NCBI Taxonomy: 230214

Wyethia angustifolia (ncbi_taxid: 230214)

found 39 associated metabolites at species taxonomy rank level.

Ancestor: Wyethia

Child Taxonomies: none taxonomy data.

Naringenin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0685)


Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Eriodictyol, also known as 3,4,5,7-tetrahydroxyflavanone or 2,3-dihydroluteolin, belongs to the class of organic compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, eriodictyol is considered to be a flavonoid lipid molecule. Outside of the human body, eriodictyol has been detected, but not quantified in, several different foods, such as common oregano, common thymes, parsley, sweet basils, and tarragons. This could make eriodictyol a potential biomarker for the consumption of these foods. Eriodictyol is a compound isolated from Eriodictyon californicum and can be used in medicine as an expectorant. BioTransformer predicts that eriodictiol is a product of luteolin metabolism via a flavonoid-c-ring-reduction reaction catalyzed by an unspecified-gut microbiota enzyme (PMID: 30612223). Eriodictyol, also known as 5735-tetrahydroxyflavanone, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Eriodictyol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eriodictyol can be found in a number of food items such as rowal, grape, cardamom, and lemon balm, which makes eriodictyol a potential biomarker for the consumption of these food products. Eriodictyol is a bitter-masking flavanone, a flavonoid extracted from yerba santa (Eriodictyon californicum), a plant native to North America. Eriodictyol is one of the four flavanones identified in this plant as having taste-modifying properties, the other three being homoeriodictyol, its sodium salt, and sterubin . Eriodictyol is a tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. It is a tetrahydroxyflavanone and a member of 3-hydroxyflavanones. Eriodictyol is a natural product found in Eupatorium album, Eupatorium hyssopifolium, and other organisms with data available. A tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. Acquisition and generation of the data is financially supported in part by CREST/JST. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

8-Prenylnaringenin

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-8-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


Sophoraflavanone B is a trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. It has a role as a platelet aggregation inhibitor and a plant metabolite. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. It is a conjugate acid of a sophoraflavanone B(1-). 8-Prenylnaringenin is a natural product found in Macaranga conifera, Macaranga denticulata, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens A trihydroxyflavanone that is (S)-naringenin having a prenyl group at position 8. INTERNAL_ID 2299; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2299

   

Isosakuranetin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-methoxyphenyl)-, (2S)-

C16H14O5 (286.0841)


4-methoxy-5,7-dihydroxyflavanone is a dihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5 and 7 and a methoxy group at position 4 (the 2S stereoisomer). It has a role as a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a member of 4-methoxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Isosakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia. Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia.

   

(S)-4',5,7-Trihydroxy-6-prenylflavanone

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. 6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available. (S)-4,5,7-Trihydroxy-6-prenylflavanone is found in alcoholic beverages. (S)-4,5,7-Trihydroxy-6-prenylflavanone is isolated from Humulus lupulus (hops). Isolated from Humulus lupulus (hops). 6-Prenylnaringenin is found in beer and alcoholic beverages. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].

   

3'-Hydroxygenistein

4H-1-Benzopyran-4-one, 3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-

C15H10O6 (286.0477)


Orobol is a member of the class of 7-hydroxyisoflavones which consists of isoflavone substituted by hydroxy groups at positions 5, 7, 3 and 4. It has been isolated from the mycelia of Cordyceps sinensis. It has a role as an anti-inflammatory agent, a radical scavenger, a plant metabolite and a fungal metabolite. It is functionally related to an isoflavone. Orobol is a natural product found in Tritirachium, Ammopiptanthus mongolicus, and other organisms with data available. A member of the class of 7-hydroxyisoflavones which consists of isoflavone substituted by hydroxy groups at positions 5, 7, 3 and 4. It has been isolated from the mycelia of Cordyceps sinensis. 3-Hydroxygenistein is a polyphenol metabolite detected in biological fluids (PMID: 20428313). A polyphenol metabolite detected in biological fluids [PhenolExplorer]

   

Naringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C15H12O5 (272.0685)


Naringenin is a trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. 5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one is a natural product found in Prunus mume, Helichrysum cephaloideum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists A trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Santal

3-(3,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-4H-chromen-4-one

C16H12O6 (300.0634)


Santal is found in green vegetables. Santal is a constituent of Pterocarpus soyauxii. Constituent of Pterocarpus soyauxii. Santal is found in green vegetables.

   

3-O-Methylorobol

3-O-Methylorobol

C16H12O6 (300.0634)


   

4',5-Dihydroxy-3',7-dimethoxyisoflavone

5-hydroxy-3-(4-hydroxy-3-methoxyphenyl)-7-methoxy-4H-chromen-4-one

C17H14O6 (314.079)


4,5-Dihydroxy-3,7-dimethoxyisoflavone is found in green vegetables. 4,5-Dihydroxy-3,7-dimethoxyisoflavone is a constituent of Pterocarpus soyauxii. Constituent of Pterocarpus soyauxii. 4,5-Dihydroxy-3,7-dimethoxyisoflavone is found in green vegetables.

   

8-Prenylnaringenin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-en-1-yl)-3,4-dihydro-2H-1-benzopyran-4-one

C20H20O5 (340.1311)


(s)-4,5,7-trihydroxy-8-prenylflavanone is a member of the class of compounds known as 8-prenylated flavanones. 8-prenylated flavanones are flavanones that features a C5-isoprenoid substituent at the 8-position. Thus, (s)-4,5,7-trihydroxy-8-prenylflavanone is considered to be a flavonoid lipid molecule (s)-4,5,7-trihydroxy-8-prenylflavanone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-4,5,7-trihydroxy-8-prenylflavanone can be found in beer, which makes (s)-4,5,7-trihydroxy-8-prenylflavanone a potential biomarker for the consumption of this food product.

   

Isosakuranetin

5,7-dihydroxy-2-(4-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C16H14O5 (286.0841)


5,7-dihydroxy-2-(4-methoxyphenyl)-3,4-dihydro-2h-1-benzopyran-4-one is a member of the class of compounds known as 4-o-methylated flavonoids. 4-o-methylated flavonoids are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. 5,7-dihydroxy-2-(4-methoxyphenyl)-3,4-dihydro-2h-1-benzopyran-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-methoxyphenyl)-3,4-dihydro-2h-1-benzopyran-4-one can be found in sweet orange, which makes 5,7-dihydroxy-2-(4-methoxyphenyl)-3,4-dihydro-2h-1-benzopyran-4-one a potential biomarker for the consumption of this food product. Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia. Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia.

   

6-Prenyleriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-6- (3-methyl-2-butenyl) -4H-1-benzopyran-4-one

C20H20O6 (356.126)


   

Lupisoflavone

Lupisoflavone

C21H20O6 (368.126)


   

Isosakuranetin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-methoxyphenyl)-, (2S)-

C16H14O5 (286.0841)


4-methoxy-5,7-dihydroxyflavanone is a dihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5 and 7 and a methoxy group at position 4 (the 2S stereoisomer). It has a role as a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a member of 4-methoxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Isosakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. A dihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5 and 7 and a methoxy group at position 4 (the 2S stereoisomer). Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia. Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia.

   

7,3-Dimethylorobol

5,4-Dihydroxy-7,3-dimethoxyisoflavone

C17H14O6 (314.079)


   

Eriodictyol

(S) -2- (3,4-Dihydroxyphenyl) -2,3-dihydro-5,7-dihydroxy-4H-1-benzopyran-4-one

C15H12O6 (288.0634)


Constituent of the leaves and branches of Phyllanthus emblica (emblic). Eriodictyol 7-(6-coumaroylglucoside) is found in fruits. Annotation level-1 Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.

   

Santal

3- (3,4-Dihydroxyphenyl) -5-hydroxy-7-methoxy-4H-1-benzopyran-4-one

C16H12O6 (300.0634)


   

Naringenin

(2S) -2,3-Dihydro-5,7-dihydroxy-2- (4-hydroxyphenyl) -4H-1-benzopyran-4-one

C15H12O5 (272.0685)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.904 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.906 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.901 CONFIDENCE standard compound; ML_ID 50 (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Orobol

4H-1-Benzopyran-4-one, 5,7-dihydroxy-3-(3,4-dihydroxyphenyl)-

C15H10O6 (286.0477)


   

6-Prenylnaringenin

4H-1-BENZOPYRAN-4-ONE, 2,3-DIHYDRO-5,7-DIHYDROXY-2-(4-HYDROXYPHENYL)-6-(3-METHYL-2-BUTEN-1-YL)-, (2S)-

C20H20O5 (340.1311)


6-prenylnaringenin is a trihydroxyflavanone having a structure of naringenin prenylated at C-6. It has a role as a T-type calcium channel blocker. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. 6-Prenylnaringenin is a natural product found in Macaranga denticulata, Wyethia angustifolia, and other organisms with data available. A trihydroxyflavanone having a structure of naringenin prenylated at C-6. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1]. (2S)-6-Prenylnaringenin is the most efficient compound in forebrain. (2S)-6-Prenylnaringenin acts as a GABAA positive allosteric modulator at α+β- binding interface[1].

   

3-O-METHYLOROBOL

5,7-dihydroxy-3-(4-hydroxy-3-methoxyphenyl)chromen-4-one

C16H12O6 (300.0634)


3-O-methylorobol is a hydroxyisoflavone that is orobol in which the hydroxy group at position 3 has been replaced by a methoxy group. It has been isolated from Crotalaria lachnophora. It has a role as a plant metabolite. It is a methoxyisoflavone and a hydroxyisoflavone. It is functionally related to an orobol. 3-O-Methylorobol is a natural product found in Dalbergia sissoo, Crotalaria lachnophora, and other organisms with data available. A hydroxyisoflavone that is orobol in which the hydroxy group at position 3 has been replaced by a methoxy group. It has been isolated from Crotalaria lachnophora.

   

3-O-Methylorobol

5,7-dihydroxy-3-(4-hydroxy-3-methoxy-phenyl)chromen-4-one

C16H12O6 (300.0634)


   

Asahina

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-, (2S)-

C15H12O5 (272.0685)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.

   

Sophoraflavanone B

Sophoraflavanone B

C20H20O5 (340.1311)


   

5,4-Dihydroxy-7,3-dimethoxyisoflavone

5,4-Dihydroxy-7,3-dimethoxyisoflavone

C17H14O6 (314.079)


   

1-(6,8-dihydroxy-3-methyl-2,5-dihydro-1-benzoxepin-7-yl)-3-(3,4-dihydroxyphenyl)prop-2-en-1-one

1-(6,8-dihydroxy-3-methyl-2,5-dihydro-1-benzoxepin-7-yl)-3-(3,4-dihydroxyphenyl)prop-2-en-1-one

C20H18O6 (354.1103)


   

3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-en-1-yl)chromen-4-one

3-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-en-1-yl)chromen-4-one

C20H18O6 (354.1103)


   

(2s,3r)-3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2s,3r)-3,5,7-trihydroxy-2-(4-hydroxy-3-methoxyphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C21H22O7 (386.1365)


   

(4r,5r)-4-(3,4-dihydroxyphenyl)-5,8-dihydroxy-13-methyl-3,11-dioxatricyclo[8.5.0.0²,⁷]pentadeca-1(10),2(7),8,13-tetraen-6-one

(4r,5r)-4-(3,4-dihydroxyphenyl)-5,8-dihydroxy-13-methyl-3,11-dioxatricyclo[8.5.0.0²,⁷]pentadeca-1(10),2(7),8,13-tetraen-6-one

C20H18O7 (370.1052)


   

3,5,7-trihydroxy-2-(4-hydroxy-3-methylphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

3,5,7-trihydroxy-2-(4-hydroxy-3-methylphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C21H22O6 (370.1416)


   

4-(3,4-dihydroxyphenyl)-8-hydroxy-13-methyl-3,11-dioxatricyclo[8.5.0.0²,⁷]pentadeca-1(10),2(7),8,13-tetraen-6-one

4-(3,4-dihydroxyphenyl)-8-hydroxy-13-methyl-3,11-dioxatricyclo[8.5.0.0²,⁷]pentadeca-1(10),2(7),8,13-tetraen-6-one

C20H18O6 (354.1103)


   

(2r,3r)-3,5,7-trihydroxy-2-(4-hydroxy-3-methylphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2r,3r)-3,5,7-trihydroxy-2-(4-hydroxy-3-methylphenyl)-8-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C21H22O6 (370.1416)


   

4-(3,4-dihydroxyphenyl)-5,8-dihydroxy-13-methyl-3,11-dioxatricyclo[8.5.0.0²,⁷]pentadeca-1(10),2(7),8,13-tetraen-6-one

4-(3,4-dihydroxyphenyl)-5,8-dihydroxy-13-methyl-3,11-dioxatricyclo[8.5.0.0²,⁷]pentadeca-1(10),2(7),8,13-tetraen-6-one

C20H18O7 (370.1052)


   

(2e)-1-(6,8-dihydroxy-3-methyl-2,5-dihydro-1-benzoxepin-7-yl)-3-(3,4-dihydroxyphenyl)prop-2-en-1-one

(2e)-1-(6,8-dihydroxy-3-methyl-2,5-dihydro-1-benzoxepin-7-yl)-3-(3,4-dihydroxyphenyl)prop-2-en-1-one

C20H18O6 (354.1103)


   

(2s)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

(2s)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-en-1-yl)-2,3-dihydro-1-benzopyran-4-one

C20H20O6 (356.126)


   

(4s)-4-(3,4-dihydroxyphenyl)-8-hydroxy-13-methyl-3,11-dioxatricyclo[8.5.0.0²,⁷]pentadeca-1(10),2(7),8,13-tetraen-6-one

(4s)-4-(3,4-dihydroxyphenyl)-8-hydroxy-13-methyl-3,11-dioxatricyclo[8.5.0.0²,⁷]pentadeca-1(10),2(7),8,13-tetraen-6-one

C20H18O6 (354.1103)


   

5,7-dihydroxy-3-(4-hydroxy-3-methoxyphenyl)-6-(3-methylbut-2-en-1-yl)chromen-4-one

5,7-dihydroxy-3-(4-hydroxy-3-methoxyphenyl)-6-(3-methylbut-2-en-1-yl)chromen-4-one

C21H20O6 (368.126)


   

(4s,5r)-4-(3,4-dihydroxyphenyl)-5,8-dihydroxy-13-methyl-3,11-dioxatricyclo[8.5.0.0²,⁷]pentadeca-1(10),2(7),8,13-tetraen-6-one

(4s,5r)-4-(3,4-dihydroxyphenyl)-5,8-dihydroxy-13-methyl-3,11-dioxatricyclo[8.5.0.0²,⁷]pentadeca-1(10),2(7),8,13-tetraen-6-one

C20H18O7 (370.1052)