NCBI Taxonomy: 76306

Mimosa pudica (ncbi_taxid: 76306)

found 41 associated metabolites at species taxonomy rank level.

Ancestor: Mimosa

Child Taxonomies: none taxonomy data.

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

4-Hydroxycinnamic acid

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473)


4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

L-Tryptophan

L-Tryptophan, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0\\%

C11H12N2O2 (204.0899)


Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnups disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnups disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnups disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed th... L-tryptophan is a white powder with a flat taste. An essential amino acid; occurs in isomeric forms. (NTP, 1992) L-tryptophan is the L-enantiomer of tryptophan. It has a role as an antidepressant, a nutraceutical, a micronutrient, a plant metabolite, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an erythrose 4-phosphate/phosphoenolpyruvate family amino acid, a proteinogenic amino acid, a tryptophan and a L-alpha-amino acid. It is a conjugate base of a L-tryptophanium. It is a conjugate acid of a L-tryptophanate. It is an enantiomer of a D-tryptophan. It is a tautomer of a L-tryptophan zwitterion. An essential amino acid that is necessary for normal growth in infants and for nitrogen balance in adults. It is a precursor of indole alkaloids in plants. It is a precursor of serotonin (hence its use as an antidepressant and sleep aid). It can be a precursor to niacin, albeit inefficiently, in mammals. L-Tryptophan is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Tryptophan is the least plentiful of all 22 amino acids and an essential amino acid in humans (provided by food), Tryptophan is found in most proteins and a precursor of serotonin. Tryptophan is converted to 5-hydroxy-tryptophan (5-HTP), converted in turn to serotonin, a neurotransmitter essential in regulating appetite, sleep, mood, and pain. Tryptophan is a natural sedative and present in dairy products, meats, brown rice, fish, and soybeans. (NCI04) Tryptophan is an essential amino acid which is the precursor of serotonin. Serotonin is a brain neurotransmitter, platelet clotting factor and neurohormone found in organs throughout the body. Metabolism of tryptophan to serotonin requires nutrients such as vitamin B6, niacin and glutathione. Niacin is an important metabolite of tryptophan. High corn or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea and dementia. Inborn errors of tryptophan metabolism exist where a tumor (carcinoid) makes excess serotonin. Hartnups disease is a disease where tryptophan and other amino acids are not absorbed properly. Tryptophan supplements may be useful in each condition, in carcinoid replacing the over-metabolized nutrient and in Hartnups supplementing a malabsorbed nutrient. Some disorders of excess tryptophan in the blood may contribute to mental retardation. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan fragments correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension and anxiety states. The requirement for tryptophan and protein decreases with age. Adults minimum daily requirement is 3 mg/kg/day or about 200 mg a day. This may be an underestimation, for there are 400 mg of tryptophan in just a cup of wheat germ. A cup of low fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg per pound. An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. See also: Serotonin; tryptophan (component of); Chamomile; ginger; melatonin; thiamine; tryptophan (component of) ... View More ... Constituent of many plants. Enzymatic hydrolysis production of most plant and animal proteins. Dietary supplement, nutrient D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants COVID info from PDB, Protein Data Bank The L-enantiomer of tryptophan. Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA09_Tryptophan_pos_30eV_1-1_01_662.txt [Raw Data] CBA09_Tryptophan_pos_20eV_1-1_01_661.txt [Raw Data] CBA09_Tryptophan_neg_30eV_1-1_01_716.txt [Raw Data] CBA09_Tryptophan_pos_10eV_1-1_01_660.txt [Raw Data] CBA09_Tryptophan_neg_10eV_1-1_01_714.txt [Raw Data] CBA09_Tryptophan_neg_40eV_1-1_01_717.txt [Raw Data] CBA09_Tryptophan_neg_20eV_1-1_01_715.txt [Raw Data] CBA09_Tryptophan_pos_50eV_1-1_01_664.txt [Raw Data] CBA09_Tryptophan_neg_50eV_1-1_01_718.txt [Raw Data] CBA09_Tryptophan_pos_40eV_1-1_01_663.txt IPB_RECORD: 253; CONFIDENCE confident structure KEIO_ID T003 DL-Tryptophan is an endogenous metabolite. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O11 (448.1006)


Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside, also known as homoorientin or luteolin-6-C-beta-D-glucoside, is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be synthesized from luteolin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is also a parent compound for other transformation products, including but not limited to, isoorientin 7-O-glucoside, 7-O-[alpha-L-rhamnosyl-(1->2)-beta-D-glucosyl]isoorientin, and 7-O-(6-sinapoylglucosyl)isoorientin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be found in barley, which makes isoorientin 7-o-(6-o-(e)-feruloyl)glucoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA21_Isoorientin_neg_20eV_1-3_01_1409.txt [Raw Data] CBA21_Isoorientin_pos_20eV_1-3_01_1382.txt [Raw Data] CBA21_Isoorientin_pos_50eV_1-3_01_1385.txt [Raw Data] CBA21_Isoorientin_neg_40eV_1-3_01_1411.txt [Raw Data] CBA21_Isoorientin_neg_10eV_1-3_01_1365.txt [Raw Data] CBA21_Isoorientin_neg_50eV_1-3_01_1412.txt [Raw Data] CBA21_Isoorientin_pos_10eV_1-3_01_1354.txt [Raw Data] CBA21_Isoorientin_pos_40eV_1-3_01_1384.txt [Raw Data] CBA21_Isoorientin_pos_30eV_1-3_01_1383.txt [Raw Data] CBA21_Isoorientin_neg_30eV_1-3_01_1410.txt Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Cosmosiin

5-hydroxy-2-(4-hydroxyphenyl)-7-[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one;Apigenin 7-Glucoside

C21H20O10 (432.1056)


Cosmosiin, also known as apigenin 7-O-glucoside or apigetrin, is a member of the class of compounds known as flavonoid-7-O-glycosides. Flavonoid-7-O-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Cosmosiin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cosmosiin can be found in a number of food items, such as common thyme, white lupine, common oregano, and orange mint. Cosmosiin can also be found in dandelion coffee and in Teucrium gnaphalodes (Wikipedia). Cosmosiin can also be found plants such as wild celery and anise. Cosmosiin has been shown to exhibit anti-platelet function (PMID: 21834233). Apigenin 7-O-beta-D-glucoside is a glycosyloxyflavone that is apigenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a non-steroidal anti-inflammatory drug, a metabolite and an antibacterial agent. It is a beta-D-glucoside, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an apigenin. It is a conjugate acid of an apigenin 7-O-beta-D-glucoside(1-). It is an enantiomer of an apigenin 7-O-beta-L-glucoside. Cosmosiin is a natural product found in Galeopsis tetrahit, Carex fraseriana, and other organisms with data available. See also: Chamomile (part of). Apiumetrin, also known as 7-O-beta-D-glucosyl-5,7,4-trihydroxyflavone or cosmosiin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apiumetrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Apiumetrin can be found in wild celery, which makes apiumetrin a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Annotation level-1 Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

Orientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.1006)


Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). Orientin is found in barley. Orientin is isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops).Orientin is a flavone, a chemical flavonoid-like compound found in the passion flower, the palm and Anadenanthera peregrina. Orientin is also reported in millets and in the Phyllostachys nigra bamboo leaves Isolated from Hordeum vulgare (barley) and Passiflora incarnata (maypops) [Raw Data] CBA20_Orientin_pos_40eV_1-2_01_1380.txt [Raw Data] CBA20_Orientin_neg_20eV_1-2_01_1405.txt [Raw Data] CBA20_Orientin_neg_50eV_1-2_01_1408.txt [Raw Data] CBA20_Orientin_neg_40eV_1-2_01_1407.txt [Raw Data] CBA20_Orientin_pos_50eV_1-2_01_1381.txt [Raw Data] CBA20_Orientin_neg_30eV_1-2_01_1406.txt [Raw Data] CBA20_Orientin_pos_20eV_1-2_01_1378.txt [Raw Data] CBA20_Orientin_pos_30eV_1-2_01_1379.txt [Raw Data] CBA20_Orientin_pos_10eV_1-2_01_1353.txt [Raw Data] CBA20_Orientin_neg_10eV_1-2_01_1364.txt Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

Jasmonic acid

Cyclopentaneacetic acid, 3-oxo-2-(2-pentenyl)-, [1R-[1alpha,2beta(Z)]]-

C12H18O3 (210.1256)


Jasmonic acid is an oxo monocarboxylic acid that is (3-oxocyclopentyl)acetic acid substituted by a (2Z)-pent-2-en-1-yl group at position 2 of the cyclopentane ring. It has a role as a plant metabolite and a member of jasmonates. It is a conjugate acid of a jasmonate(1-). It is an enantiomer of a (+)-jasmonic acid. Jasmonic acid is a natural product found in Ficus superba, Cleyera japonica, and other organisms with data available. Jasmonic acid is found in apple. Esters are present in Jasminum grandiflorum (royal jasmine) and are responsible for its odour. Jasmonic acid is a member of the jasmonate class of plant hormones. It is biosynthesized from linolenic acid by the octadecanoid pathway An oxo monocarboxylic acid that is (3-oxocyclopentyl)acetic acid substituted by a (2Z)-pent-2-en-1-yl group at position 2 of the cyclopentane ring. Esters are present in Jasminum grandiflorum (royal jasmine) and are responsible for its odour [DFC] D006133 - Growth Substances > D010937 - Plant Growth Regulators

   

Mimosine

1(4H)-Pyridinepropanoic acid, .alpha.-amino-3-hydroxy-4-oxo-, (.alpha.S)-

C8H10N2O4 (198.0641)


Mimosine is only found in individuals that have used or taken this drug. It is an antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. [PubChem]Mimosine causes inhibition of DNA replication, changes in the progression of the cells in the cell cycle, and apoptosis. Mimosine appears to introduce breaks into DNA. Mimosine is an iron/zinc chelator. Iron depletion induces DNA double-strand breaks in treated cells, and activates a DNA damage response that results in focal phosphorylation of histones. This leads to inhibition of DNA replication and/or DNA elongation. Some studies indicate that mimosine prevents the initiation of DNA replication, whereas other studies indicate that mimosine disrupts elongation of the replication fork by impairing deoxyribonucleotide synthesis by inhibiting the activity of the iron-dependent enzyme ribonucleotide reductase and the transcription of the cytoplasmic serine hydroxymethyltransferase gene (SHMT). Inhibition of serine hydroxymethyltransferase is moderated by a zinc responsive unit located in front of the SHMT gene. L-mimosine is an L-alpha-amino acid that is propionic acid substituted by an amino group at position 2 and a 3-hydroxy-4-oxopyridin-1(4H)-yl group at position 3 (the 2S-stereoisomer). It a non-protein plant amino acid isolated from Mimosa pudica. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a non-proteinogenic L-alpha-amino acid and a member of 4-pyridones. It is functionally related to a propionic acid. It is a conjugate acid of a L-mimosine(1-). It is a tautomer of a L-mimosine zwitterion. Mimosine is an antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. 3-Hydroxy-4-oxo-1(4H)-pyridinealanine. An antineoplastic alanine-substituted pyridine derivative isolated from Leucena glauca. An L-alpha-amino acid that is propionic acid substituted by an amino group at position 2 and a 3-hydroxy-4-oxopyridin-1(4H)-yl group at position 3 (the 2S-stereoisomer). It a non-protein plant amino acid isolated from Mimosa pudica. Mimosine, a tyrosine analog , can act as an antioxidant by its potent iron-binding activity[1]. Mimosine is a known chelator of Fe(III)[2]. Mimosine induces apoptosis through metal ion chelation, mitochondrial activation and ROS production in human leukemic cells[3]. Anti-cancer, antiinflammation. Mimosine, a tyrosine analog , can act as an antioxidant by its potent iron-binding activity[1]. Mimosine is a known chelator of Fe(III)[2]. Mimosine induces apoptosis through metal ion chelation, mitochondrial activation and ROS production in human leukemic cells[3]. Anti-cancer, antiinflammation.

   

Myricetin

3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)chromen-4-one

C15H10O8 (318.0376)


Myricetin, also known as cannabiscetin or myricetol, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, myricetin is considered to be a flavonoid lipid molecule. A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. Myricetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Myricetin is found, on average, in the highest concentration within a few different foods, such as common walnuts, carobs, and fennels and in a lower concentration in welsh onions, yellow bell peppers, and jutes. Myricetin has also been detected, but not quantified in several different foods, such as napa cabbages, sesames, mixed nuts, lichee, and garden cress. Myricetin is a hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. It has a role as a cyclooxygenase 1 inhibitor, an antineoplastic agent, an antioxidant, a plant metabolite, a food component, a hypoglycemic agent and a geroprotector. It is a hexahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a myricetin(1-). Myricetin is a natural product found in Ficus auriculata, Visnea mocanera, and other organisms with data available. Myricetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Quercetin (related). Flavanol found in a wide variety of foodstuffs especially in red table wine, bee pollen, bilberries, blueberries, bog whortleberries, broad beans, Chinese bajberry, corn poppy leaves, cranberries, crowberries, blackcurrants, dock leaves, fennel, grapes, parsley, perilla, rutabaga, dill weed and tea (green and black). Glycosides are also widely distributed. Potential nutriceutical showing anti-HIV activity A hexahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7. It has been isolated from the leaves of Myrica rubra and other plants. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB066_Myricetin_pos_30eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_20eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_40eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_50eV_CB000028.txt [Raw Data] CB066_Myricetin_pos_10eV_CB000028.txt [Raw Data] CB066_Myricetin_neg_10eV_000019.txt [Raw Data] CB066_Myricetin_neg_40eV_000019.txt [Raw Data] CB066_Myricetin_neg_50eV_000019.txt [Raw Data] CB066_Myricetin_neg_20eV_000019.txt [Raw Data] CB066_Myricetin_neg_30eV_000019.txt Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.

   

Dimethylamine

N-Methylmethanamine (acd/name 4.0)

C2H7N (45.0578)


Dimethylamine (DMA) is an organic secondary amine. It is a colorless, liquefied and flammable gas with an ammonia and fish-like odor. Dimethylamine is abundantly present in human urine. Main sources of urinary DMA have been reported to include trimethylamine N-oxide, a common food component, and asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) synthesis. ADMA is excreted in the urine in part unmetabolized and in part after hydrolysis to DMA by dimethylarginine dimethylaminohydrolase (DDAH). Statistically significant increases in urinary DMA have been found in individuals after the consumption of fish and seafoods. The highest values were obtained for individuals that consumed coley, squid and whiting with cod, haddock, sardine, skate and swordfish (PMID: 18282650). It has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). As a pure chemical substance Dimethylamine is used as dehairing agent in tanning, in dyes, in rubber accelerators, in soaps and cleaning compounds and as an agricultural fungicide. In the body, DMA also undergoes nitrosation under weak acid conditions to give dimethlynitrosamine. Study has shown that DMA is a metabolite of Arthrobacter and Micrococcus (PMID: 11422368 ; PMID: 7191). Aminating agent in the manuf. of ion-exchange resins for food processing KEIO_ID D103

   

Quercetin 3-galactoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 3-O-beta-D-galactopyranoside is a quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. It has a role as a hepatoprotective agent and a plant metabolite. It is a tetrahydroxyflavone, a monosaccharide derivative, a beta-D-galactoside and a quercetin O-glycoside. Hyperoside is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. See also: Bilberry (part of); Menyanthes trifoliata leaf (part of); Crataegus monogyna flowering top (part of). Quercetin 3-galactoside is found in alcoholic beverages. Quercetin 3-galactoside occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort).Hyperoside is the 3-O-galactoside of quercetin. It is a medicinally active compound that can be isolated from Drosera rotundifolia, from the Stachys plant, from Prunella vulgaris, from Rumex acetosella and from St Johns wort. (Wikipedia A quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. Occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort) Acquisition and generation of the data is financially supported in part by CREST/JST. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.1006)


Isoorientin is a flavone C-glycoside consisting of luteolin having a beta-D-glucosyl residue at the 6-position. It has a role as a radical scavenger and an antineoplastic agent. It is a tetrahydroxyflavone and a flavone C-glycoside. It is functionally related to a luteolin. It is a conjugate acid of an isoorientin(1-). Isoorientin is a natural product found in Carex fraseriana, Itea chinensis, and other organisms with data available. See also: Acai fruit pulp (part of). A C-glycosyl compound consisting of luteolin having a beta-D-glucosyl residue at the 6-position. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Isoorientin

Luteolin 6-C-glucoside

C21H20O11 (448.1006)


Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Avicularin

3-[(2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C20H18O11 (434.0849)


Constituent of Vaccinium myrtillus (bilberry) and Juglans regia (walnut). Avicularin is found in many foods, some of which are cocoa powder, common walnut, guava, and nuts. Avicularin is found in allspice. Avicularin is a constituent of Vaccinium myrtillus (bilberry) and Juglans regia (walnut) Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3].

   

6-(4-carboxy-2,6-dihydroxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

6-(4-carboxy-2,6-dihydroxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

C13H14O11 (346.0536)


6-(4-carboxy-2,6-dihydroxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid is a predicted metabolite generated by BioTransformer¹ that is produced by the metabolism of 3,4,5-trihydroxybenzoic acid. It is generated by UDP-glucuronosyltransferase 1-1 (P22309) enzyme via an aromatic-OH-glucuronidation reaction. This aromatic-OH-glucuronidation occurs in humans.

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O11 (448.1006)


   

Avicularin

3-(((2S,3R,4R,5S)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C20H18O11 (434.0849)


Avicularin is a quercetin O-glycoside in which an alpha-L-arabinofuranosyl residue is attached at position 3 of quercetin via a glycosidic linkage. It is isolated particularly from Juglans regia and Foeniculum vulgare. It has a role as a hepatoprotective agent and a plant metabolite. It is a monosaccharide derivative, an alpha-L-arabinofuranoside, a tetrahydroxyflavone and a quercetin O-glycoside. Avicularin is a natural product found in Saxifraga tricuspidata, Rhododendron mucronulatum, and other organisms with data available. A quercetin O-glycoside in which an alpha-L-arabinofuranosyl residue is attached at position 3 of quercetin via a glycosidic linkage. It is isolated particularly from Juglans regia and Foeniculum vulgare. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3]. Avicularin is an orally active flavonoid. Avicularin inhibits NF-κB (p65), COX-2 and PPAR-γ activities. Avicularin has anti-inflammatory, anti-infectious anti-allergic, anti-oxidant, hepatoprotective, and anti-tumor activities[1][3].

   

Cassiaoccidentalin B

6-[6-Deoxy-2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-L-ribo-hexopyranos-3-ulos-1-yl]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-1-benzopyran-4-one

C27H28O14 (576.1479)


A flavone C-glycoside that is luteolin substituted by a 6-deoxy-2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-L-ribo-hexopyranos-3-ulosyll residue at position 6. It has been found in Petrorhagia velutina and Cassia occidentalis.

   

dimethylamine

N-methylmethanamine

C2H7N (45.0578)


A secondary aliphatic amine where both N-substituents are methyl.

   

Lutexin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O11 (448.1006)


Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-4-chromenone

C21H20O11 (448.1006)


Isolated from wheat leaves (Triticum species). Isoorientin 6-diglucoside is found in wheat and cereals and cereal products. Isoorientin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin can be found in a number of food items such as oat, prairie turnip, common buckwheat, and common salsify, which makes isoorientin a potential biomarker for the consumption of these food products. Isoorientin (or homoorientin) is a flavone, a chemical flavonoid-like compound. It is the luteolin-6-C-glucoside. Bioassay-directed fractionation techniques led to isolation of isoorientin as the main hypoglycaemic component in Gentiana olivieri . Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

hyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.0955)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   
   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.0955)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Myricetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)- (9CI)

C15H10O8 (318.0376)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.783 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.784 Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities. Myricetin is a common plant-derived flavonoid with a wide range of activities including strong anti-oxidant, anticancer, antidiabetic and anti-inflammatory activities.

   

Jasmonic acid

3-(Carboxymethyl)-2-(2-pentenyl)cyclopentanone

C12H18O3 (210.1256)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.911 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.912 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.909 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.910

   

L-Tryptophan

L-Tryptophane

C11H12N2O2 (204.0899)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; QIVBCDIJIAJPQS-VIFPVBQESA-N_STSL_0010_L-Tryptophan_8000fmol_180410_S2_LC02_MS02_83; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE standard compound; INTERNAL_ID 5 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.178 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.176 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.170 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.171 L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1]. L-Tryptophan (Tryptophan) is an essential amino acid that is the precursor of serotonin, melatonin, and vitamin B3[1].

   

Mimosine

Mimosine

C8H10N2O4 (198.0641)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 Mimosine, a tyrosine analog , can act as an antioxidant by its potent iron-binding activity[1]. Mimosine is a known chelator of Fe(III)[2]. Mimosine induces apoptosis through metal ion chelation, mitochondrial activation and ROS production in human leukemic cells[3]. Anti-cancer, antiinflammation. Mimosine, a tyrosine analog , can act as an antioxidant by its potent iron-binding activity[1]. Mimosine is a known chelator of Fe(III)[2]. Mimosine induces apoptosis through metal ion chelation, mitochondrial activation and ROS production in human leukemic cells[3]. Anti-cancer, antiinflammation.

   

Orientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.1006)


Orientin is a C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. It has a role as an antioxidant and a metabolite. It is a C-glycosyl compound, a tetrahydroxyflavone and a 3-hydroxyflavonoid. It is functionally related to a luteolin. Orientin is a natural product found in Itea chinensis, Vellozia epidendroides, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of); Acai fruit pulp (part of). A C-glycosyl compound that is luteolin substituted by a beta-D-glucopyranosyl moiety at position 8. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2]. Orientin is a naturally occurring bioactive flavonoid that possesses diverse biological properties, including anti-inflammation, anti-oxidative, anti-tumor, and cardio protection. Orientin is a promising neuroprotective agent suitable for therapy for neuropathic pain[1][2].

   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.0955)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

cosmetin

5-hydroxy-2-(4-hydroxyphenyl)-7-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O10 (432.1056)


Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].

   

Coumarate

InChI=1\C9H8O3\c10-8-4-1-7(2-5-8)3-6-9(11)12\h1-6,10H,(H,11,12)\b6-3

C9H8O3 (164.0473)


D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively.

   

1-[(1s,2r)-1-amino-2-{[(1r,2s)-2-amino-1-hydroxy-2-(4-oxopyridin-1-yl)ethyl](hydroxy)amino}-2-hydroxyethyl]pyridin-4-one

1-[(1s,2r)-1-amino-2-{[(1r,2s)-2-amino-1-hydroxy-2-(4-oxopyridin-1-yl)ethyl](hydroxy)amino}-2-hydroxyethyl]pyridin-4-one

C14H19N5O5 (337.1386)


   

3,5-dihydroxy-4-({3,4,5-trihydroxy-6-[(sulfooxy)methyl]oxan-2-yl}oxy)benzoic acid

3,5-dihydroxy-4-({3,4,5-trihydroxy-6-[(sulfooxy)methyl]oxan-2-yl}oxy)benzoic acid

C13H16O13S (412.0312)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2r,3s,5r,6s)-5-hydroxy-6-methyl-4-oxo-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2r,3s,5r,6s)-5-hydroxy-6-methyl-4-oxo-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]chromen-4-one

C27H28O14 (576.1479)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-4-one

C21H20O12 (464.0955)


   

6-[(2s,3s,4s,5s,6r)-4,5-dihydroxy-6-methyl-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

6-[(2s,3s,4s,5s,6r)-4,5-dihydroxy-6-methyl-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C27H30O14 (578.1635)


   

3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-[(sulfooxy)methyl]oxan-2-yl]oxy}benzoic acid

3,5-dihydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-[(sulfooxy)methyl]oxan-2-yl]oxy}benzoic acid

C13H16O13S (412.0312)


   

(2s,3s,4s,5r,6s)-6-(4-carboxy-2,6-dihydroxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6s)-6-(4-carboxy-2,6-dihydroxyphenoxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

C13H14O11 (346.0536)


   

1-(1-amino-2-{[2-amino-1-hydroxy-2-(4-oxopyridin-1-yl)ethyl](hydroxy)amino}-2-hydroxyethyl)pyridin-4-one

1-(1-amino-2-{[2-amino-1-hydroxy-2-(4-oxopyridin-1-yl)ethyl](hydroxy)amino}-2-hydroxyethyl)pyridin-4-one

C14H19N5O5 (337.1386)