NCBI Taxonomy: 544557
Aphanizomenon flos-aquae GG (ncbi_taxid: 544557)
found 59 associated metabolites at strain taxonomy rank level.
Ancestor: Aphanizomenon flos-aquae
Child Taxonomies: none taxonomy data.
Stigmasterol
Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol
beta-Carotene
Beta-carotene is a cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. It has a role as a biological pigment, a provitamin A, a plant metabolite, a human metabolite, a mouse metabolite, a cofactor, a ferroptosis inhibitor and an antioxidant. It is a cyclic carotene and a carotenoid beta-end derivative. Beta-carotene, with the molecular formula C40H56, belongs to the group of carotenoids consisting of isoprene units. The presence of long chains of conjugated double bonds donates beta-carotene with specific colors. It is the most abundant form of carotenoid and it is a precursor of the vitamin A. Beta-carotene is composed of two retinyl groups. It is an antioxidant that can be found in yellow, orange and green leafy vegetables and fruits. Under the FDA, beta-carotene is considered as a generally recognized as safe substance (GRAS). Beta-Carotene is a natural product found in Epicoccum nigrum, Lonicera japonica, and other organisms with data available. Beta-Carotene is a naturally-occurring retinol (vitamin A) precursor obtained from certain fruits and vegetables with potential antineoplastic and chemopreventive activities. As an anti-oxidant, beta carotene inhibits free-radical damage to DNA. This agent also induces cell differentiation and apoptosis of some tumor cell types, particularly in early stages of tumorigenesis, and enhances immune system activity by stimulating the release of natural killer cells, lymphocytes, and monocytes. (NCI04) beta-Carotene is a metabolite found in or produced by Saccharomyces cerevisiae. A carotenoid that is a precursor of VITAMIN A. Beta carotene is administered to reduce the severity of photosensitivity reactions in patients with erythropoietic protoporphyria (PORPHYRIA, ERYTHROPOIETIC). See also: Lycopene (part of); Broccoli (part of); Lycium barbarum fruit (part of). Beta-Carotene belongs to the class of organic compounds known as carotenes. These are a type of polyunsaturated hydrocarbon molecules containing eight consecutive isoprene units. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Beta-carotene is therefore considered to be an isoprenoid lipid molecule. Beta-carotene is a strongly coloured red-orange pigment abundant in fungi, plants, and fruits. It is synthesized biochemically from eight isoprene units and therefore has 40 carbons. Among the carotenes, beta-carotene is distinguished by having beta-rings at both ends of the molecule. Beta-Carotene is biosynthesized from geranylgeranyl pyrophosphate. It is the most common form of carotene in plants. In nature, Beta-carotene is a precursor (inactive form) to vitamin A. Vitamin A is produed via the action of beta-carotene 15,15-monooxygenase on carotenes. In mammals, carotenoid absorption is restricted to the duodenum of the small intestine and dependent on a class B scavenger receptor (SR-B1) membrane protein, which is also responsible for the absorption of vitamin E. One molecule of beta-carotene can be cleaved by the intestinal enzyme Beta-Beta-carotene 15,15-monooxygenase into two molecules of vitamin A. Beta-Carotene contributes to the orange color of many different fruits and vegetables. Vietnamese gac and crude palm oil are particularly rich sources, as are yellow and orange fruits, such as cantaloupe, mangoes, pumpkin, and papayas, and orange root vegetables such as carrots and sweet potatoes. Excess beta-carotene is predominantly stored in the fat tissues of the body. The most common side effect of excessive beta-carotene consumption is carotenodermia, a physically harmless condition that presents as a conspicuous orange skin tint arising from deposition of the carotenoid in the outermost layer of the epidermis. Yellow food colour, dietary supplement, nutrient, Vitamin A precursor. Nutriceutical with antioxidation props. beta-Carotene is found in many foods, some of which are summer savory, gram bean, sunburst squash (pattypan squash), and other bread product. A cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins
Canthaxanthin
Canthaxanthin, also known as Cantaxanthin, Cantaxanthine, or Canthaxanthine is a keto-carotenoid, a pigment widely distributed in nature. Carotenoids belong to a larger class of phytochemicals known as terpenoids. Canthaxanin is also classified as a xanthophyll. Xanthophylls are yellow pigments and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. Both are carotenoids. Xanthophylls and carotenes are similar in structure, but xanthophylls contain oxygen atoms while carotenes are purely hydrocarbons, which do not contain oxygen. Their content of oxygen causes xanthophylls to be more polar (in molecular structure) than carotenes and causes their separation from carotenes in many types of chromatography. (Carotenes are usually more orange in color than xanthophylls. Canthaxanthin is naturally found in bacteria, algae and some fungi. Canthaxanthin is associated with E number E161g and is approved for use as a food coloring agent in different countries, including the United States and the EU. Canthaxanthin is used as poultry feed additive to yield red color in skin and yolks. The European Union permits the use of canthaxanthin in feedstuff at a maximum content of 25 mg/kg of final feedstuff while the United States allows the use of this pigment in broiler chicken and salmonid fish feeds. Canthoxanthin was first isolated in edible chanterelle mushroom (Cantharellus cinnabarinus), from which it derived its name. It has also been found in green algae, bacteria, archea (a halophilic archaeon called Haloferax alexandrines), fungi and bioaccumulates in tissues and egg yolk from wild birds and at low levels in crustaceans and fish such as carp, golden grey mullet, and seabream. Canthaxanthin is not found in wild Atlantic Salmon, but is a minor carotenoid in Pacific Salmon. Canthaxanthin is used in farm-raised trout to give a red/orange color to their flesh similar to wild trout. Canthaxanthin has been used as a food additive for egg yolk, in cosmetics and as a pigmenting agent for human skin applications. It has also been used as a feed additive in fish and crustacean farms. Canthaxanthin is a potent lipid-soluble antioxidant (PMID: 2505240). Canthaxanthin increases resistance to lipid peroxidation primarily by enhancing membrane alpha-tocopherol levels and secondarily by providing weak direct antioxidant activity. Canthaxanthin biosynthesis in bacteria and algae proceeds from beta-carotene via the action of an enzyme known as a beta-carotene ketolase, that is able to add a carbonyl group to carbon 4 and 4 of the beta carotene molecule. Food colouring. Constituent of the edible mushroom (Cantharellus cinnabarinus), sea trout, salmon and brine shrimp. It is used in broiler chicken feed to enhance the yellow colour of chicken skin D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
echinenone
A carotenone that is beta-carotene in which the 4 position has undergone formal oxidation to afford the corresponding ketone. Isolated as orange-red crystals, it is widely distributed in marine invertebrates. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width for selecting the precursor ion was 3 Da.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 16HP2005 to the Mass Spectrometry Society of Japan.
Lupeol acetate
Poriferasterol
Lupeol acetate
Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].
Stigmasterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.
β-Carotene
The novel carbohydrate-derived b-carboline, 1-pentahydroxypentyl-1,2,3,4-tetrahydro-b-carboline-3-carboxylic acid, was identified in fruit- and vegetable-derived products such as juices, jams, and tomato sauces. This compound occurred as two diastereoisomers, a cis isomer (the major compound) and a trans isomer, ranging from undetectable amounts to 6.5 ug/g. Grape, tomato, pineapple, and tropical juices exhibited the highest amount of this alkaloid (up to 3.8 mg/L), whereas apple, banana, and peach juices showed very low or nondetectable levels. This tetrahydro-b-carboline was also found in jams (up to 0.45 ug/g), and a relative high amount was present in tomato concentrate (6.5 ug/g) and sauce (up to 1.8 ug/g). This b-carboline occurred in fruit-derived products as a glycoconjugate from a chemical condensation of d-glucose and l-tryptophan that is highly favored at low pH values and high temperature. Production, processing treatments, and storage of fruit juices and jams can then release this b-carboline. Fruit-derived products and other foods containing this compound might be an exogenous dietary source of this glucose-derived tetrahydro-b-carboline.(PMID: 12137498) [HMDB] Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.
canthaxanthin
A carotenone that consists of beta,beta-carotene bearing two oxo substituents at positions 4 and 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
Lupeol acetate
Lupeyl acetate, also known as lupeyl acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Lupeyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Lupeyl acetate can be found in burdock, date, and fig, which makes lupeyl acetate a potential biomarker for the consumption of these food products. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].
(2s,3s)-3-methyl-2-({[(3s,6s,9s,12s,15r)-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-3-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C38H61N7O9 (759.4530536000001)
(3as,4r,10as)-6-amino-10,10-dihydroxy-4-[(c-hydroxycarbonimidoyloxy)methyl]-2-imino-1h,3h,3ah,4h,8h,9h-pyrrolo[1,2-c]purin-5-ium-5-olate
1,3,3-trimethyl-2-[(9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene
2,4,4-trimethyl-3-[(9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethyl-3-oxocyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-2-en-1-one
2-{[25-(3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl)-2-hydroxy-2,6,10,14,19,23-hexamethylpentacosa-4,6,8,10,12,14,16,18,20,22,24-undecaen-3-yl]oxy}-6-methyloxane-3,4,5-triol
3-methyl-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-3-(2-methanesulfinylethyl)-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C44H65N7O10S (883.4513390000001)
[(3as,4r,10as)-10,10-dihydroxy-2,6-diimino-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid
10-{2-[3-(pent-2-en-1-yl)oxiran-2-yl]ethenyl}oxecan-2-one
(1s,9s)-1,10-dimethyl-10-azatricyclo[7.2.1.0²,⁷]dodeca-2,4,6-trien-4-ol
15-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-8-[(4-hydroxyphenyl)methyl]-18-[(1e,3e)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
(2s,3s)-2-({[(3s,6s)-3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
C41H59N7O9 (793.4374044000001)
(2r,3r,4r,5r,6s)-2-{[(3s,4e,6e,8e,10e,12e,14e,16e,18e,20e,22e,24e)-25-[(3s,4s)-3,4-dihydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-2-hydroxy-2,6,10,14,19,23-hexamethylpentacosa-4,6,8,10,12,14,16,18,20,22,24-undecaen-3-yl]oxy}-6-methyloxane-3,4,5-triol
10-[(1e)-2-[(2s,3s)-3-[(2z)-pent-2-en-1-yl]oxiran-2-yl]ethenyl]oxecan-2-one
3-methyl-2-[({2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-7-methyl-3-[2-(methylsulfanyl)ethyl]-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C44H65N7O9S (867.4564240000001)
10-[(1e)-2-[(2s,3s)-3-[(2z)-but-2-en-1-yl]oxiran-2-yl]ethenyl]oxecan-2-one
[(3as,4r,9r,10as)-9,10,10-trihydroxy-2,6-diimino-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid
[(3as,4r,10as)-5,10,10-trihydroxy-2,6-diimino-hexahydropyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid
(2s,3r)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
C41H59N7O9 (793.4374044000001)
3-methyl-2-[({2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-3-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]pentanoic acid
C38H61N7O9 (759.4530536000001)
[(3as,4r,9s,10as)-9,10,10-trihydroxy-2,6-diimino-hexahydro-1h-pyrrolo[1,2-c]purin-4-yl]methoxycarboximidic acid
3-methyl-2-({[2,5,11,14-tetrahydroxy-3-(hydroxymethyl)-6-[2-(4-hydroxyphenyl)ethyl]-7-methyl-12-[2-(methylsulfanyl)ethyl]-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C42H61N7O10S (855.4200406000001)
2-(hexadecanoyloxy)ethylphosphonic acid
C18H37O5P (364.23784820000003)
10-[(1e)-2-[(2r,3r)-3-[(2e)-pent-2-en-1-yl]oxiran-2-yl]ethenyl]oxecan-2-one
1,10-dimethyl-10-azatricyclo[7.2.1.0²,⁷]dodeca-2,4,6-trien-4-ol
2-[({3-[(acetyloxy)methyl]-2,5,11,14-tetrahydroxy-6-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-7-methyl-8-oxo-9-(2-phenylethyl)-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C44H63N7O11 (865.4585328000001)
(5r,8s,11r,15s,18s,19s,22r)-8-(3-carbamimidamidopropyl)-3,6,9,13,16,20-hexahydroxy-15-[(4-hydroxyphenyl)methyl]-18-[(1e,3e,5s,6s)-6-methoxy-3,5-dimethyl-7-phenylhepta-1,3-dien-1-yl]-1,5,19-trimethyl-2-methylidene-25-oxo-1,4,7,10,14,17,21-heptaazacyclopentacosa-3,6,9,13,16,20-hexaene-11,22-dicarboxylic acid
(2s,3s)-2-({[(3s,6s,9s,12s,15r)-3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)-3-methylpentanoic acid
C41H59N7O9 (793.4374044000001)
2-[({3-benzyl-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl}-c-hydroxycarbonimidoyl)amino]-3-methylpentanoic acid
C41H59N7O9 (793.4374044000001)
3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate
6-amino-10,10-dihydroxy-4-[(c-hydroxycarbonimidoyloxy)methyl]-2-imino-1h,3h,3ah,4h,8h,9h-pyrrolo[1,2-c]purin-5-ium-5-olate
(2s,3r)-3-methyl-2-({[(3s,6s,9s,12s,15r)-2,5,11,14-tetrahydroxy-9-[2-(4-hydroxyphenyl)ethyl]-12-isopropyl-6,7-dimethyl-3-(2-methylpropyl)-8-oxo-1,4,7,10,13-pentaazacyclononadeca-1,4,10,13-tetraen-15-yl]-c-hydroxycarbonimidoyl}amino)pentanoic acid
C38H61N7O9 (759.4530536000001)