NCBI Taxonomy: 1004000

Elaeodendron croceum (ncbi_taxid: 1004000)

found 38 associated metabolites at species taxonomy rank level.

Ancestor: Elaeodendron

Child Taxonomies: none taxonomy data.

Naringenin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0685)


Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Galactitol

Galactitol, Pharmaceutical Secondary Standard; Certified Reference Material

C6H14O6 (182.079)


Galactitol or dulcitol is a sugar alcohol that is a metabolic breakdown product of galactose. Galactose is derived from lactose in food (such as dairy products). When lactose is broken down by the enzyme lactase it produces glucose and galactose. Galactitol has a slightly sweet taste. It is produced from galactose in a reaction catalyzed by aldose reductase. When present in sufficiently high levels, galactitol can act as a metabotoxin, a neurotoxin, and a hepatotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A hepatotoxin as a compound that disrupts or attacks liver tissue or liver cells. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of galactitol are associated with at least two inborn errors of metabolism, including galactosemia and galactosemia type II. Galactosemia is a rare genetic metabolic disorder that affects an individuals ability to metabolize the sugar galactose properly. Excess lactose consumption in individuals with galactose intolerance or galactosemia activates aldose reductase to produce galactitol, thus depleting NADPH and leading to lowered glutathione reductase activity. As a result, hydrogen peroxide or other free radicals accumulate causing serious oxidative damage to various cells and tissues. In individuals with galactosemia, the enzymes needed for the further metabolism of galactose (galactose-1-phosphate uridyltransferase) are severely diminished or missing entirely, leading to toxic levels of galactose 1-phosphate, galactitol, and galactonate. High levels of galactitol in infants are specifically associated with hepatomegaly (an enlarged liver), cirrhosis, renal failure, cataracts, vomiting, seizure, hypoglycemia, lethargy, brain damage, and ovarian failure. Galactitol is an optically inactive hexitol having meso-configuration. It has a role as a metabolite, a human metabolite, an Escherichia coli metabolite and a mouse metabolite. Galactitol is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Galactitol is a natural product found in Elaeodendron croceum, Salacia chinensis, and other organisms with data available. Galactitol is a naturally occurring product of plants obtained following reduction of galactose. It appears as a white crystalline powder with a slight sweet taste. It may form in excess in the lens of the eye in galactosemias a deficiency of galactokinase. A naturally occurring product of plants obtained following reduction of GALACTOSE. It appears as a white crystalline powder with a slight sweet taste. It may form in excess in the lens of the eye in GALACTOSEMIAS, a deficiency of GALACTOKINASE. A naturally occurring product of plants obtained following reduction of galactose. It appears as a white crystalline powder with a slight sweet taste.; Dulcitol (or galactitol) is a sugar alcohol, the reduction product of galactose. Galactitol in the urine is a biomarker for the consumption of milk. Galactitol is found in many foods, some of which are elliotts blueberry, italian sweet red pepper, catjang pea, and green bean. An optically inactive hexitol having meso-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose.

   

tingenone

(6aR,6bR,8aS,11R,12aR,14aR)-3-hydroxy-4,6a,6b,8a,11,14a-hexamethyl-7,8,9,11,12,12a,13,14-octahydropicene-2,10-quinone

C28H36O3 (420.2664)


D000970 - Antineoplastic Agents

   

Naringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0685)


Naringenin is a trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. 5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one is a natural product found in Prunus mume, Helichrysum cephaloideum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists A trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

D-Iditol

hexane-1,2,3,4,5,6-hexol

C6H14O6 (182.079)


Permitted bulk sweetener for foods. Sweetening agent. Food additive, used as anticaking agent, lubricant, for stabiliser and thickener, and for other uses in food processing

   

Digitoxigenin

4-{5,11-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-2,5-dihydrofuran-2-one

C23H34O4 (374.2457)


   

Proanthocyanidin

2-(3,5-dihydroxy-4-methoxyphenyl)-8-[3,5,7-trihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-yl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C31H28O12 (592.1581)


   

4'-Methylepigallocatechin

(2R,3R)-2-(3,5-dihydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C16H16O7 (320.0896)


A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

Elaeocyanidin

(6aR) -5,6abeta,7,12abeta-Tetrahydro-5,5-dimethyl-3-methoxy [ 2 ] benzopyrano [ 4,3-b ] [ 1 ] benzopyran-2,4,8,10-tetrol

C19H20O7 (360.1209)


   

Ourateacatechin

(2R) -2alpha- (3,5-Dihydroxy-4-methoxyphenyl) -3,4-dihydro-2H-1-benzopyran-3alpha,5,7-triol

C16H16O7 (320.0896)


   

Naringenin

(2S) -2,3-Dihydro-5,7-dihydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H12O5 (272.0685)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.904 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.906 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.901 CONFIDENCE standard compound; ML_ID 50 (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Galactitol

(2R,3S,4R,5S)-hexane-1,2,3,4,5,6-hexol

C6H14O6 (182.079)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose. Dulcite is a sugar alcohol with a slightly sweet taste which is a metabolic breakdown product of galactose.

   

Digitoxigenin

4-(3,14-DIHYDROXY-10,13-DIMETHYL-HEXADECAHYDRO-CYCLOPENTA[A]PHENANTHREN-17-YL)-5H-FURAN-2-ONE

C23H34O4 (374.2457)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 23

   

Asahina

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0685)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Glucodigitoxigenin

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-14-hydroxy-10,13-dimethyl-3-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C29H44O9 (536.2985)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides

   

Digitoxigenin

4-{5,11-dihydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl}-2,5-dihydrofuran-2-one

C23H34O4 (374.2457)


   

(6aR,6bR,8aS,11R,12aR,14aR)-3-hydroxy-4,6a,6b,8a,11,14a-hexamethyl-7,8,9,11,12,12a,13,14-octahydropicene-2,10-dione

(6aS,6bS,8aS,11R,12aR,14aR)-3-hydroxy-4,6a,6b,8a,11,14a-hexamethyl-7,8,9,11,12,12a,13,14-octahydropicene-2,10-dione

C28H36O3 (420.2664)


D000970 - Antineoplastic Agents

   

(6bs,8as,11r,12ar,12bs,14ar)-3-hydroxy-4,6b,8a,11,12b,14a-hexamethyl-7,8,9,11,12,12a,13,14-octahydropicene-2,10-dione

(6bs,8as,11r,12ar,12bs,14ar)-3-hydroxy-4,6b,8a,11,12b,14a-hexamethyl-7,8,9,11,12,12a,13,14-octahydropicene-2,10-dione

C28H36O3 (420.2664)


   

(6bs)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-3,14-diol

(6bs)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-3,14-diol

C30H50O2 (442.3811)


   

(6bs,8ar,9s,12ar,12bs,14ar)-3,9-dihydroxy-4,6b,8a,11,11,12b,14a-heptamethyl-8,9,12,12a,13,14-hexahydro-7h-picene-2,10-dione

(6bs,8ar,9s,12ar,12bs,14ar)-3,9-dihydroxy-4,6b,8a,11,11,12b,14a-heptamethyl-8,9,12,12a,13,14-hexahydro-7h-picene-2,10-dione

C29H38O4 (450.277)


   

(3s,4r,4ar,6as,6br,8as,11r,12ar,12bs,14as,14br)-11-(hydroxymethyl)-4,6b,8a,11,12b,14b-hexamethyl-hexadecahydro-1h-picen-3-ol

(3s,4r,4ar,6as,6br,8as,11r,12ar,12bs,14as,14br)-11-(hydroxymethyl)-4,6b,8a,11,12b,14b-hexamethyl-hexadecahydro-1h-picen-3-ol

C29H50O2 (430.3811)


   

(2r,3r)-2-(3,5-dihydroxy-4-methoxyphenyl)-8-[(2r,3r,4r)-3,5,7-trihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-4-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3r)-2-(3,5-dihydroxy-4-methoxyphenyl)-8-[(2r,3r,4r)-3,5,7-trihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-4-yl]-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C31H28O12 (592.1581)


   

(6bs,8ar,9s,11r,12as,12bs,14ar)-3,9-dihydroxy-4,6b,8a,11,12b,14a-hexamethyl-7,8,9,11,12,12a,13,14-octahydropicene-2,10-dione

(6bs,8ar,9s,11r,12as,12bs,14ar)-3,9-dihydroxy-4,6b,8a,11,12b,14a-hexamethyl-7,8,9,11,12,12a,13,14-octahydropicene-2,10-dione

C28H36O4 (436.2613)


   

1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O2 (440.3654)


   

3,9-dihydroxy-4,6b,8a,11,11,12b,14a-heptamethyl-8,9,12,12a,13,14-hexahydro-7h-picene-2,10-dione

3,9-dihydroxy-4,6b,8a,11,11,12b,14a-heptamethyl-8,9,12,12a,13,14-hexahydro-7h-picene-2,10-dione

C29H38O4 (450.277)


   

11-(hydroxymethyl)-4,6b,8a,11,12b,14b-hexamethyl-hexadecahydro-1h-picen-3-ol

11-(hydroxymethyl)-4,6b,8a,11,12b,14b-hexamethyl-hexadecahydro-1h-picen-3-ol

C29H50O2 (430.3811)


   

3-hydroxy-4,6b,8a,11,11,12b,14a-heptamethyl-8,9,12,12a,13,14-hexahydro-7h-picene-2,10-dione

3-hydroxy-4,6b,8a,11,11,12b,14a-heptamethyl-8,9,12,12a,13,14-hexahydro-7h-picene-2,10-dione

C29H38O3 (434.2821)


   

(6bs,8as,12ar,12bs,14ar)-3-hydroxy-4,6b,8a,11,11,12b,14a-heptamethyl-8,9,12,12a,13,14-hexahydro-7h-picene-2,10-dione

(6bs,8as,12ar,12bs,14ar)-3-hydroxy-4,6b,8a,11,11,12b,14a-heptamethyl-8,9,12,12a,13,14-hexahydro-7h-picene-2,10-dione

C29H38O3 (434.2821)


   

(6bs,8as,11r,12ar,14ar)-3,11-dihydroxy-4,6b,8a,11,12b,14a-hexamethyl-8,9,12,12a,13,14-hexahydro-7h-picene-2,10-dione

(6bs,8as,11r,12ar,14ar)-3,11-dihydroxy-4,6b,8a,11,12b,14a-hexamethyl-8,9,12,12a,13,14-hexahydro-7h-picene-2,10-dione

C28H36O4 (436.2613)


   

8-methoxy-10,10-dimethyl-11a,12-dihydro-5ah-5,11-dioxatetraphene-1,3,7,9-tetrol

8-methoxy-10,10-dimethyl-11a,12-dihydro-5ah-5,11-dioxatetraphene-1,3,7,9-tetrol

C19H20O7 (360.1209)


   

(1r,3ar,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3ar,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.3811)


   

(4r,4as,6as,6br,8as,12as,12bs,14as,14bs)-8a-(hydroxymethyl)-4,4a,6b,11,11,12b,14a-heptamethyl-tetradecahydro-1h-picen-3-one

(4r,4as,6as,6br,8as,12as,12bs,14as,14bs)-8a-(hydroxymethyl)-4,4a,6b,11,11,12b,14a-heptamethyl-tetradecahydro-1h-picen-3-one

C30H50O2 (442.3811)


   

(4r,4as,6br,8as,12bs,14as)-8a-(hydroxymethyl)-4,4a,6b,11,11,12b,14a-heptamethyl-tetradecahydro-1h-picen-3-one

(4r,4as,6br,8as,12bs,14as)-8a-(hydroxymethyl)-4,4a,6b,11,11,12b,14a-heptamethyl-tetradecahydro-1h-picen-3-one

C30H50O2 (442.3811)


   

(1r,3ar,5ar,5br,7ar,11ar,11br,13ar,13br)-1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

(1r,3ar,5ar,5br,7ar,11ar,11br,13ar,13br)-1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O2 (440.3654)


   

2-(3,5-dihydroxy-4-methoxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

2-(3,5-dihydroxy-4-methoxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C16H16O7 (320.0896)


   

1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.3811)


   

(1r,3ar,5ar,5br,7ar,11ar,11br,13ar,13bs)-1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

(1r,3ar,5ar,5br,7ar,11ar,11br,13ar,13bs)-1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O2 (440.3654)


   

(1r,3ar,5ar,5br,7ar,9s,11ar,11br,13ar,13bs)-1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3ar,5ar,5br,7ar,9s,11ar,11br,13ar,13bs)-1-(3-hydroxyprop-1-en-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.3811)