NCBI Taxonomy: 154291
Dendrobium chrysanthum (ncbi_taxid: 154291)
found 27 associated metabolites at species taxonomy rank level.
Ancestor: Dendrobium
Child Taxonomies: none taxonomy data.
Naringenin
Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
Dendrobine
Dendrobine is a member of indoles. Dendroban-12-one is a natural product found in Dendrobium chrysanthum, Dendrobium linawianum, and Dendrobium nobile with data available. Dendrobine is an alkaloid isolated from Dendrobium nobile. Dendrobine possesses antiviral activity against influenza A viruses, with IC50s of 3.39 μM, 2.16 μM and 5.32 μM for A/FM-1/1/47 (H1N1), A/Puerto Rico/8/34 H274Y (H1N1) and A/Aichi/2/68 (H3N2), respectively[1]. Dendrobine is an alkaloid isolated from Dendrobium nobile. Dendrobine possesses antiviral activity against influenza A viruses, with IC50s of 3.39 μM, 2.16 μM and 5.32 μM for A/FM-1/1/47 (H1N1), A/Puerto Rico/8/34 H274Y (H1N1) and A/Aichi/2/68 (H3N2), respectively[1].
beta-Sitosterol 3-O-beta-D-galactopyranoside
Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.
Hygrine
Hygrine, also known as (+)-hygrine or (+)-N-methyl-2-acetonylpyrrolidine, belongs to alkaloids and derivatives class of compounds. Those are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic propertiesand is also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. Hygrine is soluble (in water) and an extremely weak acidic compound (based on its pKa). Hygrine can be found in pomegranate, which makes hygrine a potential biomarker for the consumption of this food product. Hygrine is a pyrrolidine alkaloid, found mainly in coca leaves (0.2\\%). It was first isolated by Carl Liebermann in 1889 (along with a related compound cuscohygrine) as an alkaloid accompanying cocaine in coca. Hygrine is extracted as a thick yellow oil, having a pungent taste and odor .
5-Hydroxymethyl-2-furancarboxaldehyde
5-hydroxymethylfurfural is a member of the class of furans that is furan which is substituted at positions 2 and 5 by formyl and hydroxymethyl substituents, respectively. Virtually absent from fresh foods, it is naturally generated in sugar-containing foods during storage, and especially by drying or cooking. It is the causative component in honey that affects the presystemic metabolism and pharmacokinetics of GZ in-vivo. It has a role as an indicator and a Maillard reaction product. It is a member of furans, an arenecarbaldehyde and a primary alcohol. Aes-103 has been used in trials studying the treatment and prevention of Hypoxia, Anemia, Sickle Cell, and Sickle Cell Disease. 5-Hydroxymethylfurfural is a natural product found in Prunus mume, Tussilago farfara, and other organisms with data available. 5-Hydroxymethyl-2-furancarboxaldehyde belongs to the family of Furans. These are compounds containing a furan ring, which is a five-member aromatic ring with one oxygen atom, four carbon atoms. 5-Hydroxymethyl-2-furancarboxaldehyde is found in garden onion. Obtainable from various carbohydrates. 5-Hydroxymethyl-2-furancarboxaldehyde is present in tomatoes, tobacco oil etc. 5-Hydroxymethyl-2-furancarboxaldehyde is a constituent of numerous plant species. 5-Hydroxymethyl-2-furancarboxaldehyde is used as an index of heat treatment and deterioration in food such as tomato paste, honey and fruit juices. Also an indicator of adulteration with acid-converted invert sugars. 5-Hydroxymethylfurfural is a biomarker for the consumption of beer 5-Hydroxymethyl-2-furancarboxaldehyde or simply HMF is obtainable from various carbohydrates. It is found in garden tomatoes, garden onion, and tobacco oil. Constituent of numerous plant spp.. Used as an index of heat treatment and deterioration in food such as tomato paste, honey and fruit juices. Also an indicator of adulteration with acid-converted invert sugars. 5-Hydroxymethylfurfural is a biomarker for the consumption of beer. 5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors. 5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors.
Ayapin
Ayapin belongs to coumarins and derivatives class of compounds. Those are polycyclic aromatic compounds containing a 1-benzopyran moiety with a ketone group at the C2 carbon atom (1-benzopyran-2-one). Ayapin is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ayapin can be found in sunflower, which makes ayapin a potential biomarker for the consumption of this food product.
Batatasin III
Batatasin III is a stilbenoid. batatasin III is a natural product found in Bulbophyllum reptans, Cymbidium aloifolium, and other organisms with data available. Batatasin III is found in root vegetables. Batatasin III is a constituent of Dioscorea batatas (Chinese yam) Batatasin III, a stilbenoid, inhibits cancer migration and invasion by suppressing epithelial to mesenchymal transition (EMT) and FAK-AKT signals. Batatasin III has anti-cancer activities[1]. Batatasin III, a stilbenoid, inhibits cancer migration and invasion by suppressing epithelial to mesenchymal transition (EMT) and FAK-AKT signals. Batatasin III has anti-cancer activities[1]. Batatasin III, a stilbenoid, inhibits cancer migration and invasion by suppressing epithelial to mesenchymal transition (EMT) and FAK-AKT signals. Batatasin III has anti-cancer activities[1].
Naringenin
Naringenin is a trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. It is a trihydroxyflavanone and a member of 4-hydroxyflavanones. 5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one is a natural product found in Prunus mume, Helichrysum cephaloideum, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists A trihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 6 and 4. D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
3-[2-(3-hydroxyphenyl)ethyl]-5-methoxyphenol
Asahina
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists D005765 - Gastrointestinal Agents > D000897 - Anti-Ulcer Agents (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
beta-Sitosterol 3-O-beta-D-galactopyranoside
67-47-0
5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors. 5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors.