NCBI Taxonomy: 185193

Smallanthus fruticosus (ncbi_taxid: 185193)

found 119 associated metabolites at species taxonomy rank level.

Ancestor: Smallanthus

Child Taxonomies: none taxonomy data.

Naringenin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0684702)


Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Sakuranetin

4H-1-Benzopyran-4-one, 2,3-dihydro-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-, (2S)-

C16H14O5 (286.0841194)


Sakuranetin is a flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as an antimycobacterial drug and a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a flavonoid phytoalexin, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Sakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Sakuranetin is found in black walnut. Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae Sakuranetin is a flavanone, a type of flavonoid. It can be found in Polymnia fruticosa and rice, where it acts as a phytoalexin against spore germination of Pyricularia oryzae. A flavonoid phytoalexin that is (S)-naringenin in which the hydroxy group at position 7 is replaced by a methoxy group. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2]. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].

   

(+)-alpha-Pinene

(R)-(+)--Pinene;(+)--Pinene; (1R)-(+)--Pinene; (1R)--Pinene; (1R,5R)-(+)--Pinene

C10H16 (136.1251936)


alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].

   

p-Cymene

1-Methyl-4-(1-methylethyl)-benzene

C10H14 (134.1095444)


Cymene, or p-cymene also known as p-cymol or isopropyltoluene, is a naturally occurring aromatic organic compound. It is classified as a hydrocarbon related to a monoterpene. Its structure consists of a benzene ring para-substituted with a methyl group and an isopropyl group. It is insoluble in water, but miscible with ethanol and ether. Cymene is a constituent of a number of essential oils, most commonly the oil of cumin and thyme. There are two less common geometric isomers. o-Cymene, in which the alkyl groups are ortho-substituted, and m-cymene, in which they are meta-substituted. p-Cymene is the only natural isomer. Cymene is a common ligand for ruthenium. V. widely distributed in plant oils e.g. terpentine and citrus oils and many others. It is used in flavour industries. 1-Isopropyl-4-methylbenzene is found in many foods, some of which are green bell pepper, lemon balm, saffron, and sweet basil.

   

1-Tridecene-3,5,7,9,11-pentayne

Tridec-1-ene-3,5,7,9,11-pentayne

C13H6 (162.0469476)


1-Tridecene-3,5,7,9,11-pentayne is found in burdock. 1-Tridecene-3,5,7,9,11-pentayne is found in leaves, flowers and seeds of numerous species e.g. Valeriana officinalis (valerian Found in leaves, flowers and seeds of numerous subspecies e.g. Valeriana officinalis (valerian)

   

ent-Kaur-16-en-19-al

(1S,4S,5R,9S,10R,13R)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carbaldehyde

C20H30O (286.229653)


ent-16-Kauren-19-al is found in fruits. ent-16-Kauren-19-al is a constituent of the root of Annona squamosa (sugar apple).

   

(S)-alpha-Phellandrene

(5S)-2-Methyl-5-(propan-2-yl)cyclohexa-1,3-diene

C10H16 (136.1251936)


(S)-alpha-Phellandrene is found in ceylan cinnamon. (S)-alpha-Phellandrene is a flavouring agent. (S)-alpha-Phellandrene is a constituent of many essential oils including bitter fennel, elemi and ginger-grass oils. Oil of Ridolfia segetum is a major source (85\\%).Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia Flavouring agent. Constituent of many essential oils including bitter fennel, elemi and ginger-grass oils. Oil of Ridolfia segetum is a major source (85\\%)

   

Pinene

(1R,5R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene

C10H16 (136.1251936)


Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.

   

Naringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0684702)


Naringenin is a trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. 5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one is a natural product found in Prunus mume, Helichrysum cephaloideum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists A trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

3-(4-Hydroxyphenyl)-1-propanol

3-(4-Hydroxyphenyl)propan-1-ol

C9H12O2 (152.0837252)


3-(4-Hydroxyphenyl)-1-propanol is a constituent of Pinus sylvestris (Scotch pine) 3-(4-Hydroxyphenyl)-1-propanol is used in the synthesis of (-)-centrolobine.

   

Centaureidin

4H-1-Benzopyran-4-one,5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,6-dimethoxy-

C18H16O8 (360.0845136)


   

Centaureidin

5,7-Dihydroxy-2- (3-hydroxy-4-methoxyphenyl) -3,6-dimethoxy-4H-1-benzopyran-4-one

C18H16O8 (360.0845136)


A trihydroxyflavone that consists of quercetagetin in which the hydroxy groups at positions 3, 6 and 4 have been replaced by methoxy groups. It has been isolated from Eremophila mitchellii and Athroisma proteiforme.

   

Naringenin

(2S) -2,3-Dihydro-5,7-dihydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H12O5 (272.0684702)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.904 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.906 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.901 CONFIDENCE standard compound; ML_ID 50 (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Sakuranetin

(S) -2,3-Dihydro-5-hydroxy-2- (4-hydroxyphenyl) -7-methoxy-4H-1-benzopyran-4-one

C16H14O5 (286.0841194)


Annotation level-1 Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2]. Sakuranetin is a cherry flavonoid phytoalexin, shows strong antifungal activity[1]. Sakuranetin has anti-inflammatory and antioxidative activities. Sakuranetin ameliorates LPS-induced acute lung injury[2].

   

5-Acetyl-2-(1-hydroxy-1-methylethyl)benzofuran

5-Acetyl-2-(1-hydroxy-1-methylethyl)benzofuran

C13H14O3 (218.0942894)


   

ent-Kaur-16-en-19-oic acid

ent-Kaur-16-en-19-oic acid

C20H30O2 (302.224568)


   

3-(4-Hydroxyphenyl)-1-propanol

3-(4-Hydroxyphenyl)-1-propanol

C9H12O2 (152.0837252)


3-(4-Hydroxyphenyl)-1-propanol is used in the synthesis of (-)-centrolobine.

   

ent-Kaurenal

ent-kaur-16-en-19-al

C20H30O (286.229653)


   

Asahina

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0684702)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

4-g-Hydroxypropylphenol

3-(4-Hydroxyphenyl)propan-1-ol

C9H12O2 (152.0837252)


3-(4-Hydroxyphenyl)-1-propanol is used in the synthesis of (-)-centrolobine.

   

D-alpha-Phellandrene

(5S)-2-Methyl-5-(propan-2-yl)cyclohexa-1,3-diene

C10H16 (136.1251936)


   

Isoabienol

2,5,5,8a-tetramethyl-1-(3-methylidenepent-4-en-1-yl)-decahydronaphthalen-2-ol

C20H34O (290.2609514)


   

P-CYMENE

P-CYMENE

C10H14 (134.1095444)


A monoterpene that is toluene substituted by an isopropyl group at position 4.

   

Cymol

InChI=1\C10H14\c1-8(2)10-6-4-9(3)5-7-10\h4-8H,1-3H

C10H14 (134.1095444)


   

80605_FLUKA

Bicyclo(3.1.1)hept-2-ene, 2,6,6-trimethyl-, (1theta)-

C10H16 (136.1251936)


(1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].

   

2060-59-5

Tridec-1-ene-3,5,7,9,11-pentayne

C13H6 (162.0469476)


   

AI3-12108

InChI=1\C9H12O2\c10-7-1-2-8-3-5-9(11)6-4-8\h3-6,10-11H,1-2,7H

C9H12O2 (152.0837252)


3-(4-Hydroxyphenyl)-1-propanol is used in the synthesis of (-)-centrolobine.

   

1-Tridecene-3,5,7,9,11-pentayne

Tridec-1-ene-3,5,7,9,11-pentayne

C13H6 (162.0469476)


A pentayne that is tridecane which carries a double bond at position 1 and triple bonds at positions 3,5,7,9 and 11. It is a natural product which exhibits ovicidal and nematicidal activities.

   

(+)-alpha-Phellandrene

(S)-(+)-alpha-Phellandrene

C10H16 (136.1251936)


The (5S)-stereoisomer of alpha-phellandrene (5-isopropyl-2-methylcyclohexa-1,3-diene).

   

9-methyl-5-{[(2-methylbut-2-enoyl)oxy]methyl}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

9-methyl-5-{[(2-methylbut-2-enoyl)oxy]methyl}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C25H36O4 (400.2613456)


   

{5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-5-yl}methanol

{5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-5-yl}methanol

C20H32O (288.24530219999997)


   

1-[2-(2-hydroxypropan-2-yl)-1-benzofuran-5-yl]ethanone

1-[2-(2-hydroxypropan-2-yl)-1-benzofuran-5-yl]ethanone

C13H14O3 (218.0942894)


   

methyl (3as,4s,5s,11ar)-5-(acetyloxy)-10-methyl-4-{[(2z)-2-methylbut-2-enoyl]oxy}-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carboxylate

methyl (3as,4s,5s,11ar)-5-(acetyloxy)-10-methyl-4-{[(2z)-2-methylbut-2-enoyl]oxy}-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carboxylate

C23H28O8 (432.1784088)


   

5,9-dimethyl-15-[(2-methylbut-2-enoyl)oxy]-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

5,9-dimethyl-15-[(2-methylbut-2-enoyl)oxy]-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C25H36O4 (400.2613456)


   

(1'r,2s,4's,5'r,9's,10's,13'r,15'r)-5',9'-dimethyl-15'-{[(2z)-2-methylbut-2-enoyl]oxy}spiro[oxirane-2,14'-tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane]-5'-carboxylic acid

(1'r,2s,4's,5'r,9's,10's,13'r,15'r)-5',9'-dimethyl-15'-{[(2z)-2-methylbut-2-enoyl]oxy}spiro[oxirane-2,14'-tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane]-5'-carboxylic acid

C25H36O5 (416.2562606)


   

[(1s,4s,5r,9s,10r,13r)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-5-yl]methanol

[(1s,4s,5r,9s,10r,13r)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-5-yl]methanol

C20H32O (288.24530219999997)


   

5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carbaldehyde

5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carbaldehyde

C20H30O (286.229653)


   

5-(acetyloxy)-6-formyl-10-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-methylbut-2-enoate

5-(acetyloxy)-6-formyl-10-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2-methylbut-2-enoate

C22H26O7 (402.1678446)


   

(1s,4s,5r,9s,10r,13r)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carbaldehyde

(1s,4s,5r,9s,10r,13r)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carbaldehyde

C20H30O (286.229653)


   

(1r,2r,4as,8as)-2,5,5,8a-tetramethyl-1-(3-methylidenepent-4-en-1-yl)-hexahydro-1h-naphthalen-2-ol

(1r,2r,4as,8as)-2,5,5,8a-tetramethyl-1-(3-methylidenepent-4-en-1-yl)-hexahydro-1h-naphthalen-2-ol

C20H34O (290.2609514)


   

(3as,4s,5s,11ar)-5-(acetyloxy)-6-formyl-10-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2z)-2-methylbut-2-enoate

(3as,4s,5s,11ar)-5-(acetyloxy)-6-formyl-10-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2z)-2-methylbut-2-enoate

C22H26O7 (402.1678446)


   

5-(acetyloxy)-6-(methoxycarbonyl)-10-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2,3-dimethyloxirane-2-carboxylate

5-(acetyloxy)-6-(methoxycarbonyl)-10-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl 2,3-dimethyloxirane-2-carboxylate

C23H28O9 (448.17332380000005)


   

(1s,4s,5r,9s,10r,13r)-9-methyl-5-{[(3-methylbut-2-enoyl)oxy]methyl}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1s,4s,5r,9s,10r,13r)-9-methyl-5-{[(3-methylbut-2-enoyl)oxy]methyl}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C25H36O4 (400.2613456)


   

methyl 9-(acetyloxy)-4-methyl-10-[(2-methylbut-2-enoyl)oxy]-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-ene-8-carboxylate

methyl 9-(acetyloxy)-4-methyl-10-[(2-methylbut-2-enoyl)oxy]-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-ene-8-carboxylate

C23H28O9 (448.17332380000005)


   

methyl 5-(acetyloxy)-10-methyl-4-[(2-methylbut-2-enoyl)oxy]-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carboxylate

methyl 5-(acetyloxy)-10-methyl-4-[(2-methylbut-2-enoyl)oxy]-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-6-carboxylate

C23H28O8 (432.1784088)


   

(1r,4s,5r,9s,10s,13r,15s)-5,9-dimethyl-15-{[(2z)-2-methylbut-2-enoyl]oxy}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1r,4s,5r,9s,10s,13r,15s)-5,9-dimethyl-15-{[(2z)-2-methylbut-2-enoyl]oxy}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C25H36O4 (400.2613456)


   

methyl (1s,2s,4r,7e,9r,10s,11r)-9-(acetyloxy)-4-methyl-10-{[(2z)-2-methylbut-2-enoyl]oxy}-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-ene-8-carboxylate

methyl (1s,2s,4r,7e,9r,10s,11r)-9-(acetyloxy)-4-methyl-10-{[(2z)-2-methylbut-2-enoyl]oxy}-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-ene-8-carboxylate

C23H28O9 (448.17332380000005)


   

(1s,4s,5r,9s,10r,13r)-9-methyl-5-({[(2z)-2-methylbut-2-enoyl]oxy}methyl)-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1s,4s,5r,9s,10r,13r)-9-methyl-5-({[(2z)-2-methylbut-2-enoyl]oxy}methyl)-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C25H36O4 (400.2613456)


   

methyl (1s,2s,4r,7e,9r,10s,11r)-9-(acetyloxy)-10-[(2s,3r)-2,3-dimethyloxirane-2-carbonyloxy]-4-methyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-ene-8-carboxylate

methyl (1s,2s,4r,7e,9r,10s,11r)-9-(acetyloxy)-10-[(2s,3r)-2,3-dimethyloxirane-2-carbonyloxy]-4-methyl-12-methylidene-13-oxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-7-ene-8-carboxylate

C23H28O10 (464.16823880000004)


   

(3as,4s,5s,11ar)-5-(acetyloxy)-6-(methoxycarbonyl)-10-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2s,3r)-2,3-dimethyloxirane-2-carboxylate

(3as,4s,5s,11ar)-5-(acetyloxy)-6-(methoxycarbonyl)-10-methyl-3-methylidene-2-oxo-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-4-yl (2s,3r)-2,3-dimethyloxirane-2-carboxylate

C23H28O9 (448.17332380000005)


   

5',9'-dimethyl-15'-[(2-methylbut-2-enoyl)oxy]spiro[oxirane-2,14'-tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane]-5'-carboxylic acid

5',9'-dimethyl-15'-[(2-methylbut-2-enoyl)oxy]spiro[oxirane-2,14'-tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane]-5'-carboxylic acid

C25H36O5 (416.2562606)


   

9-methyl-5-{[(3-methylbut-2-enoyl)oxy]methyl}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

9-methyl-5-{[(3-methylbut-2-enoyl)oxy]methyl}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C25H36O4 (400.2613456)