incarnata: LTS0051907
- 3683 - Passifloraceae: LTS0051907
- 4030 - Pelargonium: LTS0051907
- 158596 - Pelargonium endlicherianum: 10.1055/S-2006-960872
- 158596 - Pelargonium endlicherianum: LTS0051907
- 73200 - Pelargonium graveolens: 10.1021/JF60197A010
- 73200 - Pelargonium graveolens: LTS0051907
- 148715 - Pentaclethra: LTS0051907
- 148716 - Pentaclethra macrophylla: 10.1007/BF02666050
- 148716 - Pentaclethra macrophylla: LTS0051907
- 48386 - Perilla Frutescens: -
- 488003 - Persicaria minor: 10.3390/MOLECULES191119220
- 1155347 - Persicaria mitis: 10.3390/MOLECULES191119220
- 3883 - Phaseolus: LTS0051907
- 3886 - Phaseolus coccineus:
- 3886 - Phaseolus coccineus: 10.3109/13880208309070615
- 3886 - Phaseolus coccineus: 10.3109/13880208409070644
- 3886 - Phaseolus coccineus: LTS0051907
- 233880 - Phyllanthaceae: LTS0051907
- 58880 - Phyllanthus: LTS0051907
- 296036 - Phyllanthus emblica: 10.1002/JCCS.200700228
- 3318 - Pinaceae: LTS0051907
- 58019 - Pinopsida: LTS0051907
- 3337 - Pinus: LTS0051907
- 71649 - Pinus pumila: 10.1007/BF00714911
- 71649 - Pinus pumila: LTS0051907
- 3347 - Pinus radiata: 10.1016/0031-9422(82)83099-9
- 3347 - Pinus radiata: LTS0051907
- 235790 - Piptostigma: LTS0051907
- 58046 - Platycladus orientalis (L.) Franco: -
- 52847 - Plumeria: LTS0051907
- 62097 - Plumeria rubra: 10.1002/FFJ.2730070108
- 62097 - Plumeria rubra: LTS0051907
- 4479 - Poaceae: LTS0051907
- 3615 - Polygonaceae: LTS0051907
- 5317 - Polyporaceae: LTS0051907
- 3689 - Populus: LTS0051907
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0051907
- 2784 - Porphyra: LTS0051907
- 3582 - Portulaca: LTS0051907
- 46147 - Portulaca oleracea:
- 46147 - Portulaca oleracea: 10.1002/LIPI.19860880806
- 46147 - Portulaca oleracea: 10.21608/BFSA.1985.75707
- 46147 - Portulaca oleracea: LTS0051907
- 3581 - Portulacaceae: LTS0051907
- 1214 - Prochloron: LTS0051907
- 112572 - Proiphys: LTS0051907
- 82229 - Proiphys amboinensis: 10.1016/S0305-1978(97)00097-5
- 82229 - Proiphys amboinensis: LTS0051907
- 3754 - Prunus: LTS0051907
- 36596 - Prunus armeniaca: 10.1021/JF00004A032
- 36596 - Prunus armeniaca: LTS0051907
- 3758 - Prunus domestica: 10.1021/JF00004A032
- 3758 - Prunus domestica: LTS0051907
- 3760 - Prunus persica: 10.1021/JF00004A032
- 3760 - Prunus persica: LTS0051907
- 120289 - Psidium: LTS0051907
- 120290 - Psidium guajava: 10.1002/FFJ.2730060314
- 120290 - Psidium guajava: LTS0051907
- 180039 - Psychotria punctata: 10.3389/FMOLB.2021.683671
- 22663 - Punica granatum: 10.3390/MOLECULES22101606
- 3440 - Ranunculaceae: LTS0051907
- 3608 - Rhamnaceae: LTS0051907
- 202994 - Rhodiola: LTS0051907
- 203015 - Rhodiola rosea: 10.1016/S0031-9422(02)00004-3
- 203015 - Rhodiola rosea: LTS0051907
- 2803 - Rhodomelaceae: LTS0051907
- 2763 - Rhodophyta: LTS0051907
- 3745 - Rosaceae: LTS0051907
- 25473 - Rubia: LTS0051907
- 1905583 - Rubia wallichiana: 10.1248/CPB.51.948
- 1905583 - Rubia wallichiana: LTS0051907
- 24966 - Rubiaceae: LTS0051907
- 13659 - Ruellia: LTS0051907
- 441003 - Ruellia nudiflora: LTS0051907
- 441035 - Ruellia tuberosa: 10.1002/LIPI.19780800603
- 441035 - Ruellia tuberosa: LTS0051907
- 23513 - Rutaceae: LTS0051907
- 13253 - Sabal: LTS0051907
- 34172 - Sabal minor: 10.1021/BK-2002-0803.CH009
- 34172 - Sabal minor: LTS0051907
- 3688 - Salicaceae: LTS0051907
- 590 - Salmonella: LTS0051907
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 28901 - Salmonella enterica: LTS0051907
- 569446 - Salpa: LTS0051907
- 569448 - Salpa thompsoni: 10.1248/CPB.34.4562
- 569448 - Salpa thompsoni: LTS0051907
- 34759 - Salpidae: LTS0051907
- 4324 - Salvadoraceae: LTS0051907
- 21880 - Salvia: LTS0051907
- 268906 - Salvia fruticosa: 10.1016/S0367-326X(01)00327-6
- 268906 - Salvia fruticosa: LTS0051907
- 23672 - Sapindaceae: LTS0051907
- 41629 - Saussurea: LTS0051907
- 200489 - Saussurea involucrata: 10.1080/10412905.1992.9698080
- 200489 - Saussurea involucrata: LTS0051907
- 218135 - Schedonorus: LTS0051907
- 375856 - Scolochloa: LTS0051907
- 375857 - Scolochloa festucacea: 10.1016/0031-9422(91)84185-U
- 375857 - Scolochloa festucacea: LTS0051907
- 18794 - Senecio: LTS0051907
- 462497 - Senecio adenotrichius: 10.1016/S0305-1978(00)00114-9
- 462497 - Senecio adenotrichius: LTS0051907
- 53922 - Senna: LTS0051907
- 72402 - Senna alexandrina: 10.1055/S-2006-957965
- 72402 - Senna alexandrina: LTS0051907
- 72401 - Senna didymobotrya: 10.21608/BFSA.1985.75705
- 72401 - Senna didymobotrya: LTS0051907
- 346999 - Senna siamea: 10.21608/BFSA.1985.75705
- 346999 - Senna siamea: LTS0051907
- 4721 - Serenoa: LTS0051907
- 4722 - Serenoa repens:
- 4722 - Serenoa repens: 10.1002/(SICI)1097-0045(199605)28:5<300::AID-PROS5>3.0.CO;2-F
- 4722 - Serenoa repens: 10.1016/0021-9673(95)00734-2
- 4722 - Serenoa repens: 10.1016/S0896-8446(01)00110-3
- 4722 - Serenoa repens: 10.1016/S0944-7113(11)80030-9
- 4722 - Serenoa repens: 10.1021/BK-2002-0803.CH009
- 4722 - Serenoa repens: LTS0051907
- 155231 - Sideritis: LTS0051907
- 155260 - Sideritis romana: LTS0051907
- 155265 - Sideritis syriaca: 10.1016/S0378-8741(02)00172-1
- 155266 - Sideritis taurica: 10.1016/S0378-8741(02)00172-1
- 155266 - Sideritis taurica: LTS0051907
- 4070 - Solanaceae: LTS0051907
- 147550 - Sordariomycetes: LTS0051907
- 104301 - Staphisagria macrosperma: 10.3109/13880208509070678
- 1883 - Streptomyces: 10.3389/FMICB.2018.01302
- 1883 - Streptomyces: LTS0051907
- 2062 - Streptomycetaceae: LTS0051907
- 35493 - Streptophyta: LTS0051907
- 115519 - Syagrus: LTS0051907
- 290277 - Syagrus romanzoffiana: 10.1021/BK-2002-0803.CH009
- 290277 - Syagrus romanzoffiana: LTS0051907
- 1142 - Synechocystis: 10.1104/PP.108.129403
- 1142 - Synechocystis: LTS0051907
- 178174 - Syzygium: LTS0051907
- 260142 - Syzygium cumini: 10.1002/JSFA.2740430111
- 260142 - Syzygium cumini: LTS0051907
- 49743 - Taraxacum: LTS0051907
- 1301465 - Taraxacum lapponicum: LTS0051907
- 50225 - Taraxacum officinale: 10.1007/BF00579976
- 50225 - Taraxacum officinale: LTS0051907
- 39992 - Terminalia: LTS0051907
- 1507733 - Terminalia pallida: 10.1016/S0960-8524(98)00190-4
- 1507733 - Terminalia pallida: LTS0051907
- 30304 - Thaliacea: LTS0051907
- 64580 - Tilia: LTS0051907
- 210368 - Tilia mandshurica: 10.1080/10412905.1999.9701158
- 82423 - Tilia platyphyllos: 10.1080/10412905.1999.9701158
- 82423 - Tilia platyphyllos: LTS0051907
- 121718 - Tilia tomentosa: 10.1080/10412905.1999.9701158
- 121718 - Tilia tomentosa: LTS0051907
- 58023 - Tracheophyta: LTS0051907
- 203763 - Trichodesma: LTS0051907
- 764744 - Trichodesma zeylanicum: 10.1016/S0031-9422(00)89578-3
- 764744 - Trichodesma zeylanicum: LTS0051907
- 3677 - Trichosanthes Kirilowii Maxim: -
- 3677 - Trichosanthes kirilowii Maxim.: -
- 676073 - Trichosanthes rosthornii Harms: -
- 3898 - Trifolium: LTS0051907
- 97006 - Trifolium alexandrinum: 10.1016/S0031-9422(00)88688-4
- 97006 - Trifolium alexandrinum: LTS0051907
- 57577 - Trifolium pratense: 10.1007/BF00579976
- 57577 - Trifolium pratense: LTS0051907
- 78532 - Trigonella: LTS0051907
- 78534 - Trigonella foenum-graecum: 10.1055/S-2007-969591
- 78534 - Trigonella foenum-graecum: LTS0051907
- 78479 - Trollius Chinensis: -
- 45183 - Turnera: LTS0051907
- 45184 - Turnera ulmifolia: 10.1016/0031-9422(91)80030-5
- 45184 - Turnera ulmifolia: LTS0051907
- 45182 - Turneraceae: LTS0051907
- 3437 - Umbellularia: LTS0051907
- 3438 - Umbellularia californica: 10.1007/BF02657546
- 3438 - Umbellularia californica: LTS0051907
- 9632 - Ursidae: LTS0051907
- 106719 - Ventilago: LTS0051907
- 1390085 - Ventilago denticulata: 10.1007/BF02541590
- 1390085 - Ventilago denticulata: LTS0051907
- 21910 - Verbenaceae: LTS0051907
- 4204 - Viburnum: LTS0051907
- 85293 - Viburnum opulus: 10.1007/S10600-006-0002-0
- 85293 - Viburnum opulus: LTS0051907
- 33090 - Viridiplantae: LTS0051907
- 3602 - Vitaceae: LTS0051907
- 3603 - Vitis: LTS0051907
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
- 29760 - Vitis vinifera: LTS0051907
- 4650 - Zingiber: LTS0051907
- 94328 - Zingiber officinale:
- 94328 - Zingiber officinale: 10.1016/S0031-9422(00)84581-1
- 94328 - Zingiber officinale: 10.1271/BBB1961.52.2961
- 94328 - Zingiber officinale: LTS0051907
- 94328 - Zingiber Officinale Roscoe: -
- 4642 - Zingiberaceae: LTS0051907
- 182395 - Ziziphora: LTS0051907
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Shiwen Peng, Fangling Shu, Yanhui Lu, Dongsheng Fan, Dehong Zheng, Gaoqing Yuan. Quasi-targeted metabolomics revealed isoliquiritigenin and lauric acid associated with resistance to tobacco black shank.
Plant signaling & behavior.
2024 Dec; 19(1):2332019. doi:
10.1080/15592324.2024.2332019
. [PMID: 38527068] - Qing Liu, Haiyu Luo, Danyang Liang, Yue Zheng, Huishan Shen, Wenhao Li. Effect of electron beam irradiation pretreatment and different fatty acid types on the formation, structural characteristics and functional properties of starch-lipid complexes.
Carbohydrate polymers.
2024 Aug; 337(?):122187. doi:
10.1016/j.carbpol.2024.122187
. [PMID: 38710543] - Chen Chao, Shiqing Huang, Jinglin Yu, Les Copeland, Yuedong Yang, Shujun Wang. The influence of short-range molecular order in gelatinized starch on the formation of starch-lauric acid complexes.
International journal of biological macromolecules.
2024 Mar; 260(Pt 2):129526. doi:
10.1016/j.ijbiomac.2024.129526
. [PMID: 38242387] - Xiao Xiao, Ruofei Li, Bing Cui, Cheng Lv, Yu Zhang, Jun Zheng, Rutai Hui, Yibo Wang. Liver ACSM3 deficiency mediates metabolic syndrome via a lauric acid-HNF4α-p38 MAPK axis.
The EMBO journal.
2024 Jan; ?(?):. doi:
10.1038/s44318-023-00020-1
. [PMID: 38191811] - Ahmed A Sedik, Rania Elgohary, Eman Khalifa, Wagdy K B Khalil, Heba I Shafey, Mohamed B Shalaby, Mona S O Gouida, Yasmin M Tag. Lauric acid attenuates hepato-metabolic complications and molecular alterations in high-fat diet-induced nonalcoholic fatty liver disease in rats.
Toxicology mechanisms and methods.
2024 Jan; ?(?):1-14. doi:
10.1080/15376516.2023.2301344
. [PMID: 38166588] - Venkatesan Ramya, Karuppiah Prakash Shyam, Arulanandu Angelmary, Balamuthu Kadalmani. Lauric acid epigenetically regulates lncRNA HOTAIR by remodeling chromatin H3K4 tri-methylation and modulates glucose transport in SH-SY5Y human neuroblastoma cells: Lipid switch in macrophage activation.
Biochimica et biophysica acta. Molecular and cell biology of lipids.
2023 Nov; ?(?):159429. doi:
10.1016/j.bbalip.2023.159429
. [PMID: 37967739] - Zaib Ali Shaheryar, Mahtab Ahmad Khan, Huma Hameed, Syed Awais Ali Zaidi, Irfan Anjum, Muhammad Shafeeq Ur Rahman. Lauric acid provides neuroprotection against oxidative stress in mouse model of hyperglycaemic stroke.
European journal of pharmacology.
2023 Aug; ?(?):175990. doi:
10.1016/j.ejphar.2023.175990
. [PMID: 37572940] - Nursarah Syamimi Anuar, Syahirah Ain Shafie, Muhammad Aiman Faris Maznan, Noor Syaffinaz Noor Mohamad Zin, Nur Ain Sabrina Azmi, Rohaizad Abdul Raoof, Diyas Myrzakozha, Nurdiana Samsulrizal. Lauric acid improves hormonal profiles, antioxidant properties, sperm quality and histomorphometric changes in testis and epididymis of streptozotocin-induced diabetic infertility rats.
Toxicology and applied pharmacology.
2023 Jul; 470(?):116558. doi:
10.1016/j.taap.2023.116558
. [PMID: 37211320] - Kautilya Srivastava, Bede S Mickan, James O'Connor, Sun Kumar Gurung, Navid R Moheimani, Sasha N Jenkins. Development of a controlled release fertilizer by incorporating lauric acid into microalgal biomass: Dynamics on soil biological processes for efficient utilisation of waste resources.
Journal of environmental management.
2023 Jun; 344(?):118392. doi:
10.1016/j.jenvman.2023.118392
. [PMID: 37384987] - Nina Qin, Yan Meng, Zhihua Ma, Zhaoping Li, Zhenzhen Hu, Chenyi Zhang, Liyong Chen. Pea Starch-Lauric Acid Complex Alleviates Dextran Sulfate Sodium-Induced Colitis in C57BL/6J Mice.
Nutrition and cancer.
2023 Jun; ?(?):1-14. doi:
10.1080/01635581.2023.2223789
. [PMID: 37334819] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Moumita Mallick, Hossain A Mondal. Vascular dodecanoic acid of Arabidopsis mediates an insect resistance against Myzus persicae.
Archives of insect biochemistry and physiology.
2023 Mar; 112(3):e21986. doi:
10.1002/arch.21986
. [PMID: 36453553] - Chaoying Qiu, Shaolin Wang, Ying Wang, Wan Jun Lee, Junning Fu, Bernard P Binks, Yong Wang. Stabilisation of oleofoams by lauric acid and its glycerol esters.
Food chemistry.
2022 Aug; 386(?):132776. doi:
10.1016/j.foodchem.2022.132776
. [PMID: 35509162] - Wangxin Liu, Xianliang Luo, Yang Tao, Ying Huang, Minjie Zhao, Jiahui Yu, Fengqin Feng, Wei Wei. Ultrasound enhanced butyric acid-lauric acid designer lipid synthesis: Based on artificial neural network and changes in enzymatic structure.
Ultrasonics sonochemistry.
2022 Aug; 88(?):106100. doi:
10.1016/j.ultsonch.2022.106100
. [PMID: 35908344] - M Hajishafiee, C McVeay, K Lange, J F Rehfeld, M Horowitz, C Feinle-Bisset. Effects of intraduodenal infusion of lauric acid and L-tryptophan, alone and combined, on glucoregulatory hormones, gastric emptying and glycaemia in healthy men.
Metabolism: clinical and experimental.
2022 04; 129(?):155140. doi:
10.1016/j.metabol.2022.155140
. [PMID: 35065080] - Van-Ba Hoa, Dong-Heon Song, Kuk-Hwan Seol, Sun-Moon Kang, Hyun-Wook Kim, Jin-Hyoung Kim, Soo-Hyun Cho. Coating with chitosan containing lauric acid (C12:0) significantly extends the shelf-life of aerobically - Packaged beef steaks during refrigerated storage.
Meat science.
2022 Feb; 184(?):108696. doi:
10.1016/j.meatsci.2021.108696
. [PMID: 34741876] - Hyunjong Yu, Yerim Byun, Pahn-Shick Chang. Lipase-catalyzed two-step esterification for solvent-free production of mixed lauric acid esters with antibacterial and antioxidative activities.
Food chemistry.
2022 Jan; 366(?):130650. doi:
10.1016/j.foodchem.2021.130650
. [PMID: 34330030] - Tai-Ti Liu, Guan-Zhen Su, Tsung-Shi Yang. Functionalities of chitosan conjugated with lauric acid and l-carnitine and application of the modified chitosan in an oil-in-water emulsion.
Food chemistry.
2021 Oct; 359(?):129851. doi:
10.1016/j.foodchem.2021.129851
. [PMID: 33957325] - Alisha Wehdnesday Bernardo Reyes, Heejin Kim, Tran Xuan Ngoc Huy, Son Hai Vu, Trang Thi Nguyen, Chang Keun Kang, Wongi Min, Hu Jang Lee, John Hwa Lee, Suk Kim. Immune-metabolic receptor GPR84 surrogate and endogenous agonists, 6-OAU and lauric acid, alter Brucella abortus 544 infection in both in vitro and in vivo systems.
Microbial pathogenesis.
2021 Sep; 158(?):105079. doi:
10.1016/j.micpath.2021.105079
. [PMID: 34245824] - Yanping Wu, Haoran Zhang, Ruiqiang Zhang, Guangtian Cao, Qing Li, Bing Zhang, Yongxia Wang, Caimei Yang. Serum metabolome and gut microbiome alterations in broiler chickens supplemented with lauric acid.
Poultry science.
2021 Sep; 100(9):101315. doi:
10.1016/j.psj.2021.101315
. [PMID: 34280650] - Xuemin Kang, Wei Gao, Bin Wang, Bin Yu, Li Guo, Bo Cui, A M Abd El-Aty. Effect of moist and dry-heat treatment processes on the structure, physicochemical properties, and in vitro digestibility of wheat starch-lauric acid complexes.
Food chemistry.
2021 Jul; 351(?):129303. doi:
10.1016/j.foodchem.2021.129303
. [PMID: 33647689] - Jian Wang, Xianfeng Hu, Chenglong Yang, Xiaomao Wu, Rongyu Li, Ming Li. Growth Restriction of Rhizoctonia solani via Breakage of Intracellular Organelles Using Crude Extracts of Gallnut and Clove.
Molecules (Basel, Switzerland).
2021 Mar; 26(6):. doi:
10.3390/molecules26061667
. [PMID: 33802719] - Agne Savickaite, Mikas Sadauskas, Renata Gudiukaite. Immobilized GDEst-95, GDEst-lip and GD-95RM lipolytic enzymes for continuous flow hydrolysis and transesterification reactions.
International journal of biological macromolecules.
2021 Mar; 173(?):421-434. doi:
10.1016/j.ijbiomac.2021.01.133
. [PMID: 33493559] - Huahua Liu, Jingjing Zhao, Sunlei Pan, Yeke Zhu, Guosheng Fu, Weiliang Tang, Fang Peng. Shexiang Tongxin dropping pill protects against sodium laurate-induced coronary microcirculatory dysfunction in rats.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2021 02; 41(1):89-97. doi:
10.19852/j.cnki.jtcm.2021.01.011
. [PMID: 33522201] - Yetty Herdiyati, Yonada Astrid, Aldina Amalia Nur Shadrina, Ika Wiani, Mieke Hemiawati Satari, Dikdik Kurnia. Potential Fatty Acid as Antibacterial Agent Against Oral Bacteria of Streptococcus mutans and Streptococcus sanguinis from Basil (Ocimum americanum): In vitro and In silico Studies.
Current drug discovery technologies.
2021; 18(4):532-541. doi:
10.2174/1570163817666200712171652
. [PMID: 32652913] - Yanping Wu, Qing Li, Jinsong Liu, Yulan Liu, Yinglei Xu, Ruiqiang Zhang, Yang Yu, Yongxia Wang, Caimei Yang. Integrating Serum Metabolome and Gut Microbiome to Evaluate the Benefits of Lauric Acid on Lipopolysaccharide- Challenged Broilers.
Frontiers in immunology.
2021; 12(?):759323. doi:
10.3389/fimmu.2021.759323
. [PMID: 34721434] - Lin-Hai Chen, Qing Zhang, Xin Xie, Fa-Jun Nan. Modulation of the G-Protein-Coupled Receptor 84 (GPR84) by Agonists and Antagonists.
Journal of medicinal chemistry.
2020 12; 63(24):15399-15409. doi:
10.1021/acs.jmedchem.0c01378
. [PMID: 33267584] - Cherakkathodi Sudheesh, Kappat Valiyapeediyekkal Sunooj, Balasubhramaniam Bhavani, Basheer Aaliya, Muhammed Navaf, Plachikkattu Parambil Akhila, Sarasan Sabu, Abhilash Sasidharan, Suraj Kumar Sinha, Sunny Kumar, Vallayil Appukuttan Sajeevkumar, Johnsy George. Energetic neutral atoms assisted development of kithul (Caryota urens) starch-lauric acid complexes: A characterisation study.
Carbohydrate polymers.
2020 Dec; 250(?):116991. doi:
10.1016/j.carbpol.2020.116991
. [PMID: 33049903] - Xi Yang, Hanju Sun, Lijun Tu, Yuan Jin, Muwen Wang, Shuyun Liu, Zuoyong Zhang, Shudong He. Investigation of acute, subacute and subchronic toxicities of anthocyanin derived acylation reaction products and evaluation of their antioxidant activities in vitro.
Food & function.
2020 Dec; 11(12):10954-10967. doi:
10.1039/d0fo01478h
. [PMID: 33283810] - Fenglin Zhang, Min Song, Lin Chen, Xiaohua Yang, Fan Li, Qiang Yang, Chen Duan, Mingfa Ling, Xumin Lai, Xiaotong Zhu, Lina Wang, Ping Gao, Gang Shu, Qingyan Jiang, Songbo Wang. Dietary Supplementation of Lauric Acid Alleviates the Irregular Estrous Cycle and the Impaired Metabolism and Thermogenesis in Female Mice Fed with High-Fat Diet (HFD).
Journal of agricultural and food chemistry.
2020 Nov; 68(45):12631-12640. doi:
10.1021/acs.jafc.0c05235
. [PMID: 33140642] - Hadi Hashemi Gahruie, Mahsa Mostaghimi, Fatemeh Ghiasi, Samad Tavakoli, Mahmood Naseri, Seyed Mohammad Hashem Hosseini. The effects of fatty acids chain length on the techno-functional properties of basil seed gum-based edible films.
International journal of biological macromolecules.
2020 Oct; 160(?):245-251. doi:
10.1016/j.ijbiomac.2020.05.136
. [PMID: 32442566] - Chen Chao, Shiqing Huang, Jinglin Yu, Les Copeland, Shuo Wang, Shujun Wang. Molecular mechanisms underlying the formation of starch-lipid complexes during simulated food processing: A dynamic structural analysis.
Carbohydrate polymers.
2020 Sep; 244(?):116464. doi:
10.1016/j.carbpol.2020.116464
. [PMID: 32536390] - Catarina M Morais, Ana M Cardoso, Luísa Aguiar, Nuno Vale, Clévio Nóbrega, Mónica Zuzarte, Paula Gomes, Maria C Pedroso de Lima, Amália S Jurado. Lauroylated Histidine-Enriched S413-PV Peptide as an Efficient Gene Silencing Mediator in Cancer Cells.
Pharmaceutical research.
2020 Sep; 37(10):188. doi:
10.1007/s11095-020-02904-x
. [PMID: 32888084] - Pengfei Liu, Wei Gao, Xiaolei Zhang, Zhengzong Wu, Bin Yu, Bo Cui. Physicochemical properties of pea starch-lauric acid complex modified by maltogenic amylase and pullulanase.
Carbohydrate polymers.
2020 Aug; 242(?):116332. doi:
10.1016/j.carbpol.2020.116332
. [PMID: 32564855] - Rui Wang, Pengfei Liu, Bo Cui, Xuemin Kang, Bin Yu, Lizhong Qiu, Chunrui Sun. Effects of pullulanase debranching on the properties of potato starch-lauric acid complex and potato starch-based film.
International journal of biological macromolecules.
2020 Aug; 156(?):1330-1336. doi:
10.1016/j.ijbiomac.2019.11.173
. [PMID: 31760002] - Hyunjong Yu, Kyung-Min Park, Pahn-Shick Chang. Lipase-catalyzed synthesis of lauroyl tripeptide-KHA with multi-functionalities: Its surface-active, antibacterial, and antioxidant properties.
Food chemistry.
2020 Jul; 319(?):126533. doi:
10.1016/j.foodchem.2020.126533
. [PMID: 32172046] - Xiao Wang, Shang Wang, Jiankun Yi, Yunshuo Li, Jianan Liu, Jun Wang, Jinghui Xi. Three Host Plant Volatiles, Hexanal, Lauric Acid, and Tetradecane, are Detected by an Antenna-Biased Expressed Odorant Receptor 27 in the Dark Black Chafer Holotrichia parallela.
Journal of agricultural and food chemistry.
2020 Jul; 68(28):7316-7323. doi:
10.1021/acs.jafc.0c00333
. [PMID: 32551589] - Bo Kyeong Yoon, Soohyun Park, Gamaliel J Ma, Kavoos Kolahdouzan, Vladimir P Zhdanov, Joshua A Jackman, Nam-Joon Cho. Competing Interactions of Fatty Acids and Monoglycerides Trigger Synergistic Phospholipid Membrane Remodeling.
The journal of physical chemistry letters.
2020 Jul; 11(13):4951-4957. doi:
10.1021/acs.jpclett.0c01138
. [PMID: 32478524] - Dannielle Kowacich, Eduardo Hatano, Coby Schal, Loganathan Ponnusamy, Charles S Apperson, Tatsiana Shymanovich, Gideon Wasserberg. The egg and larval pheromone dodecanoic acid mediates density-dependent oviposition of Phlebotomus papatasi.
Parasites & vectors.
2020 Jun; 13(1):280. doi:
10.1186/s13071-020-04151-w
. [PMID: 32493498] - Xiaoxiao Shi, Shih-Wei Chuo, Shu-Hao Liou, David B Goodin. Double Electron-Electron Resonance Shows That the Substrate but Not the Inhibitors Causes Disorder in the F/G Loop of CYP119 in Solution.
Biochemistry.
2020 05; 59(19):1823-1831. doi:
10.1021/acs.biochem.0c00171
. [PMID: 32338502] - Christina McVeay, Robert E Steinert, Penelope C E Fitzgerald, Sina S Ullrich, Michael Horowitz, Christine Feinle-Bisset. Effects of intraduodenal coadministration of lauric acid and leucine on gut motility, plasma cholecystokinin, and energy intake in healthy men.
American journal of physiology. Regulatory, integrative and comparative physiology.
2020 04; 318(4):R790-R798. doi:
10.1152/ajpregu.00352.2019
. [PMID: 32160019] - Meryem Köse, Thanigaimalai Pillaiyar, Vigneshwaran Namasivayam, Elisabetta De Filippo, Katharina Sylvester, Trond Ulven, Ivar von Kügelgen, Christa E Müller. An Agonist Radioligand for the Proinflammatory Lipid-Activated G Protein-Coupled Receptor GPR84 Providing Structural Insights.
Journal of medicinal chemistry.
2020 03; 63(5):2391-2410. doi:
10.1021/acs.jmedchem.9b01339
. [PMID: 31721581] - Ziru Zhang, Jianbo Ji, Dawei Zhang, Maoqiang Ma, Longru Sun. Protective effects and potential mechanism of salvianolic acid B on sodium laurate-induced thromboangiitis obliterans in rats.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2020 Jan; 66(?):153110. doi:
10.1016/j.phymed.2019.153110
. [PMID: 31790900] - Yuan Yang, Jin Huang, Jianzhong Li, Huansheng Yang, Yulong Yin. The Effects of Lauric Acid on IPEC-J2 Cell Differentiation, Proliferation, and Death.
Current molecular medicine.
2020; 20(7):572-581. doi:
10.2174/1566524020666200128155115
. [PMID: 32003670] - Christina McVeay, Penelope C E Fitzgerald, Michael Horowitz, Christine Feinle-Bisset. Effects of Duodenal Infusion of Lauric Acid and L-Tryptophan, Alone and Combined, on Fasting Glucose, Insulin and Glucagon in Healthy Men.
Nutrients.
2019 Nov; 11(11):. doi:
10.3390/nu11112697
. [PMID: 31703434] - Dongxing Zhao, Lise Boey, Nathalie Weltens, Jessica R Biesiekierski, Julie Iven, Inge Depoortere, Jan Tack, Lukas Van Oudenhove. Influence of subliminal intragastric fatty acid infusion on subjective and physiological responses to positive emotion induction in healthy women: A randomized trial.
Psychoneuroendocrinology.
2019 10; 108(?):43-52. doi:
10.1016/j.psyneuen.2019.06.010
. [PMID: 31226660] - Chi-Lun Chang, Aubrey V Weigel, Maria S Ioannou, H Amalia Pasolli, C Shan Xu, David R Peale, Gleb Shtengel, Melanie Freeman, Harald F Hess, Craig Blackstone, Jennifer Lippincott-Schwartz. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III.
The Journal of cell biology.
2019 08; 218(8):2583-2599. doi:
10.1083/jcb.201902061
. [PMID: 31227594] - Xiuhang Chai, Zong Meng, Chunhuan Liu, Yuanfa Liu. Structural and mechanical behavior of colloidal fat crystal networks of fully hydrogenated lauric acid-rich fats and rapeseed oils mixtures.
Food chemistry.
2019 Aug; 288(?):108-116. doi:
10.1016/j.foodchem.2019.01.089
. [PMID: 30902270] - Chiho Taniguchi, Takehiro Sugawara, Sakura Onoue, Kazuyoshi Kawahara. Structural modification of Escherichia coli lipid A by myristoyltransferase gene from Klebsiella pneumoniae.
Microbiology and immunology.
2019 Aug; 63(8):334-337. doi:
10.1111/1348-0421.12722
. [PMID: 31218714] - Shiyang Jia, Angel Tan, Adrian Hawley, Bim Graham, Ben J Boyd. Visible light-triggered cargo release from donor acceptor Stenhouse adduct (DASA)-doped lyotropic liquid crystalline nanoparticles.
Journal of colloid and interface science.
2019 Jul; 548(?):151-159. doi:
10.1016/j.jcis.2019.04.032
. [PMID: 30991181] - Christina McVeay, Penelope C E Fitzgerald, Sina S Ullrich, Robert E Steinert, Michael Horowitz, Christine Feinle-Bisset. Effects of intraduodenal administration of lauric acid and L-tryptophan, alone and combined, on gut hormones, pyloric pressures, and energy intake in healthy men.
The American journal of clinical nutrition.
2019 05; 109(5):1335-1343. doi:
10.1093/ajcn/nqz020
. [PMID: 31051504] - Fusheng Wang, Weizhong Li, Guanghuan Wang, Menglu Yu, Jun Zhong, Chenbin Xu, Danli Li, Yongcui Zhou. Gas chromatography-mass spectrometry based serum metabolic analysis for premature infants and the relationship with necrotizing enterocolitis: a cross-sectional study.
Italian journal of pediatrics.
2019 Apr; 45(1):54. doi:
10.1186/s13052-019-0646-6
. [PMID: 31036043] - Jung-Ah Shin, Yoon-Ji Heo, Ki-Teak Lee. Physicochemical characteristics of fat blend from hydrogenated coconut oil and acyl migrated palm mid-fraction.
Food chemistry.
2019 Mar; 275(?):739-745. doi:
10.1016/j.foodchem.2018.09.131
. [PMID: 30724257] - Sara Violante, Nihad Achetib, Carlo W T van Roermund, Jacob Hagen, Tetyana Dodatko, Frédéric M Vaz, Hans R Waterham, Hongjie Chen, Myriam Baes, Chunli Yu, Carmen A Argmann, Sander M Houten. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2019 03; 33(3):4355-4364. doi:
10.1096/fj.201801498r
. [PMID: 30540494] - Josilene Lima Serra, Antônio Manoel da Cruz Rodrigues, Rilton Alves de Freitas, Antonio José de Almeida Meirelles, Silvain Henri Darnet, Luiza Helena Meller da Silva. Alternative sources of oils and fats from Amazonian plants: Fatty acids, methyl tocols, total carotenoids and chemical composition.
Food research international (Ottawa, Ont.).
2019 02; 116(?):12-19. doi:
10.1016/j.foodres.2018.12.028
. [PMID: 30716906] - Qiaoshan Chen, Chunlei Zhu, Da Huo, Jiajia Xue, Haoyan Cheng, Baohong Guan, Younan Xia. Continuous processing of phase-change materials into uniform nanoparticles for near-infrared-triggered drug release.
Nanoscale.
2018 Dec; 10(47):22312-22318. doi:
10.1039/c8nr07027j
. [PMID: 30467567] - A Yu Lyudinina, G E Ivankova, E R Bojko. Priority use of medium-chain fatty acids during high-intensity exercise in cross-country skiers.
Journal of the International Society of Sports Nutrition.
2018 Dec; 15(1):57. doi:
10.1186/s12970-018-0265-4
. [PMID: 30526607] - Ruiling Liu, Yue Jiang, Xu Hu, Jilian Wu, Wei Jiang, Guoxia Jin, Yuxia Luan. A preclinical evaluation of cytarabine prodrug nanofibers assembled from cytarabine-lauric acid conjugate toward solid tumors.
International journal of pharmaceutics.
2018 Dec; 552(1-2):111-118. doi:
10.1016/j.ijpharm.2018.09.043
. [PMID: 30268848] - Hanqing Zhao, Chao Liu, Degong Yang, Xiaocao Wan, Rui Shang, Peng Quan, Liang Fang. Molecular mechanism of ion-pair releasing from acrylic pressure sensitive adhesive containing carboxyl group: Roles of doubly ionic hydrogen bond in the controlled release process of bisoprolol ion-pair.
Journal of controlled release : official journal of the Controlled Release Society.
2018 11; 289(?):146-157. doi:
10.1016/j.jconrel.2018.09.024
. [PMID: 30268589] - Yasunori Nishimura, Mitsuaki Moriyama, Kenji Kawabe, Hideyo Satoh, Katsura Takano, Yasu-Taka Azuma, Yoichi Nakamura. Lauric Acid Alleviates Neuroinflammatory Responses by Activated Microglia: Involvement of the GPR40-Dependent Pathway.
Neurochemical research.
2018 Sep; 43(9):1723-1735. doi:
10.1007/s11064-018-2587-7
. [PMID: 29947014] - Satoshi Yamaori, Noriyuki Araki, Mio Shionoiri, Kurumi Ikehata, Shinobu Kamijo, Shigeru Ohmori, Kazuhito Watanabe. A Specific Probe Substrate for Evaluation of CYP4A11 Activity in Human Tissue Microsomes and a Highly Selective CYP4A11 Inhibitor: Luciferin-4A and Epalrestat.
The Journal of pharmacology and experimental therapeutics.
2018 09; 366(3):446-457. doi:
10.1124/jpet.118.249557
. [PMID: 29976573] - Takehiro Sugawara, Sakura Onoue, Hiroaki Takimoto, Kazuyoshi Kawahara. Modification of lipid A structure and activity by the introduction of palmitoyltransferase gene to the acyltransferase-knockout mutant of Escherichia coli.
Microbiology and immunology.
2018 Aug; 62(8):497-506. doi:
10.1111/1348-0421.12631
. [PMID: 29932223] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Cristina Caleja, Lillian Barros, João C M Barreira, Ana Ciric, Marina Sokovic, Ricardo C Calhelha, M Beatriz, P P Oliveira, Isabel C F R Ferreira. Suitability of lemon balm (Melissa officinalis L.) extract rich in rosmarinic acid as a potential enhancer of functional properties in cupcakes.
Food chemistry.
2018 Jun; 250(?):67-74. doi:
10.1016/j.foodchem.2018.01.034
. [PMID: 29412929] - Rui Liu, Xu Cong, Yingshi Song, Tao Wu, Min Zhang. Edible Gum-Phenolic-Lipid Incorporated Gluten Films for Food Packaging.
Journal of food science.
2018 Jun; 83(6):1622-1630. doi:
10.1111/1750-3841.14151
. [PMID: 29786838] - Joanne Heade, Sam Maher, Sinead B Bleiel, David J Brayden. Labrasol® and Salts of Medium-Chain Fatty Acids Can Be Combined in Low Concentrations to Increase the Permeability of a Macromolecule Marker Across Isolated Rat Intestinal Mucosae.
Journal of pharmaceutical sciences.
2018 06; 107(6):1648-1655. doi:
10.1016/j.xphs.2018.02.012
. [PMID: 29462634] - Morteza Azizi, Arkaye Kierulf, Michelle Connie Lee, Alireza Abbaspourrad. Improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers.
Food chemistry.
2018 Apr; 246(?):448-456. doi:
10.1016/j.foodchem.2017.12.009
. [PMID: 29291872] - Imeddedine Arbi Nehdi, Hassen Mohamed Sbihi, Chin Ping Tan, Umer Rashid, Saud Ibrahim Al-Resayes. Chemical Composition of Date Palm (Phoenix dactylifera L.) Seed Oil from Six Saudi Arabian Cultivars.
Journal of food science.
2018 Mar; 83(3):624-630. doi:
10.1111/1750-3841.14033
. [PMID: 29377104] - Yvonne Pasing, Armin Schniers, Terkel Hansen. Straightforward Protocol for Gel-Free Proteomic Analysis of Adipose Tissue.
Methods in molecular biology (Clifton, N.J.).
2018; 1788(?):289-296. doi:
10.1007/7651_2017_82
. [PMID: 28980277] - Devi Lekshmi Sheela, Puthiyaveetil Abdulla Nazeem, Arunaksharan Narayanankutty, R Muthangaparambil Shylaja, Sangeetha P Davis, Priyanga James, Ravisankar Valsalan, Thekkekara Devassy Babu, Achuthan C Raghavamenon. Coconut phytocompounds inhibits polyol pathway enzymes: Implication in prevention of microvascular diabetic complications.
Prostaglandins, leukotrienes, and essential fatty acids.
2017 Dec; 127(?):20-24. doi:
10.1016/j.plefa.2017.10.004
. [PMID: 29156154] - Bashar Amer, Morten Rahr Clausen, Hanne Christine Bertram, Mette Bohl, Caroline Nebel, Hong Zheng, Thomas Skov, Mette Krogh Larsen, Søren Gregersen, Kjeld Hermansen, Trine Kastrup Dalsgaard. Consumption of Whey in Combination with Dairy Medium-Chain Fatty Acids (MCFAs) may Reduce Lipid Storage due to Urinary Loss of Tricarboxylic Acid Cycle Intermediates and Increased Rates of MCFAs Oxidation.
Molecular nutrition & food research.
2017 12; 61(12):. doi:
10.1002/mnfr.201601048
. [PMID: 28949074] - Kyle B Reynolds, Matthew C Taylor, Darren P Cullerne, Christopher L Blanchard, Craig C Wood, Surinder P Singh, James R Petrie. A reconfigured Kennedy pathway which promotes efficient accumulation of medium-chain fatty acids in leaf oils.
Plant biotechnology journal.
2017 Nov; 15(11):1397-1408. doi:
10.1111/pbi.12724
. [PMID: 28301719] - Myeongjin Yi, Jae-Gook Shin, Su-Jun Lee. Expression of CYP4V2 in human THP1 macrophages and its transcriptional regulation by peroxisome proliferator-activated receptor gamma.
Toxicology and applied pharmacology.
2017 09; 330(?):100-106. doi:
10.1016/j.taap.2017.07.009
. [PMID: 28729181] - James J DiNicolantonio, James H O'Keefe. Good Fats versus Bad Fats: A Comparison of Fatty Acids in the Promotion of Insulin Resistance, Inflammation, and Obesity.
Missouri medicine.
2017 Jul; 114(4):303-307. doi:
"
. [PMID: 30228616] - Govindaraj Dev Kumar, Shirley A Micallef. Susceptibility of Salmonella enterica Isolates from Tomato Farm Environments to Fatty Acids Naturally Found on Tomato Fruit.
Foodborne pathogens and disease.
2017 05; 14(5):293-301. doi:
10.1089/fpd.2016.2239
. [PMID: 28398868] - Naiane Ferraz Bandeira Alves, Thyago Moreira de Queiroz, Rafael de Almeida Travassos, Marciane Magnani, Valdir de Andrade Braga. Acute Treatment with Lauric Acid Reduces Blood Pressure and Oxidative Stress in Spontaneously Hypertensive Rats.
Basic & clinical pharmacology & toxicology.
2017 Apr; 120(4):348-353. doi:
10.1111/bcpt.12700
. [PMID: 28054477] - Johanna M Poller, Jan Zaloga, Eveline Schreiber, Harald Unterweger, Christina Janko, Patricia Radon, Dietmar Eberbeck, Lutz Trahms, Christoph Alexiou, Ralf P Friedrich. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake.
International journal of nanomedicine.
2017; 12(?):3207-3220. doi:
10.2147/ijn.s132369
. [PMID: 28458541] - Devi Lekshmi Sheela, Puthiyaveetil Abdulla Nazeem, Arunaksharan Narayanankutty, Jeksy Jos Manalil, Achuthan C Raghavamenon. In Silico and Wet Lab Studies Reveal the Cholesterol Lowering Efficacy of Lauric Acid, a Medium Chain Fat of Coconut Oil.
Plant foods for human nutrition (Dordrecht, Netherlands).
2016 Dec; 71(4):410-415. doi:
10.1007/s11130-016-0577-y
. [PMID: 27679437] - Rajiniraja Muniyan, Jayaraman Gurunathan. Lauric acid and myristic acid from Allium sativum inhibit the growth of Mycobacterium tuberculosis H37Ra: in silico analysis reveals possible binding to protein kinase B.
Pharmaceutical biology.
2016 Dec; 54(12):2814-2821. doi:
10.1080/13880209.2016.1184691
. [PMID: 27307092] - P Gyawali, D J Beale, W Ahmed, A V Karpe, R J Soares Magalhaes, P D Morrison, E A Palombo. Determination of Ancylostoma caninum ova viability using metabolic profiling.
Parasitology research.
2016 Sep; 115(9):3485-92. doi:
10.1007/s00436-016-5112-4
. [PMID: 27236650] - Yudai Nonaka, Tetsuo Takagi, Makoto Inai, Shuhei Nishimura, Shogo Urashima, Kazumitsu Honda, Toshiaki Aoyama, Shin Terada. Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line.
Journal of oleo science.
2016 Aug; 65(8):693-9. doi:
10.5650/jos.ess16069
. [PMID: 27430387] - Bo Kyeong Yoon, Joshua A Jackman, Min Chul Kim, Nam-Joon Cho. Spectrum of Membrane Morphological Responses to Antibacterial Fatty Acids and Related Surfactants.
Langmuir : the ACS journal of surfaces and colloids.
2015 Sep; 31(37):10223-32. doi:
10.1021/acs.langmuir.5b02088
. [PMID: 26325618] - Jing Fu, Baogui Wang, Deming Gong, Cheng Zeng, Yihao Jiang, Zheling Zeng. Camphor Tree Seed Kernel Oil Reduces Body Fat Deposition and Improves Blood Lipids in Rats.
Journal of food science.
2015 Aug; 80(8):H1912-7. doi:
10.1111/1750-3841.12943
. [PMID: 26130050] - Shinpei Yamashita, Masayuki Igarashi, Chigusa Hayashi, Tetsuo Shitara, Akio Nomoto, Tomoko Mizote, Masakatsu Shibasaki. Identification of self-growth-inhibiting compounds lauric acid and 7-(Z)-tetradecenoic acid from Helicobacter pylori.
Microbiology (Reading, England).
2015 Jun; 161(6):1231-9. doi:
10.1099/mic.0.000077
. [PMID: 25767109] - Daryn Goodwin, Pegah Varamini, Pavla Simerska, Istvan Toth. Stability, permeability and growth-inhibitory properties of gonadotropin-releasing hormone liposaccharides.
Pharmaceutical research.
2015 May; 32(5):1570-84. doi:
10.1007/s11095-014-1558-1
. [PMID: 25407542] - Asma El Ayeb-Zakhama, Lamia Sakka-Rouis, Afifa Bergaoui, Guido Flamini, Hichem Ben Jannet, Fethia Harzallah-Skhiri. Chemical composition and allelopathic potential of essential oils obtained from Acacia cyanophylla Lindl. Cultivated in Tunisia.
Chemistry & biodiversity.
2015 Apr; 12(4):615-26. doi:
10.1002/cbdv.201400184
. [PMID: 25879505] - Avery Sengupta, Susmita Roy, Sohini Mukherjee, Mahua Ghosh. Production of medium chain fatty acid rich mustard oil using packed bed bioreactor.
Journal of oleo science.
2015; 64(2):153-9. doi:
10.5650/jos.ess14184
. [PMID: 25748375] - Sopark Sonwai, Pimwalan Ornla-Ied, Tanapa Aneknun. Lauric fat cocoa butter replacer from krabok (irvingia malayana) seed fat and coconut oil.
Journal of oleo science.
2015; 64(4):357-65. doi:
10.5650/jos.ess14244
. [PMID: 25766934] - Elton Luiz Silva, Guilherme Carneiro, Lidiane Advíncula De Araújo, Mariana de Jesus Vaz Trindade, Maria Irene Yoshida, Rodrigo Lambert Oréfice, Luis de Macêdo Farias, Maria Auxiliadora Roque De Carvalho, Simone Gonçalves Dos Santos, Gisele Assis Castro Goulart, Ricardo José Alves, Lucas Antônio Miranda Ferreira. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris.
Journal of nanoscience and nanotechnology.
2015 Jan; 15(1):792-9. doi:
10.1166/jnn.2015.9184
. [PMID: 26328443] - Xiang Ma, Erpei Wang, Yuyun Lu, Yong Wang, Shiyi Ou, Rian Yan. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.
PloS one.
2015; 10(6):e0130680. doi:
10.1371/journal.pone.0130680
. [PMID: 26098744] - Donghak Kim, Gun-Su Cha, Leslie D Nagy, Chul-Ho Yun, F Peter Guengerich. Kinetic analysis of lauric acid hydroxylation by human cytochrome P450 4A11.
Biochemistry.
2014 Oct; 53(39):6161-72. doi:
10.1021/bi500710e
. [PMID: 25203493] - Xijia Yang, Di Wu, Jianxin Shi, Yi He, Franck Pinot, Bernard Grausem, Changsong Yin, Lu Zhu, Mingjiao Chen, Zhijing Luo, Wanqi Liang, Dabing Zhang. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine.
Journal of integrative plant biology.
2014 Oct; 56(10):979-94. doi:
10.1111/jipb.12212
. [PMID: 24798002] - B Grausem, E Widemann, G Verdier, D Nosbüsch, Y Aubert, F Beisson, L Schreiber, R Franke, F Pinot. CYP77A19 and CYP77A20 characterized from Solanum tuberosum oxidize fatty acids in vitro and partially restore the wild phenotype in an Arabidopsis thaliana cutin mutant.
Plant, cell & environment.
2014 Sep; 37(9):2102-15. doi:
10.1111/pce.12298
. [PMID: 24520956] - Kristina Eisinger, Sabrina Krautbauer, Tobias Hebel, Gerd Schmitz, Charalampos Aslanidis, Gerhard Liebisch, Christa Buechler. Lipidomic analysis of the liver from high-fat diet induced obese mice identifies changes in multiple lipid classes.
Experimental and molecular pathology.
2014 Aug; 97(1):37-43. doi:
10.1016/j.yexmp.2014.05.002
. [PMID: 24830603] - Yoshihiro Inami, Yuko Matsui, Tomoko Hoshino, Chiaki Murayama, Hisayoshi Norimoto. Inhibitory activity of the flower buds of Lonicera japonica Thunb. against histamine production and L-histidine decarboxylase in human keratinocytes.
Molecules (Basel, Switzerland).
2014 Jun; 19(6):8212-9. doi:
10.3390/molecules19068212
. [PMID: 24941343] - Shubin Dong, Jiacong Huang, Yannan Li, Jing Zhang, Shanzhi Lin, Zhixiang Zhang. Cloning, characterization, and expression analysis of acyl-acyl carrier protein (ACP)-thioesterase B from seeds of Chinese Spicehush (Lindera communis).
Gene.
2014 May; 542(1):16-22. doi:
10.1016/j.gene.2014.03.028
. [PMID: 24631366] - Imededdine Arbi Nehdi, Sadok Mokbli, Hassen Sbihi, Chin Ping Tan, Saud Ibrahim Al-Resayes. Chamaerops humilis L. var. argentea André date palm seed oil: a potential dietetic plant product.
Journal of food science.
2014 Apr; 79(4):C534-9. doi:
10.1111/1750-3841.12420
. [PMID: 24666023] - Matteo Radice, Derwin Viafara, David Neill, Mercedes Asanza, Gianni Sacchetti, Alessandra Guerrini, Silvia Maietti. Chemical characterization and antioxidant activity of Amazonian (Ecuador) Caryodendron orinocense Karst. and Bactris gasipaes Kunth seed oils.
Journal of oleo science.
2014; 63(12):1243-50. doi:
10.5650/jos.ess14007
. [PMID: 25391685] - Jan Zaloga, Christina Janko, Johannes Nowak, Jasmin Matuszak, Sabine Knaup, Dietmar Eberbeck, Rainer Tietze, Harald Unterweger, Ralf P Friedrich, Stephan Duerr, Ralph Heimke-Brinck, Eva Baum, Iwona Cicha, Frank Dörje, Stefan Odenbach, Stefan Lyer, Geoffrey Lee, Christoph Alexiou. Development of a lauric acid/albumin hybrid iron oxide nanoparticle system with improved biocompatibility.
International journal of nanomedicine.
2014; 9(?):4847-66. doi:
10.2147/ijn.s68539
. [PMID: 25364244]