Benzoic acid (BioDeep_00000000313)
Secondary id: BioDeep_00000403049
natural product human metabolite PANOMIX_OTCML-2023 blood metabolite Chemicals and Drugs BioNovoGene_Lab2019
代谢物信息卡片
化学式: C7H6O2 (122.0368)
中文名称: 苯甲酸, 苯甲酸钠
谱图信息:
最多检出来源 Homo sapiens(blood) 27.72%
Last reviewed on 2024-06-28.
Cite this Page
Benzoic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/benzoic_acid (retrieved
2025-01-08) (BioDeep RN: BioDeep_00000000313). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: c1ccc(cc1)C(=O)O
InChI: InChI=1/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9)/f/h8H
描述信息
Benzoic acid appears as a white crystalline solid. Slightly soluble in water. The primary hazard is the potential for environmental damage if released. Immediate steps should be taken to limit spread to the environment. Used to make other chemicals, as a food preservative, and for other uses.
Benzoic acid is a compound comprising a benzene ring core carrying a carboxylic acid substituent. It has a role as an antimicrobial food preservative, an EC 3.1.1.3 (triacylglycerol lipase) inhibitor, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a plant metabolite, a human xenobiotic metabolite, an algal metabolite and a drug allergen. It is a conjugate acid of a benzoate.
A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid. As the sodium salt form, sodium benzoate is used as a treatment for urea cycle disorders due to its ability to bind amino acids. This leads to excretion of these amino acids and a decrease in ammonia levels. Recent research shows that sodium benzoate may be beneficial as an add-on therapy (1 gram/day) in schizophrenia. Total Positive and Negative Syndrome Scale scores dropped by 21\\\\\% compared to placebo.
Benzoic acid is a Nitrogen Binding Agent. The mechanism of action of benzoic acid is as an Ammonium Ion Binding Activity.
Benzoic acid, C6H5COOH, is a colourless crystalline solid and the simplest aromatic carboxylic acid. Benzoic acid occurs naturally free and bound as benzoic acid esters in many plant and animal species. Appreciable amounts have been found in most berries (around 0.05\\\\\%). Cranberries contain as much as 300-1300 mg free benzoic acid per kg fruit. Benzoic acid is a fungistatic compound that is widely used as a food preservative. It often is conjugated to glycine in the liver and excreted as hippuric acid. Benzoic acid is a byproduct of phenylalanine metabolism in bacteria. It is also produced when gut bacteria process polyphenols (from ingested fruits or beverages).
A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid.
See also: Salicylic Acid (active moiety of); Benzoyl Peroxide (active moiety of); Sodium Benzoate (active moiety of) ... View More ...
Widespread in plants especies in essential oils and fruits, mostly in esterified formand is also present in butter, cooked meats, pork fat, white wine, black and green tea, mushroom and Bourbon vanilla. It is used in foodstuffs as antimicrobial and flavouring agent and as preservative. In practical food preservation, the Na salt of benzoic acid is the most widely used form (see
Benzoic acid, C6H5COOH, is a colourless crystalline solid and the simplest aromatic carboxylic acid. Benzoic acid occurs naturally free and bound as benzoic acid esters in many plant and animal species. Appreciable amounts have been found in most berries (around 0.05\\\\\%). Cranberries contain as much as 300-1300 mg free benzoic acid per kg fruit. Benzoic acid is a fungistatic compound that is widely used as a food preservative. It often is conjugated to glycine in the liver and excreted as hippuric acid. Benzoic acid is a byproduct of phenylalanine metabolism in bacteria. It is also produced when gut bacteria process polyphenols (from ingested fruits or beverages). It can be found in Serratia (PMID:23061754).
Benzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=65-85-0 (retrieved 2024-06-28) (CAS RN: 65-85-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Benzoic acid is an aromatic alcohol existing naturally in many plants and is a common additive to food, drinks, cosmetics and other products. It acts as preservatives through inhibiting both bacteria and fungi.
Benzoic acid is an aromatic alcohol existing naturally in many plants and is a common additive to food, drinks, cosmetics and other products. It acts as preservatives through inhibiting both bacteria and fungi.
同义名列表
164 个代谢物同义名
ScavengePore(TM) benzoic acid, macroporous, 40-70 mesh, extent of labeling: 0.5-1.5 mmol per g loading; Benzoic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., >=99.9\\% (alkalimetric); Benzoic acid, Pharmaceutical Secondary Standard; Certified Reference Material; Benzoic acid, United States Pharmacopeia (USP) Reference Standard; Benzoic acid, European Pharmacopoeia (EP) Reference Standard; Benzoic acid, Standard for quantitative NMR, TraceCERT(R); Benzoic acid, NIST(R) SRM(R) 39j, calorimetric standard; METHYLAMINOLEVULINATE HYDROCHLORIDE IMPURITY I [EP]; HYDROUS BENZOYL PEROXIDE IMPURITY B [EP IMPURITY]; InChI=1/C7H6O2/c8-7(9)6-4-2-1-3-5-6/h1-5H,(H,8,9; Benzoic acid, puriss. p.a., ACS reagent, 99.9\\%; GLYCOPYRRONIUM BROMIDE IMPURITY D [EP IMPURITY]; Benzoic Acid Zone Refined (number of passes:20); METRONIDAZOLE BENZOATE IMPURITY C [EP IMPURITY]; Benzoic acid, meets USP testing specifications; Benzoic acid, purified by sublimation, >=99\\%; Benzoic acid, Vetec(TM) reagent grade, 98\\%; Benzoic acid, tested according to Ph.Eur.; Benzoic acid, SAJ special grade, >=99.5\\%; Kendall brand OF benzoic acid sodium salt; Benzoic acid, natural, >=99.5\\%, FCC, FG; Benzoic acid, SAJ first grade, >=99.5\\%; MEFENAMIC ACID IMPURITY D [EP IMPURITY]; 0BE368DC-6DE6-4927-AECF-E4BB2968A4A0; Benzoic acid, ACS reagent, >=99.5\\%; Benzoic acid, ReagentPlus(R), 99\\%; Benzoic acid, analytical standard; TIAPROFENIC ACID IMPURITY D [EP]; Benzoic acid, >=99.5\\%, FCC, FG; Benzoic acid, USP, 99.5-100.5\\%; ACIDUM BENZOICUM [WHO-IP LATIN]; 31 - Preservatives in Mascara; BENZOIC ACID (USP MONOGRAPH); BENZOIC ACID [USP MONOGRAPH]; BENZOIC ACID (EP MONOGRAPH); 27 - Preservatives in Cream; BENZOIC ACID [EP MONOGRAPH]; Benzoic acid, p.a., 99.5\\%; Benzoic acid (7CI,8CI,9CI); benzene-2-carboxylic acid; Benzoic acid-2,3,4,5,6-d5; BENZOIC ACID [GREEN BOOK]; Benzoic-2,3,4,5,6-d5 acid; Benzoic acid, ACS reagent; Kyselina benzoova [Czech]; Benzoic acid, AR, >=99\\%; Acide benzoique [French]; Acido benzoico [Italian]; Benzoic acid, LR, >=99\\%; Benzoic acid sodium salt; Aromatic carboxylic acid; benzene carboxylic acid; Benzoic acid (JP17/USP); Benzoic acid [USAN:JAN]; BENZOICUM ACIDUM [HPUS]; benzenecarboxylic acid; Benzoic acid [USP:JAN]; Benzoic acid (USP:JAN); Benzoic acid (natural); Phenylcarboxylic acid; BENZOIC ACID (USP-RS); Benzoesaeure [German]; BENZOIC ACID [WHO-IP]; BENZOIC ACID [WHO-DD]; BENZOIC ACID [USP-RS]; Benzenemethanoic acid; BENZOIC ACID (MART.); BENZOIC ACID [MART.]; Aromatic carboxylate; BENZOIC ACID [VANDF]; Benzenemethonic acid; Sodium benzoic acid; BENZOIC ACID [FHFI]; Benzoate, Potassium; BENZOIC ACID [HSDB]; BENZOIC ACID [INCI]; Rheumatism Diarrhea; Benzoic-3,5-d2 Acid; Benzoic acid, tech.; Potassium Benzoate; Benzeneformic acid; BENZOIC ACID [JAN]; Benzenecarboxylate; BENZOIC ACID [FCC]; BENZOIC-4-D1 ACID; BENZOIC ACID [II]; BENZOIC ACID [MI]; phenylformic acid; Benzenemethanoate; Phenylcarboxylate; BENZOIC ACID (II); Kyselina benzoova; benzenecarboxylic; Benzoic acid (TN); Benzoicum acidum; Acidum benzoicum; Benzoic Acid,(S); Provita Equiband; Benzoesaeure GV; UNII-8SKN0B0MIM; Acide benzoique; Benzoesaeure GK; CARBOXYLBENZENE; Sodium Benzoate; BENZOICACID-D5; DRACYCLIC ACID; Benzeneformate; DIACYCLIC ACID; Benzoate (VAN); Menno-florades; Carboxybenzene; Acido benzoico; Salvo, liquid; phenylcarboxy; Dracylic acid; Solvo, powder; benzoic- acid; Phenylformate; Diacylic acid; Acid, Benzoic; ProvitaCombat; Aromatic acid; Oracylic acid; Eyelids Wipes; Salvo liquid; benzoic aicd; Retarder BAX; Tox21_202403; Benzoesaeure; Solvo powder; Tox21_300180; Salvo powder; Benzoic Acid; Benzoicum Ac; benzoic-acid; Retarded BA; Retarder BA; bezoic acid; HA 1 (acid); Unisept BZA; CAS-65-85-0; SAMPL4, O1; 8SKN0B0MIM; Vevovitall; AI3-03710; Diacylate; Dracylate; Tenn-Plas; WLN: QVR; AI3-0310; Retardex; Tennplas; benzoate; Ucephan; Benzoic; 1kqb; e210; 1gyx; HA 1; B A; Benzoic acid; Benzoic acid; Benzoate; Benzoic acid
数据库引用编号
53 个数据库交叉引用编号
- ChEBI: CHEBI:30746
- KEGG: C00539
- KEGG: C00180
- KEGGdrug: D85168
- KEGGdrug: D00038
- PubChem: 243
- HMDB: HMDB0001870
- Metlin: METLIN1297
- DrugBank: DB03793
- ChEMBL: CHEMBL541
- Wikipedia: Benzoic_Acid
- Wikipedia: Benzoic acid
- MeSH: Benzoic Acid
- ChemIDplus: 0000065850
- MetaCyc: BENZOATE
- KNApSAcK: C00000207
- foodb: FDB008739
- chemspider: 238
- CAS: 65-85-0
- MoNA: LU034451
- MoNA: LU034454
- MoNA: RP012801
- MoNA: LU048551
- MoNA: PS096901
- MoNA: KO000322
- MoNA: LU034452
- MoNA: LU048553
- MoNA: LU048554
- MoNA: LU034453
- MoNA: LU048552
- MoNA: KO000319
- MoNA: KO000321
- MoNA: RP012811
- MoNA: LU048555
- MoNA: RP012802
- MoNA: RP012803
- MoNA: KO000320
- MoNA: LU034455
- medchemexpress: HY-N0216
- PMhub: MS000006798
- MetaboLights: MTBLC30746
- ChEBI: CHEBI:16150
- PubChem: 3480
- PDB-CCD: BEZ
- 3DMET: B00053
- NIKKAJI: J2.358B
- PubChem: 3820
- RefMet: Benzoic acid
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-425
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-839
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-404
- KNApSAcK: 16150
- LOTUS: LTS0145871
分类词条
相关代谢途径
BioCyc(0)
PlantCyc(6)
代谢反应
385 个相关的代谢反应过程信息。
Reactome(66)
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of benzoate with glycine:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Amino Acid conjugation:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of carboxylic acids:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of benzoate with glycine:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of carboxylic acids:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Conjugation of benzoate with glycine:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of benzoate with glycine:
BEZ-CoA + Gly ⟶ CoA + HIPA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of benzoate with glycine:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of benzoate with glycine:
BEZ-CoA + Gly ⟶ CoA + HIPA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
L-Gln + phenylacetyl-CoA ⟶ CoA + phenylacetyl glutamine
- Conjugation of carboxylic acids:
L-Gln + phenylacetyl-CoA ⟶ CoA + phenylacetyl glutamine
- Conjugation of benzoate with glycine:
BEZ-CoA + Gly ⟶ CoA + HIPA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of benzoate with glycine:
BEZ-CoA + Gly ⟶ CoA + HIPA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of benzoate with glycine:
BEZ-CoA + Gly ⟶ CoA + HIPA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of benzoate with glycine:
ATP + BENZA + CoA ⟶ AMP + BEZ-CoA + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of benzoate with glycine:
BEZ-CoA + Gly ⟶ CoA + HIPA
- Amino Acid conjugation:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of carboxylic acids:
ATP + CoA + ST ⟶ AMP + PPi + ST-CoA
- Conjugation of benzoate with glycine:
BEZ-CoA + Gly ⟶ CoA + HIPA
BioCyc(1)
- benzoate degradation I (aerobic):
(1R,6S)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate + NAD+ ⟶ CO2 + NADH + catechol
WikiPathways(3)
- Amino acid conjugation of benzoic acid:
Benzoic acid AMP ester ⟶ AMP
- Flavan-3-ol metabolic pathway:
(-)-Epicatechin ⟶ (-)-Epicatechin-3'-sulfate
- Amino acid conjugation of benzoic acid:
benzoyl-AMP ⟶ AMP
Plant Reactome(3)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Secondary metabolism:
GPP + H2O ⟶ PPi + geraniol
- Salicylate biosynthesis:
L-Phe ⟶ ammonia + trans-cinnamate
INOH(0)
PlantCyc(311)
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- volatile benzenoid biosynthesis I (ester formation):
SAM + salicylate ⟶ SAH + methylsalicylate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzoyl-CoA ⟶ H+ + benzoate + coenzyme A
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- salicortin biosynthesis:
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
3-hydroxy-3-phenylpropanoyl-CoA + NADP+ ⟶ 3-oxo-3-phenylpropanoyl-CoA + H+ + NADPH
- salicortin biosynthesis:
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoate biosynthesis I (CoA-dependent, β-oxidative):
H2O + benzylbenzoate ⟶ H+ + benzoate + benzyl alcohol
- ephedrine biosynthesis:
(+)-norpseudoephedrine + SAM ⟶ H+ + SAH + pseudoephedrine
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- volatile benzenoid biosynthesis I (ester formation):
acetyl-CoA + benzyl alcohol ⟶ benzyl acetate + coenzyme A
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoate degradation II (aerobic and anaerobic):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- 2-hydroxybiphenyl degradation:
2,6-dioxo-6-phenylhexa-3-enoate + H2O ⟶ (2Z)-2-hydroxypenta-2,4-dienoate + H+ + benzoate
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- 2-hydroxybiphenyl degradation:
2,6-dioxo-6-phenylhexa-3-enoate + H2O ⟶ (2Z)-2-hydroxypenta-2,4-dienoate + H+ + benzoate
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- 2-hydroxybiphenyl degradation:
2,6-dioxo-6-phenylhexa-3-enoate + H2O ⟶ (2Z)-2-hydroxypenta-2,4-dienoate + H+ + benzoate
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- 2-hydroxybiphenyl degradation:
2,6-dioxo-6-phenylhexa-3-enoate + H2O ⟶ (2Z)-2-hydroxypenta-2,4-dienoate + H+ + benzoate
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- superpathway of tetrahydroxyxanthone biosynthesis:
2,3',4,6-tetrahydroxybenzophenone + NADPH + O2 ⟶ 1,3,7-trihydroxyxanthone + H2O + NADP+
- salicin biosynthesis:
benzaldehyde ⟶ salicylaldehyde
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- tetrahydroxyxanthone biosynthesis (from benzoate):
2,3',4,6-tetrahydroxybenzophenone + NADPH + O2 ⟶ 1,3,7-trihydroxyxanthone + H2O + NADP+
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- benzoate biosynthesis III (CoA-dependent, non-β-oxidative):
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- salicin biosynthesis:
H2O + NAD+ + benzaldehyde ⟶ H+ + NADH + benzoate
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- volatile benzenoid biosynthesis I (ester formation):
SAM + benzoate ⟶ SAH + methyl benzoate
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- superpathway of tetrahydroxyxanthone biosynthesis:
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- tetrahydroxyxanthone biosynthesis (from benzoate):
ATP + benzoate + coenzyme A ⟶ AMP + benzoyl-CoA + diphosphate
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoate biosynthesis II (CoA-independent, non-β-oxidative):
3-hydroxy-3-phenylpropanoate ⟶ acetate + benzaldehyde
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
- benzoyl-β-D-glucopyranose biosynthesis:
UDP-α-D-glucose + benzoate ⟶ UDP + benzoyl-β-D-glucopyranose
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(0)
PharmGKB(0)
529 个相关的物种来源信息
- 3319 - Abies: LTS0145871
- 97171 - Abies nephrolepis: 10.1002/CBDV.201000373
- 97171 - Abies nephrolepis: LTS0145871
- 4185 - Acanthaceae: LTS0145871
- 49188 - Aconitum: LTS0145871
- 1478108 - Aconitum japonicum: 10.1248/YAKUSHI1947.85.5_469
- 1478108 - Aconitum japonicum: LTS0145871
- 112594 - Aconitum variegatum: LTS0145871
- 159075 - Acremonium: 10.1002/CHIN.200315211
- 159075 - Acremonium: 10.1071/CH02154
- 159075 - Acremonium: LTS0145871
- 23136 - Adenostoma: LTS0145871
- 140993 - Adenostoma fasciculatum: 10.1016/0031-9422(85)80021-2
- 140993 - Adenostoma fasciculatum: LTS0145871
- 32216 - Adenostoma sparsifolium: 10.1016/0031-9422(85)80021-2
- 32216 - Adenostoma sparsifolium: 10.1016/S0031-9422(00)80599-3
- 32216 - Adenostoma sparsifolium: LTS0145871
- 155619 - Agaricomycetes: LTS0145871
- 3515 - Alnus: LTS0145871
- 109067 - Alnus pendula: 10.1246/BCSJ.45.2058
- 109067 - Alnus pendula: LTS0145871
- 25641 - Aloe: LTS0145871
- 117798 - Aloe ferox: 10.1271/BBB.60659
- 117798 - Aloe ferox: LTS0145871
- 8292 - Amphibia: LTS0145871
- 4011 - Anacardiaceae: LTS0145871
- 22140 - Annonaceae: LTS0145871
- 4037 - Apiaceae: LTS0145871
- 4056 - Apocynaceae: LTS0145871
- 3701 - Arabidopsis: LTS0145871
- 3702 - Arabidopsis thaliana: 10.1038/SREP35778
- 3702 - Arabidopsis thaliana: 10.1073/PNAS.1403248111
- 3702 - Arabidopsis thaliana: 10.1104/PP.114.240986
- 3702 - Arabidopsis thaliana: 10.1111/TPJ.14311
- 3702 - Arabidopsis thaliana: 10.1186/1752-0509-5-1
- 3702 - Arabidopsis thaliana: LTS0145871
- 4454 - Araceae: LTS0145871
- 12947 - Aristolochia: LTS0145871
- 158544 - Aristolochia foveolata: 10.1002/JCCS.199800081
- 158544 - Aristolochia foveolata: LTS0145871
- 431268 - Aristolochia heterophylla: 10.1248/CPB.47.887
- 431268 - Aristolochia heterophylla: LTS0145871
- 158550 - Aristolochia kaempferi: 10.1248/CPB.46.1624
- 158550 - Aristolochia kaempferi: 10.1248/CPB.47.887
- 158550 - Aristolochia kaempferi: LTS0145871
- 16727 - Aristolochiaceae: LTS0145871
- 4890 - Ascomycota: LTS0145871
- 40552 - Asparagaceae: LTS0145871
- 51383 - Asphodelaceae: LTS0145871
- 4210 - Asteraceae: LTS0145871
- 91061 - Bacilli: LTS0145871
- 2 - Bacteria: LTS0145871
- 3588 - Basella: LTS0145871
- 3589 - Basella alba: 10.1016/0889-1575(91)90017-Z
- 3589 - Basella alba: LTS0145871
- 3587 - Basellaceae: LTS0145871
- 5204 - Basidiomycota: LTS0145871
- 3681 - Begonia: LTS0145871
- 78253 - Begonia nantoensis: 10.1002/CHIN.200434239
- 78253 - Begonia nantoensis: 10.1248/CPB.52.345
- 78253 - Begonia nantoensis: LTS0145871
- 3680 - Begoniaceae: LTS0145871
- 670600 - Bellardia: LTS0145871
- 315439 - Bellardia trixago: 10.1016/0031-9422(88)80795-7
- 315439 - Bellardia trixago: LTS0145871
- 41491 - Bellis: LTS0145871
- 41492 - Bellis perennis: 10.1016/0031-9422(95)00183-8
- 41492 - Bellis perennis: LTS0145871
- 3504 - Betula: LTS0145871
- 3505 - Betula pendula: 10.1007/BF00575727
- 3505 - Betula pendula: LTS0145871
- 3514 - Betulaceae: LTS0145871
- 103887 - Bionectriaceae: LTS0145871
- 7091 - Bombyx Mori L.: -
- 21571 - Boraginaceae: LTS0145871
- 3700 - Brassicaceae: LTS0145871
- 59024 - Burchardia: LTS0145871
- 244022 - Burchardia multiflora: 10.1016/S0031-9422(00)82343-2
- 244022 - Burchardia multiflora: LTS0145871
- 3824 - Canavalia gladiata (Jacq.)DC.: -
- 4057 - Catharanthus: LTS0145871
- 4058 - Catharanthus roseus: 10.1016/J.PHYTOCHEM.2009.01.009
- 4058 - Catharanthus roseus: LTS0145871
- 41503 - Centaurea: LTS0145871
- 41507 - Centaurea aspera: 10.1016/0031-9422(91)83643-Y
- 41507 - Centaurea aspera: 10.1016/S0031-9422(00)84956-0
- 41507 - Centaurea aspera: LTS0145871
- 145490 - Centaurea collina: 10.1016/S0031-9422(00)97993-7
- 145490 - Centaurea collina: LTS0145871
- 36622 - Chaenomeles Sinensis (Thouin) Koehne: -
- 3051 - Chlamydomonadaceae: LTS0145871
- 3052 - Chlamydomonas: LTS0145871
- 3055 - Chlamydomonas reinhardtii: 10.1111/TPJ.12747
- 3055 - Chlamydomonas reinhardtii: LTS0145871
- 3166 - Chlorophyceae: LTS0145871
- 3041 - Chlorophyta: LTS0145871
- 7711 - Chordata: LTS0145871
- 1890464 - Chroococcaceae: LTS0145871
- 13428 - Cinnamomum: LTS0145871
- 1132458 - Cinnamomum kotoense: 10.1021/NP0580210
- 1132458 - Cinnamomum kotoense: LTS0145871
- 41218 - Colchicaceae: LTS0145871
- 13444 - Colchicum: LTS0145871
- 1094086 - Colchicum kurdicum: 10.1016/0031-9422(89)80310-3
- 1094086 - Colchicum kurdicum: LTS0145871
- 1094094 - Colchicum manissadjianii: 10.1016/0031-9422(89)80310-3
- 1094094 - Colchicum manissadjianii: LTS0145871
- 1094118 - Colchicum soboliferum: 10.1016/0031-9422(89)80310-3
- 1094118 - Colchicum soboliferum: LTS0145871
- 58949 - Crocus: LTS0145871
- 82528 - Crocus sativus: 10.1002/CHIN.200313168
- 82528 - Crocus sativus: 10.1248/CPB.50.1305
- 82528 - Crocus sativus: LTS0145871
- 22027 - Cryptocarya: LTS0145871
- 2580221 - Cryptocarya amygdalina: 10.1002/JCCS.200200041
- 2580221 - Cryptocarya amygdalina: LTS0145871
- 3655 - Cucumis: LTS0145871
- 3659 - Cucumis sativus: 10.1007/BF02065988
- 3659 - Cucumis sativus: LTS0145871
- 869827 - Cucumis sativus var. sativus: 10.1007/BF02065988
- 869827 - Cucumis sativus var. sativus: LTS0145871
- 3650 - Cucurbitaceae: LTS0145871
- 3028117 - Cyanophyceae: LTS0145871
- 32084 - Dennstaedtiaceae: LTS0145871
- 984609 - Desmos: LTS0145871
- 1179221 - Desmos chinensis: 10.4268/CJCMM20141617
- 1179221 - Desmos chinensis: LTS0145871
- 72924 - Diplostephium: LTS0145871
- 381990 - Diplostephium ericoides: 10.1016/0031-9422(91)83038-M
- 381990 - Diplostephium ericoides: LTS0145871
- 543 - Enterobacteriaceae: LTS0145871
- 3387 - Ephedra: LTS0145871
- 173280 - Ephedra equisetina: 10.1007/BF00563959
- 173280 - Ephedra equisetina: LTS0145871
- 3386 - Ephedraceae: LTS0145871
- 3256 - Equisetaceae: LTS0145871
- 3257 - Equisetum: LTS0145871
- 3258 - Equisetum arvense: 10.1080/10575639708041192
- 3258 - Equisetum arvense: LTS0145871
- 4345 - Ericaceae: LTS0145871
- 1603722 - Erycibe Obtusifolia Benth: -
- 561 - Escherichia: LTS0145871
- 562 - Escherichia coli: LTS0145871
- 3932 - Eucalyptus: 10.1139/B82-307
- 3932 - Eucalyptus: LTS0145871
- 33682 - Euglenozoa: LTS0145871
- 2759 - Eukaryota: LTS0145871
- 3803 - Fabaceae: LTS0145871
- 3746 - Fragaria: 10.1021/JF60199A018
- 3746 - Fragaria: LTS0145871
- 4751 - Fungi: LTS0145871
- 1236 - Gammaproteobacteria: LTS0145871
- 43486 - Gardenia: LTS0145871
- 1489657 - Gardenia coronaria: 10.1016/S0040-4020(96)01003-4
- 1489657 - Gardenia coronaria: LTS0145871
- 1233751 - Gardenia sootepensis: 10.1016/S0031-9422(97)01108-4
- 1233751 - Gardenia sootepensis: LTS0145871
- 4027 - Geraniaceae: LTS0145871
- 46347 - Glycyrrhiza: LTS0145871
- 49827 - Glycyrrhiza glabra: 10.1021/JF60214A042
- 49827 - Glycyrrhiza glabra: LTS0145871
- 3372 - Gnetopsida: LTS0145871
- 23066 - Grossulariaceae: LTS0145871
- 109564 - Gynura: LTS0145871
- 1604314 - Gynura japonica: 10.1055/S-2003-42796
- 1604314 - Gynura japonica: LTS0145871
- 47605 - Hibiscus: LTS0145871
- 1898877 - Hibiscus taiwanensis: 10.1002/CHIN.200533256
- 1898877 - Hibiscus taiwanensis: 10.1248/CPB.53.56
- 1898877 - Hibiscus taiwanensis: LTS0145871
- 35910 - Hoffmannia: LTS0145871
- 179710 - Homalium: LTS0145871
- 9606 - Homo sapiens: -
- 52831 - Hoya: 10.1016/S0031-9422(00)82606-0
- 52831 - Hoya: LTS0145871
- 141487 - Hoya australis: 10.1016/S0031-9422(00)82606-0
- 141487 - Hoya australis: LTS0145871
- 52832 - Hoya bella: 10.1016/S0031-9422(00)82606-0
- 52832 - Hoya bella: LTS0145871
- 206228 - Hoya cinnamomifolia: 10.1016/S0031-9422(00)82606-0
- 206228 - Hoya cinnamomifolia: LTS0145871
- 1167121 - Hoya coronaria: 10.1016/S0031-9422(00)82606-0
- 1167121 - Hoya coronaria: LTS0145871
- 206229 - Hoya crassipes: 10.1016/S0031-9422(00)82606-0
- 206229 - Hoya crassipes: LTS0145871
- 206232 - Hoya diversifolia: 10.1016/S0031-9422(00)82606-0
- 206232 - Hoya diversifolia: LTS0145871
- 2058639 - Hoya fraterna: 10.1016/S0031-9422(00)82606-0
- 2058639 - Hoya fraterna: LTS0145871
- 2058643 - Hoya imperialis: 10.1016/S0031-9422(00)82606-0
- 2058643 - Hoya imperialis: LTS0145871
- 365762 - Hoya lacunosa: 10.1016/S0031-9422(00)82606-0
- 365762 - Hoya lacunosa: LTS0145871
- 99298 - Hoya lanceolata: LTS0145871
- 2058646 - Hoya latifolia: 10.1016/S0031-9422(00)82606-0
- 2058646 - Hoya latifolia: LTS0145871
- 945165 - Hoya longifolia: 10.1016/S0031-9422(00)82606-0
- 945165 - Hoya longifolia: LTS0145871
- 1167151 - Hoya macrophylla: 10.1016/S0031-9422(00)82606-0
- 1167151 - Hoya macrophylla: LTS0145871
- 206240 - Hoya multiflora: 10.1016/S0031-9422(00)82606-0
- 206240 - Hoya multiflora: LTS0145871
- 206243 - Hoya obovata: 10.1016/S0031-9422(00)82606-0
- 206243 - Hoya obovata: LTS0145871
- 1167167 - Hoya ovalifolia: 10.1016/S0031-9422(00)82606-0
- 1167167 - Hoya ovalifolia: LTS0145871
- 945170 - Hoya pottsii: 10.1016/S0031-9422(00)82606-0
- 945170 - Hoya pottsii: LTS0145871
- 1167174 - Hoya pseudolanceolata: 10.1016/S0031-9422(00)82606-0
- 1167174 - Hoya pseudolanceolata: LTS0145871
- 2058661 - Hoya shepherdii: 10.1016/S0031-9422(00)82606-0
- 2058661 - Hoya shepherdii: LTS0145871
- 8418 - Hylidae: LTS0145871
- 629714 - Hypericaceae: LTS0145871
- 55962 - Hypericum: LTS0145871
- 140968 - Hypericum androsaemum: 10.1007/S004250100657
- 140968 - Hypericum androsaemum: LTS0145871
- 13570 - Hypoestes: LTS0145871
- 2038504 - Hypoestes triflora: 10.1016/0378-8741(89)90059-7
- 2038504 - Hypoestes triflora: LTS0145871
- 378878 - Ifloga: LTS0145871
- 702251 - Ifloga spicata: 10.1007/S10600-012-0194-4
- 702251 - Ifloga spicata: LTS0145871
- 26339 - Iridaceae: LTS0145871
- 26378 - Iris: 10.1021/JF60231A019
- 26378 - Iris: LTS0145871
- 161755 - Isatis: LTS0145871
- 161756 - Isatis tinctoria: 10.1055/S-2006-957604
- 161756 - Isatis tinctoria: 10.4268/CJCMM20130812
- 161756 - Isatis tinctoria: LTS0145871
- 5653 - Kinetoplastea: LTS0145871
- 33958 - Lactobacillaceae: LTS0145871
- 1578 - Lactobacillus: LTS0145871
- 4136 - Lamiaceae: LTS0145871
- 3433 - Lauraceae: LTS0145871
- 4469 - Lemna: LTS0145871
- 89585 - Lemna aequinoctialis: 10.1093/PCP/24.2.235
- 89585 - Lemna aequinoctialis: LTS0145871
- 4447 - Liliopsida: LTS0145871
- 8370 - Litoria: LTS0145871
- 681275 - Litoria verreauxii: 10.1038/SDATA.2018.33
- 681275 - Litoria verreauxii: LTS0145871
- 3867 - Lotus: LTS0145871
- 47247 - Lotus corniculatus: LTS0145871
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-3040.2009.02047.X
- 1211582 - Lotus corniculatus subsp. corniculatus: 10.1111/J.1365-313X.2007.03381.X
- 1211582 - Lotus corniculatus subsp. corniculatus: LTS0145871
- 3869 - Lupinus: LTS0145871
- 3871 - Lupinus angustifolius: 10.1007/BF00993699
- 3871 - Lupinus angustifolius: LTS0145871
- 3398 - Magnoliopsida: LTS0145871
- 3749 - Malus: LTS0145871
- 3750 - Malus domestica: 10.1021/JF00056A057
- 3750 - Malus domestica: LTS0145871
- 283210 - Malus pumila: 10.1021/JF00056A057
- 283210 - Malus pumila: LTS0145871
- 3752 - Malus sylvestris: 10.1021/JF00056A057
- 3752 - Malus sylvestris: LTS0145871
- 3629 - Malvaceae: LTS0145871
- 23461 - Mangifera: LTS0145871
- 29780 - Mangifera indica: 10.1021/JF011064B
- 29780 - Mangifera indica: LTS0145871
- 77014 - Melicope: LTS0145871
- 697038 - Melicope semecarpifolia: 10.1055/S-2005-871295
- 697038 - Melicope semecarpifolia: LTS0145871
- 174965 - Melodorum: LTS0145871
- 174966 - Melodorum fruticosum: 10.1016/0031-9422(91)85123-H
- 174966 - Melodorum fruticosum: LTS0145871
- 1890428 - Merismopediaceae: LTS0145871
- 33208 - Metazoa: LTS0145871
- 2212703 - Mucoromycetes: LTS0145871
- 1913637 - Mucoromycota: LTS0145871
- 2024004 - Mycenaceae: LTS0145871
- 3931 - Myrtaceae: LTS0145871
- 41611 - Nassauvia: LTS0145871
- 460340 - Nassauvia revoluta: 10.1016/0031-9422(88)83029-2
- 460340 - Nassauvia revoluta: LTS0145871
- 4085 - Nicotiana: LTS0145871
- 4097 - Nicotiana tabacum: 10.1021/JF00116A072
- 4097 - Nicotiana tabacum: LTS0145871
- 411249 - Onosma: LTS0145871
- 2583492 - Onosma hispida: 10.1248/CPB.51.412
- 2583492 - Onosma hispida: LTS0145871
- 91896 - Orobanchaceae: LTS0145871
- 49557 - Osmorhiza: LTS0145871
- 49558 - Osmorhiza aristata: 10.1248/YAKUSHI1947.99.11_1116
- 49558 - Osmorhiza aristata: LTS0145871
- 20802 - Oxytropis: LTS0145871
- 2715301 - Oxytropis trichophysa: 10.1007/BF00629650
- 2715301 - Oxytropis trichophysa: LTS0145871
- 186822 - Paenibacillaceae: LTS0145871
- 44249 - Paenibacillus: LTS0145871
- 1406 - Paenibacillus polymyxa: LTS0145871
- 13625 - Paeonia: LTS0145871
- 40698 - Paeonia anomala: 10.1007/BF00629791
- 40698 - Paeonia anomala: LTS0145871
- 40708 - Paeonia emodi: 10.1080/1057563021000060103
- 40708 - Paeonia emodi: LTS0145871
- 362895 - Paeonia intermedia: LTS0145871
- 35924 - Paeonia lactiflora: 10.1016/S0021-9673(96)00525-0
- 35924 - Paeonia lactiflora: 10.1016/S0031-9422(00)94541-2
- 35924 - Paeonia lactiflora: 10.1016/S0040-4039(01)81829-3
- 35924 - Paeonia lactiflora: 10.1055/S-2006-957899
- 35924 - Paeonia lactiflora: 10.1248/CPB.31.577
- 35924 - Paeonia lactiflora: 10.1271/BBB1961.48.2847
- 35924 - Paeonia lactiflora: LTS0145871
- 35924 - Paeonia lactiflora Pall.: -
- 40716 - Paeonia obovata: 10.1248/CPB.48.201
- 40716 - Paeonia obovata: LTS0145871
- 40717 - Paeonia peregrina: 10.1016/S0031-9422(97)00683-3
- 40717 - Paeonia peregrina: LTS0145871
- 62886 - Paeonia rockii: 10.1021/NP200359V
- 62886 - Paeonia rockii: LTS0145871
- 45171 - Paeonia suffruticosa: 10.1016/0031-9422(95)00526-9
- 45171 - Paeonia suffruticosa: 10.1021/NP9704258
- 45171 - Paeonia suffruticosa: 10.1080/00021369.1983.10866058
- 45171 - Paeonia suffruticosa: LTS0145871
- 13626 - Paeonia tenuifolia: 10.1016/J.PHYTOCHEM.2008.02.016
- 13626 - Paeonia tenuifolia: LTS0145871
- 40722 - Paeonia veitchii: 10.1055/S-2006-957899
- 40722 - Paeonia veitchii: LTS0145871
- 24943 - Paeoniaceae: LTS0145871
- 44685 - Panax japonicus C. A. Mey.var.bipinnatifidus(Seem )C.Y.Wu et K.M.Feng: -
- 5635 - Panellus: LTS0145871
- 82389 - Pavonia: LTS0145871
- 4030 - Pelargonium: LTS0145871
- 73200 - Pelargonium graveolens: 10.1021/JF60197A010
- 73200 - Pelargonium graveolens: LTS0145871
- 3434 - Persea: LTS0145871
- 3435 - Persea americana: 10.1007/S11418-006-0122-7
- 3435 - Persea americana: LTS0145871
- 130294 - Pertya: LTS0145871
- 130295 - Pertya glabrescens: 10.1248/YAKUSHI1947.104.12_1223
- 130295 - Pertya glabrescens: LTS0145871
- 46141 - Petiveria: LTS0145871
- 46142 - Petiveria alliacea: 10.1016/S0031-9422(01)00304-1
- 46142 - Petiveria alliacea: LTS0145871
- 441552 - Petiveriaceae: LTS0145871
- 3883 - Phaseolus: LTS0145871
- 3885 - Phaseolus vulgaris: 10.1246/BCSJ.60.981
- 3885 - Phaseolus vulgaris: LTS0145871
- 68553 - Phellodendron: LTS0145871
- 68554 - Phellodendron amurense: LTS0145871
- 2902704 - Phellodendron amurense var. japonicum: LTS0145871
- 4836 - Phycomyces: LTS0145871
- 4837 - Phycomyces blakesleeanus: LTS0145871
- 1344966 - Phycomycetaceae: LTS0145871
- 3525 - Phytolaccaceae: LTS0145871
- 3318 - Pinaceae: LTS0145871
- 58019 - Pinopsida: LTS0145871
- 3337 - Pinus: LTS0145871
- 77912 - Pinus densiflora: 10.3186/JJPHYTOPATH.50.166
- 77912 - Pinus densiflora: LTS0145871
- 55062 - Pinus ponderosa: 10.1021/JF00110A049
- 55062 - Pinus ponderosa: LTS0145871
- 71649 - Pinus pumila: 10.1007/BF00714911
- 71649 - Pinus pumila: LTS0145871
- 156152 - Plantaginaceae: LTS0145871
- 26867 - Plantago: LTS0145871
- 197796 - Plantago asiatica L.: -
- 411227 - Plantago depressa Willd.: -
- 29818 - Plantago major: 10.1055/S-0028-1099839
- 29818 - Plantago major: 10.1086/325089
- 29818 - Plantago major: LTS0145871
- 33090 - Plants: -
- 1033978 - Plectosphaerellaceae: LTS0145871
- 104366 - Pleurotaceae: LTS0145871
- 5320 - Pleurotus: LTS0145871
- 5322 - Pleurotus ostreatus: 10.1021/JF960876I
- 5322 - Pleurotus ostreatus: LTS0145871
- 52847 - Plumeria: LTS0145871
- 62097 - Plumeria rubra: 10.1002/FFJ.2730070108
- 62097 - Plumeria rubra: LTS0145871
- 4275 - Polygala: LTS0145871
- 174549 - Polygala senega: 10.1002/FFJ.2730100408
- 174549 - Polygala senega: LTS0145871
- 4274 - Polygalaceae: LTS0145871
- 241806 - Polypodiopsida: LTS0145871
- 3689 - Populus: LTS0145871
- 43335 - Populus alba: 10.1016/0305-1978(91)90071-7
- 43335 - Populus alba: LTS0145871
- 1393201 - Populus alba var. alba: 10.1515/ZNC-1989-5-603
- 1393201 - Populus alba var. alba: LTS0145871
- 3696 - Populus deltoides: 10.1016/0021-9673(95)00585-B
- 3696 - Populus deltoides: 10.1515/ZNC-1990-0604
- 3696 - Populus deltoides: LTS0145871
- 75702 - Populus euphratica: 10.1016/0031-9422(91)85032-U
- 75702 - Populus euphratica: LTS0145871
- 482945 - Populus grandidentata: 10.1139/B91-288
- 482945 - Populus grandidentata: 10.1515/ZNC-1987-9-1004
- 482945 - Populus grandidentata: LTS0145871
- 77070 - Populus lasiocarpa: 10.1016/0031-9422(88)80758-1
- 77070 - Populus lasiocarpa: LTS0145871
- 113624 - Populus laurifolia: 10.1016/0031-9422(90)85186-J
- 113624 - Populus laurifolia: 10.1515/ZNC-1992-9-1023
- 113624 - Populus laurifolia: LTS0145871
- 3691 - Populus nigra: 10.1002/JPS.3080110306
- 3691 - Populus nigra: LTS0145871
- 118781 - Populus tomentosa: 10.1016/0305-1978(91)90071-7
- 118781 - Populus tomentosa: LTS0145871
- 113636 - Populus tremula: 10.1016/0305-1978(91)90071-7
- 113636 - Populus tremula: 10.1111/J.1399-3054.1971.TB01100.X
- 113636 - Populus tremula: 10.1111/NPH.16799
- 113636 - Populus tremula: LTS0145871
- 3693 - Populus tremuloides: 10.1016/0305-1978(91)90071-7
- 3693 - Populus tremuloides: 10.1139/B91-288
- 3693 - Populus tremuloides: LTS0145871
- 55487 - Posidonia: LTS0145871
- 55489 - Posidonia oceanica: 10.1016/S0031-9422(97)01118-7
- 55489 - Posidonia oceanica: LTS0145871
- 55435 - Posidoniaceae: LTS0145871
- 1214 - Prochloron: LTS0145871
- 3754 - Prunus: LTS0145871
- 379279 - Prunus africana: 10.1055/S-2006-941472
- 379279 - Prunus africana: 10.1055/S-2006-946638
- 379279 - Prunus africana: LTS0145871
- 36596 - Prunus armeniaca: 10.1021/JF00004A032
- 36596 - Prunus armeniaca: LTS0145871
- 3760 - Prunus persica: 10.1021/JF00004A032
- 3760 - Prunus persica: LTS0145871
- 114937 - Prunus spinosa: 10.1021/JF00022A034
- 114937 - Prunus spinosa: LTS0145871
- 120289 - Psidium: LTS0145871
- 13819 - Pteridaceae: LTS0145871
- 32100 - Pteridium: LTS0145871
- 32101 - Pteridium aquilinum: 10.1007/S11418-008-0225-4
- 32101 - Pteridium aquilinum: LTS0145871
- 13820 - Pteris: LTS0145871
- 265700 - Pteris ensiformis: 10.3390/MOLECULES13020255
- 265700 - Pteris ensiformis: LTS0145871
- 56534 - Pulicaria: LTS0145871
- 401066 - Pygeum: LTS0145871
- 3440 - Ranunculaceae: LTS0145871
- 362626 - Rhaponticum: LTS0145871
- 362630 - Rhaponticum carthamoides: 10.1016/J.PHYTOCHEM.2009.04.008
- 4346 - Rhododendron: LTS0145871
- 49622 - Rhododendron ferrugineum: 10.1021/NP100778K
- 49622 - Rhododendron ferrugineum: LTS0145871
- 3801 - Ribes: LTS0145871
- 78511 - Ribes nigrum: 10.1002/(SICI)1099-1565(199603)7:2<97::AID-PCA286>3.0.CO;2-M
- 78511 - Ribes nigrum: LTS0145871
- 100495 - Rohdea: LTS0145871
- 927809 - Rohdea chinensis: 10.1021/NP0203382
- 927809 - Rohdea chinensis: LTS0145871
- 50495 - Rorippa: LTS0145871
- 50499 - Rorippa indica: 10.1002/JCCS.199500136
- 50499 - Rorippa indica: LTS0145871
- 3745 - Rosaceae: LTS0145871
- 24966 - Rubiaceae: LTS0145871
- 23513 - Rutaceae: LTS0145871
- 3688 - Salicaceae: LTS0145871
- 590 - Salmonella: LTS0145871
- 28901 - Salmonella enterica: 10.1021/ACS.JPROTEOME.0C00281
- 28901 - Salmonella enterica: LTS0145871
- 4139 - Scutellaria: LTS0145871
- 65409 - Scutellaria baicalensis: 10.1271/BBB1961.51.1449
- 65409 - Scutellaria baicalensis: LTS0145871
- 4277 - Securidaca: LTS0145871
- 3091905 - Securidaca inappendiculata: LTS0145871
- 18794 - Senecio: LTS0145871
- 462497 - Senecio adenotrichius: 10.1016/S0305-1978(00)00114-9
- 462497 - Senecio adenotrichius: LTS0145871
- 53922 - Senna: LTS0145871
- 346985 - Senna obtusifolia: 10.1248/CPB.32.860
- 346985 - Senna obtusifolia: LTS0145871
- 4070 - Solanaceae: LTS0145871
- 147550 - Sordariomycetes: LTS0145871
- 796327 - Stachylidium: 10.1021/NP1005345
- 796327 - Stachylidium: LTS0145871
- 1883 - Streptomyces: 10.3390/MD15120389
- 1883 - Streptomyces: LTS0145871
- 1889 - Streptomyces ambofaciens: LTS0145871
- 1914 - Streptomyces lavendulae: 10.7164/ANTIBIOTICS.33.1231
- 1914 - Streptomyces lavendulae: LTS0145871
- 2062 - Streptomycetaceae: LTS0145871
- 35493 - Streptophyta: LTS0145871
- 13699 - Styrax: -
- 153559 - Styrax tonkinensis (Pierre) Craib ex Hart.: -
- 1142 - Synechocystis: 10.1104/PP.108.129403
- 1142 - Synechocystis: LTS0145871
- 52860 - Tabernaemontana: LTS0145871
- 52861 - Tabernaemontana divaricata: 10.1016/0031-9422(80)83085-8
- 52861 - Tabernaemontana divaricata: LTS0145871
- 49743 - Taraxacum: LTS0145871
- 170733 - Taraxacum formosanum: 10.1002/CHIN.200342212
- 170733 - Taraxacum formosanum: 10.1248/CPB.51.599
- 170733 - Taraxacum formosanum: LTS0145871
- 90037 - Taraxacum mongolicum: 10.1002/CHIN.200342212
- 90037 - Taraxacum mongolicum: 10.1248/CPB.51.599
- 90037 - Taraxacum mongolicum: LTS0145871
- 3640 - Theobroma: LTS0145871
- 3641 - Theobroma cacao: 10.1007/S00217-006-0252-X
- 3641 - Theobroma cacao: LTS0145871
- 58023 - Tracheophyta: LTS0145871
- 3898 - Trifolium: LTS0145871
- 60916 - Trifolium incarnatum: 10.1039/CT9109701004
- 60916 - Trifolium incarnatum: LTS0145871
- 78479 - Trollius Chinensis: -
- 5690 - Trypanosoma: LTS0145871
- 5691 - Trypanosoma brucei: 10.1371/JOURNAL.PNTD.0001618
- 5691 - Trypanosoma brucei: LTS0145871
- 5654 - Trypanosomatidae: LTS0145871
- 174969 - Uvaria: LTS0145871
- 2709017 - Uvaria mocoli: 10.1016/S0031-9422(98)80009-5
- 2709017 - Uvaria mocoli: LTS0145871
- 13749 - Vaccinium: LTS0145871
- 13750 - Vaccinium macrocarpon: 10.1016/0031-9422(90)85230-D
- 13750 - Vaccinium macrocarpon: 10.1016/S0021-9673(00)01030-X
- 13750 - Vaccinium macrocarpon: 10.1021/JF020055F
- 13750 - Vaccinium macrocarpon: 10.1021/JF052035U
- 13750 - Vaccinium macrocarpon: 10.1021/JF061058L
- 13750 - Vaccinium macrocarpon: 10.1021/JF0636014
- 13750 - Vaccinium macrocarpon: 10.1021/NP060260F
- 13750 - Vaccinium macrocarpon: 10.1021/NP060260F.S001
- 13750 - Vaccinium macrocarpon: 10.1111/J.1365-2621.1986.TB11220.X
- 13750 - Vaccinium macrocarpon: 10.1111/J.1365-2621.1986.TB11236.X
- 13750 - Vaccinium macrocarpon: 10.21273/HORTSCI.29.4.313
- 13750 - Vaccinium macrocarpon: LTS0145871
- 180772 - Vaccinium vitis-idaea: 10.1016/0031-9422(90)85230-D
- 180772 - Vaccinium vitis-idaea: 10.3891/ACTA.CHEM.SCAND.21-2076
- 180772 - Vaccinium vitis-idaea: LTS0145871
- 33090 - Viridiplantae: LTS0145871
- 3602 - Vitaceae: LTS0145871
- 3603 - Vitis: LTS0145871
- 29760 - Vitis vinifera: 10.3389/FMICB.2017.00457
- 29760 - Vitis vinifera: LTS0145871
- 33090 - 白薇: -
- 33090 - 车前草: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yanan Lu, Xue Han. Therapeutic Implications of Phenolic Acids for Ameliorating Inflammatory Bowel Disease.
Nutrients.
2024 Apr; 16(9):. doi:
10.3390/nu16091347
. [PMID: 38732594] - Emily M Catania, Nicole M Dubs, Shejal Soumen, Todd J Barkman. The mutational road not taken: using Ancestral Sequence Resurrection to evaluate the evolution of plant enzyme substrate preferences.
Genome biology and evolution.
2024 Jan; ?(?):. doi:
10.1093/gbe/evae016
. [PMID: 38290535] - Tomoaki Yamaguchi, Keita Shibata, Keiji Hasumi, Koji Nobe. Potent Efficacy of 3-Amino-4-hydroxy Benzoic Acid, a Small Molecule Having Anti-fibrotic Activity, in a Mouse Model of Non-alcoholic Steatohepatitis.
Biological & pharmaceutical bulletin.
2024; 47(2):434-442. doi:
10.1248/bpb.b23-00771
. [PMID: 38369342] - Eleonora Barilli, Pierluigi Reveglia, Francisco J Agudo-Jurado, Vanessa Cañete García, Alessio Cimmino, Antonio Evidente, Diego Rubiales. Comparative Analysis of Secondary Metabolites Produced by Ascochyta fabae under In Vitro Conditions and Their Phytotoxicity on the Primary Host, Vicia faba, and Related Legume Crops.
Toxins.
2023 Dec; 15(12):. doi:
10.3390/toxins15120693
. [PMID: 38133197] - Yangyang Chen, Xiao Wu, Xiaohua Wang, Yubo Yuan, Kaijie Qi, Shaoling Zhang, Hao Yin. PusALDH1 gene confers high levels of volatile aroma accumulation in both pear and tomato fruits.
Journal of plant physiology.
2023 Nov; 290(?):154101. doi:
10.1016/j.jplph.2023.154101
. [PMID: 37806175] - Bijie Hu, Yiran Zheng, Jiaxing Lv, Jing Zhang, Yan Dong. Proteomic analysis of the faba bean-wheat intercropping system in controlling the occurrence of faba bean fusarium wilt due to stress caused by Fusarium oxysporum f. sp. fabae and benzoic acid.
BMC plant biology.
2023 Oct; 23(1):472. doi:
10.1186/s12870-023-04481-8
. [PMID: 37803265] - . Insecticidal activity and physiopathological effects of Cotula cinerea crude extract against Culex pipiens.
Tropical biomedicine.
2023 Jun; 40(2):241-249. doi:
10.47665/tb.40.2.016
. [PMID: 37650412] - Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products.
ACS pharmacology & translational science.
2023 May; 6(5):683-701. doi:
10.1021/acsptsci.2c00194
. [PMID: 37200814] - Congcong Chen, Junshen Tian, Xiaoxia Gao, Xuemei Qin, Guanhua Du, Yuzhi Zhou. An integrated strategy to study the combination mechanisms of Bupleurum chinense DC and Paeonia lactiflora Pall for treating depression based on correlation analysis between serum chemical components profiles and endogenous metabolites profiles.
Journal of ethnopharmacology.
2023 Apr; 305(?):116068. doi:
10.1016/j.jep.2022.116068
. [PMID: 36574791] - Wei Jia, Xixuan Wu, Lin Shi. Naturally forming benzoic acid orientates perilipin to facilitate glyceride-type polyunsaturated fatty acid degradation via fermentation behavior.
Journal of dairy science.
2023 Mar; 106(3):1650-1671. doi:
10.3168/jds.2022-22381
. [PMID: 36710193] - Ranjita S Das, Vijay N Mohakar, Anupama Kumar. Valorization of potato peel waste: Recovery of p-hydroxy benzoic acid (antioxidant) through molecularly imprinted solid-phase extraction.
Environmental science and pollution research international.
2023 Feb; 30(8):19860-19872. doi:
10.1007/s11356-022-23547-y
. [PMID: 36241837] - Meng Li, Xinjie Wan, Xin He, Chunying Rong, Shubin Liu. Impacts of external fields on aromaticity and acidity of benzoic acid: a density functional theory, conceptual density functional theory and information-theoretic approach study.
Physical chemistry chemical physics : PCCP.
2023 Jan; 25(3):2595-2605. doi:
10.1039/d2cp04557e
. [PMID: 36602177] - Lars Hareng, Paul Schuster, Volker Haake, Tilman Walk, Michael Herold, Heike Laue, Andreas Natsch. Towards the mechanism of spermatotoxicity of p-tert-butyl-alpha-methylhydrocinnamic aldehyde: inhibition of late stage ex-vivo spermatogenesis in rat seminiferous tubule cultures by para-tert-butyl- benzoic acid.
Archives of toxicology.
2023 01; 97(1):279-294. doi:
10.1007/s00204-022-03379-y
. [PMID: 36173422] - Jinling Zhang, Wenbao Wang, Yanzhao Tian, Liwei Ma, Lin Zhou, Hao Sun, Yukun Ma, Huiling Hou, Xiaoli Wang, Jin Ye, Xiaobo Wang. Design, synthesis and biological evaluation of novel diosgenin-benzoic acid mustard hybrids with potential anti-proliferative activities in human hepatoma HepG2 cells.
Journal of enzyme inhibition and medicinal chemistry.
2022 Dec; 37(1):1299-1314. doi:
10.1080/14756366.2022.2070161
. [PMID: 35652316] - Suyoung Song, Eun Kyeong Jeon, Cher-Won Hwang. Characteristic Analysis of Soil-Isolated Bacillus velezensis HY-3479 and Its Antifungal Activity Against Phytopathogens.
Current microbiology.
2022 Oct; 79(12):357. doi:
10.1007/s00284-022-03060-8
. [PMID: 36251101] - Mona Isaq, Prathap Somu, Diptikanta Acharya, Levin Anbu Gomez, Jesse Joel Thathapudi, Yerappa Lakshmikanth Ramachandra, Sunitha Bommanahalli Rudraiah, Pooja Ravi, Padmalatha S Rai, Rosina Rosalin, Chandrappa Chinna Poojari, Yong Rok Lee. Phytochemical Screening and Bioactivity Studies of Endophytes Cladosporium sp. Isolated from the Endangered Plant Vateria Indica Using In Silico and In Vitro Analysis.
Applied biochemistry and biotechnology.
2022 Oct; 194(10):4546-4569. doi:
10.1007/s12010-022-03933-5
. [PMID: 35522363] - Qian Li, Sentai Liao, Daorui Pang, Erna Li, Tongxian Liu, Fan Liu, Yuxiao Zou. The transported active mulberry leaf phenolics inhibited adipogenesis through PPAR-γ and Leptin signaling pathway.
Journal of food biochemistry.
2022 10; 46(10):e14270. doi:
10.1111/jfbc.14270
. [PMID: 35702955] - Krishnan Raguvaran, Manickam Kalpana, Thulasiraman Manimegalai, Suresh Kalaivani, Palanisamy Devapriya, Nagarajan Siddharthan, Rengasamy Balakrishnan, Tamil Selvan Silambarasan, Rajan Maheswaran. Larvicidal, antioxidant and biotoxicity assessment of (2-(((2-ethyl-2 methylhexyl)oxy)carbonyl)benzoic acid isolated from Bacillus pumilus against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus.
Archives of microbiology.
2022 Sep; 204(10):650. doi:
10.1007/s00203-022-03264-3
. [PMID: 36173486] - Saima Muzammil, Yunsheng Wang, Muhammad Hussnain Siddique, Errum Zubair, Sumreen Hayat, Muhammad Zubair, Arpita Roy, Rabia Mumtaz, Muhammad Azeem, Talha Bin Emran, Muhammad Qasim Shahid. Polyphenolic Composition, Antioxidant, Antiproliferative and Antidiabetic Activities of Coronopus didymus Leaf Extracts.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196263
. [PMID: 36234800] - Umair Khurshid, Saeed Ahmad, Hammad Saleem, Arslan Hussain LodhI, Irfan Pervaiz, Mohsin Abbas Khan, Haroon Khan, Abdulwahab AlamrI, Mukhtar AnsarI, Marcello LocatellI, Muhammad Adeel Arshad, Muhammad Asif Wazir, Juwairiya Butt, Sirajudheen Anwar. Multifaced Assessment of Antioxidant Power, Phytochemical Metabolomics, In-Vitro Biological Potential and In-Silico Studies of Neurada procumbens L.: An Important Medicinal Plant.
Molecules (Basel, Switzerland).
2022 Sep; 27(18):. doi:
10.3390/molecules27185849
. [PMID: 36144585] - Roham Foroumadi, Maryam Baeeri, Sara Asgarian, Zahra Emamgholipour, Fereshteh Goli, Loghman Firoozpour, Mohammad Keykhaei, Mahdi Gholami, Ahmad R Dehpour, Mohammad Abdollahi, Alireza Foroumadi. Antidiabetic and neuroprotective effects of a novel repaglinide analog.
Journal of biochemical and molecular toxicology.
2022 Sep; 36(9):e23125. doi:
10.1002/jbt.23125
. [PMID: 35702883] - Dursun Kısa, Rizvan Imamoglu, Zafer Kaya, Tugba Taskin-Tok, Parham Taslimi. Turanecio hypochionaeus: Determination of Its Polyphenol Contents, and Bioactivities Potential Assisted with in Silico Studies.
Chemistry & biodiversity.
2022 Sep; 19(9):e202200109. doi:
10.1002/cbdv.202200109
. [PMID: 35983912] - Bret Cooper. The Detriment of Salicylic Acid to the Pseudomonas savastanoi pv. phaseolicola Proteome.
Molecular plant-microbe interactions : MPMI.
2022 Sep; 35(9):814-824. doi:
10.1094/mpmi-05-22-0104-r
. [PMID: 35612310] - Gabriele Soriano, Antonietta Siciliano, Mónica Fernández-Aparicio, Antonio Cala Peralta, Marco Masi, Antonio Moreno-Robles, Marco Guida, Alessio Cimmino. Iridoid Glycosides Isolated from Bellardia trixago Identified as Inhibitors of Orobanche cumana Radicle Growth.
Toxins.
2022 08; 14(8):. doi:
10.3390/toxins14080559
. [PMID: 36006221] - Xu Pang, Guo-Wei Cai, Meng-Yan Wang, Xiu-Fei Chen, Wen-Ni He, Wu-Li Zhao, Tao Zhang, Li-Yan Yu. Metabolites from the plant endophytic fungus Penicillium sp. CPCC 401423 and their cytotoxic activity against MIA PaCa-2 cells.
Journal of Asian natural products research.
2022 Aug; ?(?):1-12. doi:
10.1080/10286020.2022.2104719
. [PMID: 35920176] - Menghan Chen, Liqing Wang, Shuyan Xing, Yong Yang, Rong Rong. Rapid screening of neuraminidase inhibitors with the benzoic acid skeleton from Paeonia suffruticosa Andrews by solid-phase extraction with an enzyme activity switch combined with mass spectrometry analysis.
Journal of chromatography. A.
2022 Aug; 1676(?):463213. doi:
10.1016/j.chroma.2022.463213
. [PMID: 35717865] - Fatma A Farghaly, Hussein Kh Salam, Afaf M Hamada, Abeer A Radi. Alleviating excess boron stress in tomato calli by applying benzoic acid to various biochemical strategies.
Plant physiology and biochemistry : PPB.
2022 Jul; 182(?):216-226. doi:
10.1016/j.plaphy.2022.04.019
. [PMID: 35526419] - Raúl Velasco-Azorsa, Reyna Zeferino-Díaz, José G Alvarado-Rodríguez, Heraclio López-Ruiz, Susana Rojas-Lima, Kinardo Flores-Castro, Ignacio Cid Del Prado-Vera, Raquel Alatorre-Rosas, Felipe Tut-Pech, María G Carrillo-Benítez, Eleuterio Burgueño-Tapia, J Martín Torres-Valencia. Nematicidal activity of furanoeremophilenes against Meloidogyne incognita and Nacobbus aberrans.
Pest management science.
2022 Jun; 78(6):2571-2580. doi:
10.1002/ps.6888
. [PMID: 35338557] - Yuya Kakumu, Thi Minh Tu Nguyen, Kosei Yamauchi, Tohru Mitsunaga. New benzoic acid and caffeoyl derivatives with anti-inflammatory activities isolated from leaves of Ilex kaushue.
Natural product research.
2022 Jun; 36(12):3013-3021. doi:
10.1080/14786419.2021.1939334
. [PMID: 34382490] - Lingqi Yue, Yongshen Li, Min Zhong, Xirong Chai, Puyan Zhao, Riming Huang, Yunyan Kang, Xian Yang. Benzoic Acid, Chlorine Dioxide, and 1-Methylcyclopropene Induce Flavonoid Metabolic Shifts in Postharvest Flowering Chinese Cabbage Revealed by High-Dimensional Analytical Data.
International journal of molecular sciences.
2022 May; 23(11):. doi:
10.3390/ijms23116011
. [PMID: 35682691] - Zhao-Yue Dong, Qing-Hong Zeng, Lin Wei, Xin Guo, Yan Sun, Fan-Cheng Meng, Guo-Wei Wang, Xiao-Zhong Lan, Zhi-Hua Liao, Min Chen. Berberisides A-D: three novel prenylated benzoic acid derivatives and a clerodane glycoside from Berberis tsarica aherndt.
Natural product research.
2022 Apr; 36(8):1996-2001. doi:
10.1080/14786419.2020.1839460
. [PMID: 33118393] - Nidal Jaradat, Ahmad Khasati, Maram Hawi, Mohammed Hawash, Suhaib Shekfeh, Mohammad Qneibi, Ahmad M Eid, Mohammad Arar, Mohammed T Qaoud. Antidiabetic, antioxidant, and anti-obesity effects of phenylthio-ethyl benzoate derivatives, and molecular docking study regarding α-amylase enzyme.
Scientific reports.
2022 02; 12(1):3108. doi:
10.1038/s41598-022-07188-2
. [PMID: 35210523] - Evren Caglar Eroglu, Umran Kucukgoz Gulec, Mehmet Ali Vardar, Semra Paydas. GC-MS based metabolite fingerprinting of serous ovarian carcinoma and benign ovarian tumor.
European journal of mass spectrometry (Chichester, England).
2022 Feb; 28(1-2):12-24. doi:
10.1177/14690667221098520
. [PMID: 35503418] - Wenbao Wang, Chuan Li, Zhe Chen, Jinling Zhang, Liwei Ma, Yanzhao Tian, Yukun Ma, Lina Guo, Xiaoli Wang, Jin Ye, Xiaobo Wang. Novel diosgenin-amino acid-benzoic acid mustard trihybrids exert antitumor effects via cell cycle arrest and apoptosis.
The Journal of steroid biochemistry and molecular biology.
2022 02; 216(?):106038. doi:
10.1016/j.jsbmb.2021.106038
. [PMID: 34861390] - Trung-Anh Le, Yong Guo, Jun-Nian Zhou, Jiaqi Yan, Hongbo Zhang, Tan-Phat Huynh. Synthesis, characterization and biocompatibility of guar gum-benzoic acid.
International journal of biological macromolecules.
2022 Jan; 194(?):110-116. doi:
10.1016/j.ijbiomac.2021.11.180
. [PMID: 34861275] - Xuemei Xiao, Ju Li, Jian Lyu, Linli Hu, Yue Wu, Zhongqi Tang, Jihua Yu, Alejandro Calderón-Urrea. Grafting-enhanced tolerance of cucumber to toxic stress is associated with regulation of phenolic and other aromatic acids metabolism.
PeerJ.
2022; 10(?):e13521. doi:
10.7717/peerj.13521
. [PMID: 35669966] - Yanqing Ye, Yanjun Chen, Yuting Hou, Hongmei Yu, Lijun Zhu, Yanqi Sun, Min Zhou, Yijian Chen, Miao Dong. Two new benzoic acid derivatives from endophytic fungus Aspergillus versicolor.
Natural product research.
2022 Jan; 36(1):223-228. doi:
10.1080/14786419.2020.1777121
. [PMID: 32524860] - Mohamed Z M Salem, Hayssam M Ali, Mohammad Akrami. Moringa oleifera seeds-removed ripened pods as alternative for papersheet production: antimicrobial activity and their phytoconstituents profile using HPLC.
Scientific reports.
2021 09; 11(1):19027. doi:
10.1038/s41598-021-98415-9
. [PMID: 34561493] - Long-Tai Zheng, Jiaojiao Chen, Li Zhang, Yu Zhang, Lei Xu, Tingjun Hou, Xuechu Zhen, Qijun Dai, Hua Liu. Inhibition of neuroinflammation by MIF inhibitor 3-({[4-(4-methoxyphenyl)-6-methyl-2-pyrimidinyl]thio}1methyl)benzoic acid (Z-312).
International immunopharmacology.
2021 Sep; 98(?):107868. doi:
10.1016/j.intimp.2021.107868
. [PMID: 34153665] - Takahiro Mori, Kiyofumi Wanibuchi, Hiroyuki Morita, Ikuro Abe. Amide Bond Formation Using 4-Coumarate: CoA Ligase from Arabidopsis thaliana.
Chemical & pharmaceutical bulletin.
2021 Aug; 69(8):717-720. doi:
10.1248/cpb.c21-00404
. [PMID: 34053981] - Duncan Turnbull, Maia M Jack, Pragati S Coder, Catherine A Picut, Joseph V Rodricks. Extended One-Generation Reproductive Toxicity (EOGRT) study of benzoic acid in Sprague Dawley rats.
Regulatory toxicology and pharmacology : RTP.
2021 Jun; 122(?):104897. doi:
10.1016/j.yrtph.2021.104897
. [PMID: 33639256] - Kyong-Hee Nam, Do Young Kim, In Soon Pack, Chang-Gi Kim. Compositional differences in hybrids between protoporphyrinogen IX oxidase (PPO)-inhibiting herbicide-resistant transgenic rice and weedy rice accessions.
Food chemistry.
2021 May; 344(?):128584. doi:
10.1016/j.foodchem.2020.128584
. [PMID: 33199119] - Hai-Mei Li, Ting-Ting Xu, Qing-Xia Peng, Yong-Sheng Chen, Hua Zhou, Yu-Yun Lu, Ri-An Yan. Enzymatic acylation of rutin with benzoic acid ester and lipophilic, antiradical, and antiproliferative properties of the acylated derivatives.
Journal of food science.
2021 May; 86(5):1714-1725. doi:
10.1111/1750-3841.15703
. [PMID: 33844282] - Kamil Łuczykowski, Natalia Warmuzińska, Sylwia Operacz, Iga Stryjak, Joanna Bogusiewicz, Julia Jacyna, Renata Wawrzyniak, Wiktoria Struck-Lewicka, Michał J Markuszewski, Barbara Bojko. Metabolic Evaluation of Urine from Patients Diagnosed with High Grade (HG) Bladder Cancer by SPME-LC-MS Method.
Molecules (Basel, Switzerland).
2021 Apr; 26(8):. doi:
10.3390/molecules26082194
. [PMID: 33920347] - Wan Mohd Nuzul Hakimi Wan Salleh. A systematic review of botany, phytochemicals and pharmacological properties of 'Hoja sant a' (Piper auritum Kunth).
Zeitschrift fur Naturforschung. C, Journal of biosciences.
2021 Mar; 76(3-4):93-102. doi:
10.1515/znc-2020-0116
. [PMID: 32960783] - Poonam Singh, David Kaufholdt, Mina Awadalah, Robert Hänsch, Ludger Beerhues, Mariam Gaid. Cytosolic aromatic aldehyde dehydrogenase provides benzoic acid for xanthone biosynthesis in Hypericum.
Plant physiology and biochemistry : PPB.
2021 Mar; 160(?):82-93. doi:
10.1016/j.plaphy.2021.01.011
. [PMID: 33482582] - Ye-Qing Du, Zhi-Yang Yan, Shao-Chun Shi, Zi-Lin Hou, Xiao-Xiao Huang, Shao-Jiang Song. Benzoic acid derivatives from the root barks of Ailanthus altissima.
Journal of Asian natural products research.
2021 Feb; 23(2):103-109. doi:
10.1080/10286020.2020.1715952
. [PMID: 32024382] - Natalia Calonghi, Giovanna Farruggia, Carla Boga, Gabriele Micheletti, Elena Fini, Lucia Romani, Dario Telese, Erika Faraci, Christian Bergamini, Stefano Cerini, Nicola Rizzardi. Root Extracts of Two Cultivars of Paeonia Species: Lipid Composition and Biological Effects on Different Cell Lines: Preliminary Results.
Molecules (Basel, Switzerland).
2021 Jan; 26(3):. doi:
10.3390/molecules26030655
. [PMID: 33513825] - Yukio Takamori, Takehiro Ando, Daisuke Fuji, Takumi Yokoyama, Mizuki Yamamoto, Takashi Kawakami. In vitro display evolution of IL-6R-binding unnatural peptides ribosomally initiated and cyclized with m-(chloromethyl)benzoic acid.
Biochemical and biophysical research communications.
2021 01; 535(?):47-53. doi:
10.1016/j.bbrc.2020.11.123
. [PMID: 33340765] - Jian-Shuang Jiang, Yi Shen, Zi-Ming Feng, Ya-Nan Yang, Xu Zhang, Xiang Yuan, Pei-Cheng Zhang. New benzoic acid glycosides from Sophora flavescens.
Journal of Asian natural products research.
2020 Dec; 22(12):1145-1151. doi:
10.1080/10286020.2020.1801650
. [PMID: 32835515] - Zi Wei Luo, Sang Yup Lee. Metabolic engineering of Escherichia coli for the production of benzoic acid from glucose.
Metabolic engineering.
2020 11; 62(?):298-311. doi:
10.1016/j.ymben.2020.10.002
. [PMID: 33068735] - Lydia M Wang, Shiqi Huang, Sebastian Chalupa-Krebzdak, Sandra M Vásquez Mejía, Ira B Mandell, Benjamin M Bohrer. Effects of essential oils and(or) benzoic acid in beef finishing cattle diets on the fatty acid profile and shelf life stability of ribeye steaks and ground beef.
Meat science.
2020 Oct; 168(?):108195. doi:
10.1016/j.meatsci.2020.108195
. [PMID: 32470759] - Mahreen Arooj, Ihsan Shehadi, Chahlaa N Nassab, Ahmed A Mohamed. Physicochemical stability study of protein-benzoic acid complexes using molecular dynamics simulations.
Amino acids.
2020 Sep; 52(9):1353-1362. doi:
10.1007/s00726-020-02897-2
. [PMID: 33006112] - Christopher M Siwy, Bryan M Delfing, Amy K Smith, Dmitri K Klimov. Partitioning of Benzoic Acid into 1,2-Dimyristoyl-sn-glycero-3-phosphocholine and Blood-Brain Barrier Mimetic Bilayers.
Journal of chemical information and modeling.
2020 08; 60(8):4030-4046. doi:
10.1021/acs.jcim.0c00590
. [PMID: 32672960] - Huiyan Ma, Yu Chen, Jinhui Chen, Yunqiu Zhang, Tian Zhang, He He. Comparison of allelopathic effects of two typical invasive plants: Mikania micrantha and Ipomoea cairica in Hainan island.
Scientific reports.
2020 07; 10(1):11332. doi:
10.1038/s41598-020-68234-5
. [PMID: 32647288] - Ming-Yuan Xu, Ying-Jian Sun, Pan Wang, Lin Yang, Yi-Jun Wu. Metabolomic biomarkers in urine of rats following long-term low-dose exposure of cadmium and/or chlorpyrifos.
Ecotoxicology and environmental safety.
2020 Jun; 195(?):110467. doi:
10.1016/j.ecoenv.2020.110467
. [PMID: 32182532] - Bin Feng, Chao Zhao, Bo Chen, Weihai Zhuo, Yiwen Liu, Liangzi Wang, Linfeng He, Fangdong Tang. Application of synthetic benzoic acid technology in environmental radiocarbon monitoring.
Journal of environmental radioactivity.
2020 May; 216(?):106188. doi:
10.1016/j.jenvrad.2020.106188
. [PMID: 32056792] - Cláudio D Silva Júnior, Cláudia C S Martins, Francine T F Dias, Natália Y Sitanaka, Letícia B Ferracioli, José E Moraes, Carla C Pizzolante, Fábio E L Budiño, Rafaela Pereira, Polyana Tizioto, Vinicius R C Paula, Luiz L Coutinho, Urbano S Ruiz. The use of an alternative feed additive, containing benzoic acid, thymol, eugenol, and piperine, improved growth performance, nutrient and energy digestibility, and gut health in weaned piglets.
Journal of animal science.
2020 May; 98(5):. doi:
10.1093/jas/skaa119
. [PMID: 32280983] - Rong Rong, Xin Wang, Yuhan Dan, Ruizhen Zhang, Yunli Zhao, Zhiguo Yu. Determination of protein binding for novel 2-(2-hydroxypropanamido)-5-trifluoromethyl benzoic acid enantiomers to rats, dogs, and humans plasma by UPLC-MS/MS.
Chirality.
2020 05; 32(5):524-534. doi:
10.1002/chir.23192
. [PMID: 32083786] - Jacek Łyczko, Aleksandra Pawlak, Iwo Augustyński, Piotr Okińczyc, Jakub Szperlik, Anna Kulma, Henryk Różański, Bożena Obmińska-Mrukowicz, Antoni Szumny. Chemical profiling and cytotoxic activity of 150-year old original sample of Jerusalem Balsam.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2020 Apr; 138(?):111183. doi:
10.1016/j.fct.2020.111183
. [PMID: 32061855] - Sheng Yan, Ming-Ming Tu, Yun-Ren Qiu. The hemocompatibility of the modified polysulfone membrane with 4-(chloromethyl)benzoic acid and sulfonated hydroxypropyl chitosan.
Colloids and surfaces. B, Biointerfaces.
2020 Apr; 188(?):110769. doi:
10.1016/j.colsurfb.2019.110769
. [PMID: 31918157] - Agni Kumar Biswal, Hariprasad P, Sampa Saha. Efficient and prolonged antibacterial activity from porous PLGA microparticles and their application in food preservation.
Materials science & engineering. C, Materials for biological applications.
2020 Mar; 108(?):110496. doi:
10.1016/j.msec.2019.110496
. [PMID: 31923956] - Marius Lasinskas, Elvyra Jariene, Nijole Vaitkeviciene, Ewelina Hallmann, Katarzyna Najman. Effect of Different Durations of Solid-Phase Fermentation for Fireweed (Chamerion angustifolium (L.) Holub) Leaves on the Content of Polyphenols and Antioxidant Activity In Vitro.
Molecules (Basel, Switzerland).
2020 Feb; 25(4):. doi:
10.3390/molecules25041011
. [PMID: 32102409] - Mariam Abotaleb, Alena Liskova, Peter Kubatka, Dietrich Büsselberg. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer.
Biomolecules.
2020 02; 10(2):. doi:
10.3390/biom10020221
. [PMID: 32028623] - Shashank Sagar Saini, Mariam Gaid, Debabrata Sircar. Benzoate-CoA ligase contributes to the biosynthesis of biphenyl phytoalexins in elicitor-treated pear cell cultures.
Plant cell reports.
2020 Feb; 39(2):207-215. doi:
10.1007/s00299-019-02484-0
. [PMID: 31713663] - Zongtai Li, Dexi Liu, Lijie Zhan, Linghao Li. Mineral Elements and Active Ingredients in Root of Wild Paeonia lactiflora Growing at Duolun County, Inner Mongolia.
Biological trace element research.
2020 Feb; 193(2):548-554. doi:
10.1007/s12011-019-01725-3
. [PMID: 30997668] - Peng Lu, Weinan Wang, Guangxi Zhang, Wen Li, Anjie Jiang, Mengjiao Cao, Xiaoyan Zhang, Ke Xing, Xue Peng, Bo Yuan, Zhaozhong Feng. Isolation and characterization marine bacteria capable of degrading lignin-derived compounds.
PloS one.
2020; 15(10):e0240187. doi:
10.1371/journal.pone.0240187
. [PMID: 33027312] - Balakishan Bhukya, Kaneez Fatima, Abhishek Nagar, Vijaya Lakshmi, Poornima Dubey, Shailesh Kumar, Yogesh Kumar, Suaib Luqman, Debabrata Chanda, Sudeep Tandon, Karuna Shanker, Feroz Khan, Arvind S Negi. Brevifoliol ester induces apoptosis in prostate cancer cells by activation of caspase pathway.
Chemical biology & drug design.
2020 01; 95(1):150-161. doi:
10.1111/cbdd.13631
. [PMID: 31585016] - Victoria K Llewelyn, Lee Berger, Beverley D Glass. Can models of percutaneous absorption based on in vitro data in frogs predict in vivo absorption?.
PloS one.
2020; 15(7):e0235737. doi:
10.1371/journal.pone.0235737
. [PMID: 32726322] - Seshadri Shivashankar, Manoharan Sumathi. Rapid burst of ethylene evolution by premature seed: A warning sign for the onset of spongy tissue disorder in Alphonso mango fruit?.
Journal of biosciences.
2019 Dec; 44(6):. doi:
. [PMID: 31894114]
- Zhenkang Wang, Chunhua Ma, Yujie Wang, Qiang Xiao, Chenghui Xu, Yingxia Li. Structural optimization and neurotrophic activity evaluation of neurotrophic gentiside derivatives.
Bioorganic & medicinal chemistry letters.
2019 11; 29(22):126685. doi:
10.1016/j.bmcl.2019.126685
. [PMID: 31607606] - Tao Zhang, Hui Liu, Yating Li, Chunyu Li, Guoyun Wan, Bowei Chen, Chunxia Li, Yinsong Wang. A pH-sensitive nanotherapeutic system based on a marine sulfated polysaccharide for the treatment of metastatic breast cancer through combining chemotherapy and COX-2 inhibition.
Acta biomaterialia.
2019 11; 99(?):412-425. doi:
10.1016/j.actbio.2019.09.001
. [PMID: 31494294] - Jeremy P Moore, Haofan Li, Morgan L Engmann, Katarina M Bischof, Karina S Kunka, Mary E Harris, Anna C Tancredi, Frederick S Ditmars, Preston J Basting, Nadja S George, Arvind A Bhagwat, Joan L Slonczewski. Inverted Regulation of Multidrug Efflux Pumps, Acid Resistance, and Porins in Benzoate-Evolved Escherichia coli K-12.
Applied and environmental microbiology.
2019 08; 85(16):. doi:
10.1128/aem.00966-19
. [PMID: 31175192] - Canan Sevimli-Gur, Ozlem Yesil-Celiktas. Cytotoxicity screening of supercritical fluid extracted seaweeds and phenylpropanoids.
Molecular biology reports.
2019 Aug; 46(4):3691-3699. doi:
10.1007/s11033-019-04812-9
. [PMID: 31004301] - Liu Yang, Hai Jiang, Xinyue Guo, Ajiao Hou, Wenjing Man, Xudong Xing, Meiling Yan, Bingyou Yang, Qiuhong Wang, Haixue Kuang. Quantitative analysis of different batches of raw, wine-processed, and vinegar-processed Paeoniae Alba Radix using ultra-performance convergence chromatography coupled with photo diode array detection.
Biomedical chromatography : BMC.
2019 Jun; 33(6):e4485. doi:
10.1002/bmc.4485
. [PMID: 30693528] - Sujing Yuan, Yunyue Zhang, Jiaxin Liu, Yu Zhao, Libo Tan, Jingwen Liu, Qingyu Wang, Hao Zhang. Structure-affinity relationship of the binding of phenolic acids and their derivatives to bovine serum albumin.
Food chemistry.
2019 Apr; 278(?):77-83. doi:
10.1016/j.foodchem.2018.11.060
. [PMID: 30583441] - Agni Kumar Biswal, Sampa Saha. Prolonging food shelf-life by dual actives release from multi-layered polymer particles.
Colloids and surfaces. B, Biointerfaces.
2019 Mar; 175(?):281-290. doi:
10.1016/j.colsurfb.2018.12.004
. [PMID: 30551015] - Loralie J Langman, Paul J Jannetto, Matthew D Sztajnkrycer. Unidentified anion gap metabolic acidosis.
Clinical biochemistry.
2019 Mar; 65(?):53-54. doi:
10.1016/j.clinbiochem.2018.12.006
. [PMID: 30578759] - Silvia Revoltella, Bettina Rainer, Birgit Waltenberger, Konrad Pagitz, Stefan Schwaiger, Hermann Stuppner. HPTLC Autography Based Screening and Isolation of Mushroom Tyrosinase Inhibitors of European Plant Species.
Chemistry & biodiversity.
2019 Mar; 16(3):e1800541. doi:
10.1002/cbdv.201800541
. [PMID: 30556957] - Xiaoai He, Huichen Zhang, Xianrui Liang. Separation of six compounds from pigeon pea leaves by elution-extrusion counter-current chromatography.
Journal of separation science.
2019 Mar; 42(6):1202-1209. doi:
10.1002/jssc.201801111
. [PMID: 30653252] - Samridhi Thakral, Vikramjeet Singh. 2,4-Dichloro-5-[(N-aryl/alkyl)sulfamoyl]benzoic Acid Derivatives: In Vitro Antidiabetic Activity, Molecular Modeling and In silico ADMET Screening.
Medicinal chemistry (Shariqah (United Arab Emirates)).
2019; 15(2):186-195. doi:
10.2174/1573406414666180924164327
. [PMID: 30251608] - Eva de la Peña, José Martín, Juan Carranza. The intensity of male-male competition may affect chemical scent constituents in the dark ventral patch of male Iberian red deer.
PloS one.
2019; 14(9):e0221980. doi:
10.1371/journal.pone.0221980
. [PMID: 31479490] - Muhammad Usman Akbar. Preparation, optimization and pharmacological evaluation of 99mTc- 4-hydroxy-3-(2-hydroxy-3-methoxybenzylideneamino) benzoic acid complex: as a novel potential radiopharmaceutical agent with hepatobiliary excretion.
Molecular biology reports.
2018 Dec; 45(6):2717-2723. doi:
10.1007/s11033-018-4402-6
. [PMID: 30328001] - Muqian Yu, Ruizhi Wen, Le Jiang, Si Huang, Zhengfa Fang, Bo Chen, Liping Wang. Rapid analysis of benzoic acid and vitamin C in beverages by paper spray mass spectrometry.
Food chemistry.
2018 Dec; 268(?):411-415. doi:
10.1016/j.foodchem.2018.06.103
. [PMID: 30064777] - Alka Elizabeth Varghese, Balaji Govindan, Jyothilakshmi Madhavankutty, Antony Thomas Valiyaveetil, Madhusudhanan Karadka, Sabulal Baby. A new antifungal benzoic acid ester from Uvaria narum.
Natural product research.
2018 Nov; 32(22):2657-2662. doi:
10.1080/14786419.2017.1375925
. [PMID: 28925289] - Kyungbo Kim, Jianzhuang Yao, Zhenyu Jin, Fang Zheng, Chang-Guo Zhan. Kinetic characterization of cholinesterases and a therapeutically valuable cocaine hydrolase for their catalytic activities against heroin and its metabolite 6-monoacetylmorphine.
Chemico-biological interactions.
2018 Sep; 293(?):107-114. doi:
10.1016/j.cbi.2018.08.002
. [PMID: 30080993] - Wei Zhang, Li-Ying Lu, Li-Yan Hu, Wei Cao, Kai Sun, Qi-Biao Sun, Ashaduzzaman Siddikee, Run-Han Shi, Chuan-Chao Dai. Evidence for the Involvement of Auxin, Ethylene and ROS Signaling During Primary Root Inhibition of Arabidopsis by the Allelochemical Benzoic Acid.
Plant & cell physiology.
2018 Sep; 59(9):1889-1904. doi:
10.1093/pcp/pcy107
. [PMID: 29893960] - Qinhua Liu, Steven E Lindow, Jianguo Zhang. Lactobacillus parafarraginis ZH1 producing anti-yeast substances to improve the aerobic stability of silage.
Animal science journal = Nihon chikusan Gakkaiho.
2018 Sep; 89(9):1302-1309. doi:
10.1111/asj.13063
. [PMID: 30009485] - Dorottya Nagy-Szakal, Dinesh K Barupal, Bohyun Lee, Xiaoyu Che, Brent L Williams, Ellie J R Kahn, Joy E Ukaigwe, Lucinda Bateman, Nancy G Klimas, Anthony L Komaroff, Susan Levine, Jose G Montoya, Daniel L Peterson, Bruce Levin, Mady Hornig, Oliver Fiehn, W Ian Lipkin. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics.
Scientific reports.
2018 07; 8(1):10056. doi:
10.1038/s41598-018-28477-9
. [PMID: 29968805] - Yazhi Gao, Wei Liu, Xiaoxiong Wang, Lihua Yang, Su Han, Shiguo Chen, Reto Jörg Strasser, Bernal E Valverde, Sheng Qiang. Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii.
Plant physiology and biochemistry : PPB.
2018 Jul; 128(?):1-12. doi:
10.1016/j.plaphy.2018.04.037
. [PMID: 29751250] - Piotr Okińczyc, Antoni Szumny, Jakub Szperlik, Anna Kulma, Roman Franiczek, Beata Żbikowska, Barbara Krzyżanowska, Zbigniew Sroka. Profile of Polyphenolic and Essential Oil Composition of Polish Propolis, Black Poplar and Aspens Buds.
Molecules (Basel, Switzerland).
2018 May; 23(6):. doi:
10.3390/molecules23061262
. [PMID: 29799463] - Funmilayo Adebesin, Joshua R Widhalm, Joseph H Lynch, Rachel M McCoy, Natalia Dudareva. A peroxisomal thioesterase plays auxiliary roles in plant β-oxidative benzoic acid metabolism.
The Plant journal : for cell and molecular biology.
2018 03; 93(5):905-916. doi:
10.1111/tpj.13818
. [PMID: 29315918] - Tushar S Basu Baul, Imliwati Longkumer, Andrew Duthie, Priya Singh, Biplob Koch, M Fátima C Guedes da Silva. Triphenylstannyl((arylimino)methyl)benzoates with selective potency that induce G1 and G2/M cell cycle arrest and trigger apoptosis via ROS in human cervical cancer cells.
Dalton transactions (Cambridge, England : 2003).
2018 Feb; 47(6):1993-2008. doi:
10.1039/c7dt04037g
. [PMID: 29345708] - Jun Guo, Bin Yan, Fu Wang, Qing-He Gao, Xiu-Ju Zhang, Guo-Jin Yu, Yin Zeng, Jun-Feng Qiu, Qiang Geng, Qiang Han. [Establishment of a rat model of premature ejaculation with 8-OH-DPAT].
Zhonghua nan ke xue = National journal of andrology.
2018 Feb; 24(2):104-108. doi:
"
. [PMID: 30156067] - Hyo Hee Yang, Kyung-Eon Oh, Yang Hee Jo, Jong Hoon Ahn, Qing Liu, Ayman Turk, Jae Young Jang, Bang Yeon Hwang, Ki Yong Lee, Mi Kyeong Lee. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay.
Bioorganic & medicinal chemistry.
2018 01; 26(2):509-515. doi:
10.1016/j.bmc.2017.12.011
. [PMID: 29254897] - Cindy Irwin, Mari van Reenen, Shayne Mason, Lodewyk J Mienie, Ron A Wevers, Johan A Westerhuis, Carolus J Reinecke. The 1H-NMR-based metabolite profile of acute alcohol consumption: A metabolomics intervention study.
PloS one.
2018; 13(5):e0196850. doi:
10.1371/journal.pone.0196850
. [PMID: 29746531] - Junning Pu, Daiwen Chen, Gang Tian, Jun He, Ping Zheng, Xiangbing Mao, Jie Yu, Zhiqing Huang, Ling Zhu, Junqiu Luo, Yuheng Luo, Bing Yu. Protective Effects of Benzoic Acid, Bacillus Coagulans, and Oregano Oil on Intestinal Injury Caused by Enterotoxigenic Escherichia coli in Weaned Piglets.
BioMed research international.
2018; 2018(?):1829632. doi:
10.1155/2018/1829632
. [PMID: 30225247] - Seong-Bum Park, Jong Youn Kim, Jung Yeon Han, Chang-Ho Ahn, Eung-Jun Park, Yong Eui Choi. Exploring genes involved in benzoic acid biosynthesis in the Populus davidiana transcriptome and their transcriptional activity upon methyl jasmonate treatment.
Journal of chemical ecology.
2017 Dec; 43(11-12):1097-1108. doi:
10.1007/s10886-017-0903-3
. [PMID: 29129016] - Pedro Diaz-Vivancos, Agustina Bernal-Vicente, Daniel Cantabella, Cesar Petri, José Antonio Hernández. Metabolomics and Biochemical Approaches Link Salicylic Acid Biosynthesis to Cyanogenesis in Peach Plants.
Plant & cell physiology.
2017 Dec; 58(12):2057-2066. doi:
10.1093/pcp/pcx135
. [PMID: 29036663]