Biological Pathway: BioCyc:META_PWY66-5

superpathway of cholesterol biosynthesis related metabolites

find 123 related metabolites which is associated with the biological pathway superpathway of cholesterol biosynthesis

this pathway object is a conserved pathway across multiple organism.

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

24,25-Dihydrolanosterol

(3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H52O (428.4017942)


24,25-dihydrolanosterol is a 3beta-sterol formed from lanosterol by reduction across the C-24-C-25 double bond. It has a role as a human metabolite and a mouse metabolite. It is a 3beta-sterol and a tetracyclic triterpenoid. It is functionally related to a lanosterol. 24,25-Dihydrolanosterol is a natural product found in Euphorbia sapinii, Heterobasidion annosum, and other organisms with data available. 24,25-dihydrolanosterol is a metabolite found in or produced by Saccharomyces cerevisiae. 24,25-Dihydrolanosterol is involved in the biosynthesis of steriods. 24,25-Dihydrolanosterol is reversibly converted to lanosterol by delta24-sterol reductase [EC:1.3.1.72]. A 3beta-sterol formed from lanosterol by reduction across the C-24-C-25 double bond. 24,25-Dihydrolanosterol (Lanostenol) is a component of the seeds of red pepper (Capsicum annuum)[1].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Lanosterol

(2S,5S,7R,11R,14R,15R)-2,6,6,11,15-pentamethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C30H50O (426.386145)


Lanosterol, also known as lanosterin, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Thus, lanosterol is considered to be a sterol lipid molecule. Lanosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Lanosterol is biochemically synthesized starting from acetyl-CoA by the HMG-CoA reductase pathway. The critical step is the enzymatic conversion of the acyclic terpene squalene to the polycylic lanosterol via 2,3-squalene oxide. Constituent of wool fat used e.g. as chewing-gum softenerand is) also from yeast COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Water

Sterile purified water in containers

H2O (18.0105642)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Oxygen

Molecular oxygen

O2 (31.98983)


Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Carbon dioxide

Carbonic acid anhydride

CO2 (43.98983)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Pyrophosphate

phosphono dihydrogen phosphate

H4O7P2 (177.9432294)


The anion, the salts, and the esters of pyrophosphoric acid are called pyrophosphates. The pyrophosphate anion is abbreviated PPi and is formed by the hydrolysis of ATP into AMP in cells. This hydrolysis is called pyrophosphorolysis. The pyrophosphate anion has the structure P2O74-, and is an acid anhydride of phosphate. It is unstable in aqueous solution and rapidly hydrolyzes into inorganic phosphate. Pyrophosphate is an osteotoxin (arrests bone development) and an arthritogen (promotes arthritis). It is also a metabotoxin (an endogenously produced metabolite that causes adverse health affects at chronically high levels). Chronically high levels of pyrophosphate are associated with hypophosphatasia. Hypophosphatasia (also called deficiency of alkaline phosphatase or phosphoethanolaminuria) is a rare, and sometimes fatal, metabolic bone disease. Hypophosphatasia is associated with a molecular defect in the gene encoding tissue non-specific alkaline phosphatase (TNSALP). TNSALP is an enzyme that is tethered to the outer surface of osteoblasts and chondrocytes. TNSALP hydrolyzes several substances, including inorganic pyrophosphate (PPi) and pyridoxal 5-phosphate (PLP), a major form of vitamin B6. When TSNALP is low, inorganic pyrophosphate (PPi) accumulates outside of cells and inhibits the formation of hydroxyapatite, one of the main components of bone, causing rickets in infants and children and osteomalacia (soft bones) in adults. Vitamin B6 must be dephosphorylated by TNSALP before it can cross the cell membrane. Vitamin B6 deficiency in the brain impairs synthesis of neurotransmitters which can cause seizures. In some cases, a build-up of calcium pyrophosphate dihydrate crystals in the joints can cause pseudogout. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Potassium

Liver regeneration factor 1

K+ (38.963708)


Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry. Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).

   

Magnesium

Magnesium Cation

Mg+2 (23.98505)


   

(S)-2,3-Epoxysqualene

(3S)-2,2-Dimethyl-3-[(3E,7E,11E,15E)-3,7,12,16,20-pentamethyl-3,7,11,15,19-heneicosapentaen-1-yl]oxirane

C30H50O (426.386145)


(S)-2,3-Epoxysqualene, also known as 2,3-oxidosqualene or (S)-squalene-2,3-epoxide, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Thus, (S)-2,3-epoxysqualene is considered to be an isoprenoid lipid molecule. (S)-2,3-Epoxysqualene is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. (S)-2,3-Epoxysqualene is an intermediate in the biosynthesis of terpenoid. It is a substrate for squalene monooxygenase and lanosterol synthase. (S)-2,3-Epoxysqualene is an intermediate in the biosynthesis of Terpenoid. It is a substrate for Squalene monooxygenase and Lanosterol synthase. [HMDB]. (S)-2,3-Epoxysqualene is found in many foods, some of which are new zealand spinach, lime, cassava, and cloves.

   

7-Dehydrocholesterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C27H44O (384.3391974)


7-Dehydrocholesterol (7-DHC), also known as provitamin D3 or 5,7-cholestadien-3-b-ol, belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, 7-dehydrocholesterol is also classified as a sterol. 7-Dehydrocholesterol is known as a zoosterol, meaning that it is a sterol isolated from animals (to distinguish those sterols isolated from plants which are called phytosterols). 7-DHC functions in the serum as a cholesterol precursor and is photochemically converted to vitamin D3 in the skin. Therefore 7-DHC functions as provitamin-D3. The presence of 7-DHC in human skin enables humans and other mammals to manufacture vitamin D3 (cholecalciferol) from ultraviolet rays in the sun light, via an intermediate isomer pre-vitamin D3. 7-DHC absorbs UV light most effectively at wavelengths between 290 and 320 nm and, thus, the production of vitamin D3 will occur primarily at those wavelengths (PMID: 9625080). The two most important factors that govern the generation of pre-vitamin D3 are the quantity (intensity) and quality (appropriate wavelength) of the UVB irradiation reaching the 7-dehydrocholesterol deep in the stratum basale and stratum spinosum (PMID: 9625080). 7-DHC is also found in the milk of several mammalian species, including cows (PMID: 10999630; PMID: 225459). It was discovered by Nobel-laureate organic chemist Adolf Windaus. 7-DHC can be produced by animals and plants via different pathways (PMID: 23717318). It is not produced by fungi in significant amounts. 7-DHC is made by some algae and can also be produced by some bacteria. 7-Dehydrocholesterol is a zoosterol (a sterol produced by animals rather than plants). It is a provitamin-D. The presence of this compound in skin enables humans to manufacture vitamin D3 from ultra-violet rays in the sun light, via an intermediate isomer provitamin D3. It is also found in breast milk. [HMDB] D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Lathosterol

(1R,2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-9-en-5-ol

C27H46O (386.3548466)


Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID: 8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O [HMDB] Lathosterol is a a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues, and transported in the blood plasma of all animals. It is used as an indicator of whole-body cholesterol synthesis (PMID 14511438). Plasma lathosterol levels are significantly elevated in patients with bile acid malabsorption (PMID:8777839). Lathosterol oxidase (EC 1.14.21.6) is an enzyme that catalyzes the chemical reaction 5alpha-cholest-7-en-3beta-ol + NAD(P)H + H+ + O2 cholesta-5,7-dien-3beta-ol + NAD(P)+ + 2 H2O. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.

   

Sodium

SODIUM ION CHROMATOGRAPHY STANDARD

Na+ (22.98977)


Na+, also known as sodium ion or na(+), is a member of the class of compounds known as homogeneous alkali metal compounds. Homogeneous alkali metal compounds are inorganic compounds containing only metal atoms,with the largest atom being a alkali metal atom. Na+ can be found in a number of food items such as nanking cherry, opium poppy, alpine sweetvetch, and salmonberry, which makes na+ a potential biomarker for the consumption of these food products. Na+ can be found primarily in blood, cerebrospinal fluid (CSF), saliva, and urine, as well as in human kidney tissue. Na+ exists in all eukaryotes, ranging from yeast to humans. In humans, na+ is involved in several metabolic pathways, some of which include eplerenone action pathway, betaxolol action pathway, furosemide action pathway, and morphine action pathway. Na+ is also involved in several metabolic disorders, some of which include diltiazem action pathway, bendroflumethiazide action pathway, dimethylthiambutene action pathway, and lidocaine (antiarrhythmic) action pathway. NA, N.A., Na, or n/a may refer to: . Sodium ions are necessary for regulation of blood and body fluids, transmission of nerve impulses, heart activity, and certain metabolic functions. Physiologically, it exists as an ion in the body. Sodium is needed by animals, which maintain high concentrations in their blood and extracellular fluids, but the ion is not needed by plants. The human requirement for sodium in the diet is less than 500 mg per day, which is typically less than a tenth as much as many diets "seasoned to taste." Most people consume far more sodium than is physiologically needed. For certain people with salt-sensitive blood pressure, this extra intake may cause a negative effect on health.

   

Desmosterol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H44O (384.3391974)


Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is found in many foods, some of which are fig, sago palm, mexican groundcherry, and pepper (c. frutescens). Desmosterol is an intermediate in the synthesis of cholesterol. Desmosterolosis is a rare autosomal recessive inborn errors of cholesterol synthesis that is caused by defective activity of desmosterol reductase which results in an accumulation of demosterol (DHCR24, EC 1.3.1.72), combines a severe osteosclerotic skeletal dysplasia and includes 2-3 toe syndactyly with Smith-Lemli-Opitz syndrome (SLOS; the biochemical block in SLOS results in decreased cholesterol levels and increased 7-dehydrocholesterol levels). Desmosterolosis is caused by mutation of the 24-dehydrocholesterol reductase gene (DHCR24). Many of the malformations in SLOS and desmosterolosis are consistent with impaired hedgehog function. The hedgehog proteins include Sonic hedgehog (SHH), which plays a major role in midline patterning and limb development. Desmosterolosis, caused by defective activity of desmosterol reductase, combines a severe osteosclerotic skeletal dysplasia. 7-dehydrocholesterol reductase (DHCR7, EC 1.3.1.21) reduces the C7-C8 double bond in the sterol B ring to form cholesterol or desmosterol depending upon the precursor. Desmosterol can be converted to cholesterol by DHCR24. Therefore, SLOS and Desmosterolosis patients invariably have elevated levels of cholesterol precursors 7-dehydrocholesterol (and its spontaneous isomer 8-dehydrocholesterol) and absent desmosterol. (PMID: 14631207, 16207203). Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].

   

5alpha-Cholest-8-en-3beta-ol

(2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C27H46O (386.3548466)


5a-Cholest-8-en-3b-ol is a normal human metabolite and an intermediate of cholesterol synthesis. The concentrations of zymostenol are higher, both in serum and bile of patients with cerebrotendinous xanthomatosis, compared to controls or in patients with cerebrotendinous xanthomatosis treated with chenodeoxycholic acid. Kidney transplant recipients had lower serum zymostenol when compared to controls. During consumption of plant stanol ester spread by hypercholesterolemic children, plant sterols in the plasma decrease and cholesterol precursor sterols such as zymostenol increase. (PMID: 15736111, 16709621, 16477216, 12756385) [HMDB]. 5a-Cholest-8-en-3b-ol is found in many foods, some of which are chinese water chestnut, garden tomato, calabash, and cassava. 5alpha-Cholest-8-en-3beta-ol, also known as zymostenol, is a normal human metabolite and an intermediate of cholesterol synthesis. The concentrations of zymostenol are higher, both in the serum and bile of patients with cerebrotendinous xanthomatosis, compared to controls or in patients with cerebrotendinous xanthomatosis treated with chenodeoxycholic acid. Kidney transplant recipients had lower serum zymostenol when compared to controls. During consumption of plant stanol ester spread by hypercholesterolemic children, plant sterols in the plasma decreased and cholesterol precursor sterols such as zymostenol increased (PMID: 15736111, 16709621, 16477216, 12756385).

   

7-Dehydrodesmosterol

(1S,2R,5S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-7,9-dien-5-ol

C27H42O (382.3235482)


7-dehydrodesmosterol, also known as cholesta-5,7,24-trien-3beta-ol or 24-dehydroprovitamin d3, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, 7-dehydrodesmosterol is considered to be a sterol lipid molecule. 7-dehydrodesmosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 7-dehydrodesmosterol can be found in a number of food items such as nectarine, orange bell pepper, cinnamon, and carrot, which makes 7-dehydrodesmosterol a potential biomarker for the consumption of these food products. In humans, 7-dehydrodesmosterol is involved in several metabolic pathways, some of which include atorvastatin action pathway, simvastatin action pathway, pamidronate action pathway, and steroid biosynthesis. 7-dehydrodesmosterol is also involved in several metabolic disorders, some of which include mevalonic aciduria, wolman disease, chondrodysplasia punctata II, X linked dominant (CDPX2), and hyper-igd syndrome. 7-Dehydrodesmosterol is a sterol intermediate in the biosynthesis of steroids. 7-Dehydrodesmosterol is a substrate of the enzyme 24-dehydrocholesterol reductase (EC:1.3.1.72), an important enzyme in the biosynthesis of Cholesterol. Cholesterol is synthesized from either Lathosterol, 7-Dehydrocholesterol, Desmosterol or Cholestenol by the enzyme 3beta-hydroxysterol delta7 reductase (EC 1.3.1.21, Dhcr7). The Smith-Lemli-Opitz syndrome (SLOS, OMIM 270400) is caused by a genetic defect in cholesterol biosynthesis; mutations in the enzyme 3beta-hydroxysterol delta7 reductase lead to a failure of cholesterol synthesis, with an accumulation of precursor sterols, such as 7-Dehydrodesmosterol. SLOS results in craniofacial, limb as well as major organ defects, including the brain. In individuals with this syndrome, mental retardation, as well as other CNS dysfunction, is almost 100\\% prevalent. (PMID: 15862627, 17197219).

   

4α-methyl-cholesta-8-enol

(2S,5S,6S,7S,11R,14R,15R)-2,6,15-trimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C28H48O (400.37049579999996)


4α-methyl-cholesta-8-enol, also known as Methost-8-enol, is classified as a cholesterol or a Cholesterol derivative. Cholesterols are compounds containing a 3-hydroxylated cholestane core. 4α-methyl-cholesta-8-enol is considered to be practically insoluble (in water) and basic. 4α-methyl-cholesta-8-enol is a sterol lipid molecule

   

Zymosterol intermediate 2

(2S,5S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C27H44O (384.3391974)


Zymosterol, also known as 5alpha-cholesta-8,24-dien-3beta-ol or delta8,24-cholestadien-3beta-ol, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, zymosterol is considered to be a sterol lipid molecule. Zymosterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Zymosterol can be synthesized from 5alpha-cholestane. Zymosterol is also a parent compound for other transformation products, including but not limited to, 4beta-methylzymosterol-4alpha-carboxylic acid, 3-dehydro-4-methylzymosterol, and zymosterol intermediate 1b. Zymosterol can be found in a number of food items such as squashberry, hard wheat, salmonberry, and loquat, which makes zymosterol a potential biomarker for the consumption of these food products. Zymosterol exists in all eukaryotes, ranging from yeast to humans. In humans, zymosterol is involved in several metabolic pathways, some of which include zoledronate action pathway, alendronate action pathway, pravastatin action pathway, and atorvastatin action pathway. Zymosterol is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, lysosomal acid lipase deficiency (wolman disease), smith-lemli-opitz syndrome (SLOS), and chondrodysplasia punctata II, X linked dominant (CDPX2). Zymosterol is an intermediate in cholesterol biosynthesis. Disregarding some intermediate compounds (e.g. 4-4-dimethylzymosterol) lanosterol can be considered a precursor of zymosterol in the cholesterol synthesis pathway. The conversion of zymosterol into cholesterol happens in the endoplasmic reticulum. Zymosterol accumulates quickly in the plasma membrane coming from the cytosol. The movement of zymosterol across the cytosol is more than twice as fast as the movement of cholesterol itself . Zymosterol is the precursor of cholesterol and is found in the plasma membrane. zymosterol circulates within the cells. The structural features of zymosterol provided optimal substrate acceptability. In human fibroblasts, zymosterol is converted to cholesterol solely in the rough ER. Little or no zymosterol or cholesterol accumulates in the rough ER in vivo. Newly synthesized zymosterol moves to the plasma membrane without a detectable lag and with a half-time of 9 min, about twice as fast as cholesterol. The pool of radiolabeled zymosterol in the plasma membrane turns over rapidly, faster than does intracellular cholesterol. Thus, plasma membrane zymosterol is not stagnant. [3H]Zymosterol pulsed into intact cells is initially found in the plasma membrane. (PMID: 1939176). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Selenite ion

Selenite ion

O3Se-2 (127.901266)


D018977 - Micronutrients > D014131 - Trace Elements

   

4,4-Dimethylcholesta-8,14,24-trienol

(2S,5S,7R,14R,15R)-2,6,6,15-tetramethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-1(10),11-dien-5-ol

C29H46O (410.3548466)


4,4-Dimethylcholesta-8,14,24-trienol is a product of the enzyme delta14-sterol reductase [EC 1.3.1.70] (KEGG). It is involved in the biosynthesis of steroids and is involved in the conversion of lanosterol to zymosterol. In particular, lanosterol 14-alpha-demethylase, catalyzes the C-14 demethylation of lanosterol to form 4,4-Dimethylcholesta-8,14,24-trienol in the ergosterol biosynthesis pathway. It is thought to be a meiosis activating sterol. [HMDB] 4,4-Dimethylcholesta-8,14,24-trienol is a product of the enzyme delta14-sterol reductase [EC 1.3.1.70] (KEGG). It is involved in the biosynthesis of steroids and is involved in the conversion of lanosterol to zymosterol. In particular, lanosterol 14-alpha-demethylase, catalyzes the C-14 demethylation of lanosterol to form 4,4-Dimethylcholesta-8,14,24-trienol in the ergosterol biosynthesis pathway. It is thought to be a meiosis activating sterol.

   

ST 28:1;O2

4alpha-hydroxymethyl-5alpha-cholesta-8-en-3beta-ol

C28H48O2 (416.36541079999995)


   

ST 29:1;O

4alpha,14alpha-dimethyl-5alpha-cholest-9(11)-en-3beta-ol

C29H50O (414.386145)


A cholestanoid that is 5alpha-cholesta-8-en-3beta-ol bearing two additional methyl substituents at position 4.

   

5alpha-Cholesta-7,24-dien-3beta-ol

(3S,5S,10S,13R,14R,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H44O (384.3391974)


5alpha-Cholesta-7,24-dien-3beta-ol belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, 5alpha-cholesta-7,24-dien-3beta-ol is considered to be a sterol lipid molecule. 5alpha-Cholesta-7,24-dien-3beta-ol is involved in the biosynthesis of steroids. 5alpha-Cholesta-7,24-dien-3beta-ol is reversibly converted into 5alpha-cholest-7-en-3beta-ol by delta24-sterol reductase (EC 1.3.1.72). 5alpha-Cholesta-7,24-dien-3beta-ol is also converted into zymosterol by cholestenol delta-isomerase (EC 5.3.3.5). 5alpha-Cholesta-7,24-dien-3beta-ol is also converted into 7-Dehydrodesmosterol. 5alpha-Cholesta-7,24-dien-3beta-ol is a substrate for 3-beta-hydroxysteroid-delta(8),delta(7)-isomerase. 5alpha-Cholesta-7,24-dien-3beta-ol is involved in the biosynthesis of steroids. 5alpha-Cholesta-7,24-dien-3beta-ol is reversibly converted to 5alpha-Cholest-7-en-3beta-ol by delta24-sterol reductase [EC:1.3.1.72]. 5alpha-Cholesta-7,24-dien-3beta-ol is also converted to zymosterol by cholestenol delta-isomerase [EC:5.3.3.5]. 5alpha-Cholesta-7,24-dien-3beta-ol is also converted to 7-Dehydrodesmosterol. 5a-Cholesta-7,24-dien-3b-ol is a substrate for 3-beta-hydroxysteroid-delta(8),delta(7)-isomerase. [HMDB]

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

5alpha-cholesta-8,24-dien-3-one

5alpha-cholesta-8,24-dien-3-one

C27H42O (382.3235482)


   

4a-Methyl-5a-cholesta-8,24-dien-3-one

(2S,6S,7S,11R,14R,15R)-2,6,15-trimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-1(10)-en-5-one

C28H44O (396.3391974)


4a-Methyl-5a-cholesta-8,24-dien-3-one is an intermediate in the Cholesterol biosynthesis pathway, in a reaction catalyzed by the enzyme 3-keto-steroid reductase [EC 1.1.1.270]. (MetaCyc Pathway: cholesterol biosynthesis) [HMDB] 4a-Methyl-5a-cholesta-8,24-dien-3-one is an intermediate in the Cholesterol biosynthesis pathway, in a reaction catalyzed by the enzyme 3-keto-steroid reductase [EC 1.1.1.270]. (MetaCyc Pathway: cholesterol biosynthesis).

   

4,4-dimethyl-14alpha-formyl-5alpha-cholesta-8,24-dien-3beta-ol

(2S,5S,7R,11S,14R,15R)-5-hydroxy-2,6,6,15-tetramethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-ene-11-carbaldehyde

C30H48O2 (440.36541079999995)


4,4-dimethyl-14alpha-formyl-5alpha-cholesta-8,24-dien-3beta-ol is also known as 32-Ketolanosterol. 4,4-dimethyl-14alpha-formyl-5alpha-cholesta-8,24-dien-3beta-ol is considered to be practically insoluble (in water) and basic. 4,4-dimethyl-14alpha-formyl-5alpha-cholesta-8,24-dien-3beta-ol is a sterol lipid molecule

   

4,4-dimethyl-14alpha-formyl-5alpha-cholest-8-en-3beta-ol

(2S,5S,7R,11S,14R,15R)-5-hydroxy-2,6,6,15-tetramethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-ene-11-carbaldehyde

C30H50O2 (442.38106)


4,4-dimethyl-14alpha-formyl-5alpha-cholest-8-en-3beta-ol is also known as 3-beta-Hydroxylanost-8-en-32-aldehyde or 32-oxo-24,25-Dihydrolanosterol. 4,4-dimethyl-14alpha-formyl-5alpha-cholest-8-en-3beta-ol is considered to be practically insoluble (in water) and basic. 4,4-dimethyl-14alpha-formyl-5alpha-cholest-8-en-3beta-ol is a sterol lipid molecule

   

4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholest-8-en-3beta-ol

(2S,5S,7R,11S,14R,15R)-11-(hydroxymethyl)-2,6,6,15-tetramethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C30H52O2 (444.3967092)


4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholest-8-en-3beta-ol is also known as 32-Hydroxy-24,25-dihydrolanosterol or Lanost-8-en-3beta,30-diol. 4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholest-8-en-3beta-ol is considered to be practically insoluble (in water) and basic. 4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholest-8-en-3beta-ol is a sterol lipid molecule

   

4,4-dimethyl-5alpha-cholesta-8,14-dien-3beta-ol

(2S,5S,7R,14R,15R)-2,6,6,15-tetramethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadeca-1(10),11-dien-5-ol

C29H48O (412.37049579999996)


4,4-dimethyl-5alpha-cholesta-8,14-dien-3beta-ol is also known as 4,4-DCDO or T-MAS. 4,4-dimethyl-5alpha-cholesta-8,14-dien-3beta-ol is considered to be practically insoluble (in water) and basic. 4,4-dimethyl-5alpha-cholesta-8,14-dien-3beta-ol is a sterol lipid molecule

   

4α-formyl-4β-methyl-5α-cholesta-8,24-dien-3β-ol

(2S,5S,6S,7R,11R,14R,15R)-5-hydroxy-2,6,15-trimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-ene-6-carbaldehyde

C29H46O2 (426.34976159999997)


4α-formyl-4β-methyl-5α-cholesta-8,24-dien-3β-ol is also known as 4alpha-Formyl-4-methylzymosterol. 4α-formyl-4β-methyl-5α-cholesta-8,24-dien-3β-ol is considered to be practically insoluble (in water) and relatively neutral. 4α-formyl-4β-methyl-5α-cholesta-8,24-dien-3β-ol is a sterol lipid molecule

   

4α-hydroxymethyl-4β-methyl-5α-cholesta-8,24-dien-3β-ol

(2S,5S,6R,7R,11R,14R,15R)-6-(hydroxymethyl)-2,6,15-trimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-ol

C29H48O2 (428.36541079999995)


4α-hydroxymethyl-4β-methyl-5α-cholesta-8,24-dien-3β-ol is considered to be practically insoluble (in water) and relatively neutral. 4α-hydroxymethyl-4β-methyl-5α-cholesta-8,24-dien-3β-ol is a sterol lipid molecule

   

5alpha-cholest-8-en-3-one

(2S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-1(10)-en-5-one

C27H44O (384.3391974)


5alpha-cholest-8-en-3-one is considered to be practically insoluble (in water) and basic. 5alpha-cholest-8-en-3-one is a sterol lipid molecule

   

5alpha-cholesta-8,24-dien-3-one

(2S,7S,11R,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylhept-5-en-2-yl]tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-1(10)-en-5-one

C27H42O (382.3235482)


5alpha-cholesta-8,24-dien-3-one, also known as zymosterone, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, 5alpha-cholesta-8,24-dien-3-one is considered to be a sterol lipid molecule. 5alpha-cholesta-8,24-dien-3-one is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 5alpha-cholesta-8,24-dien-3-one can be found in a number of food items such as cloudberry, welsh onion, oil-seed camellia, and loquat, which makes 5alpha-cholesta-8,24-dien-3-one a potential biomarker for the consumption of these food products. 5alpha-cholesta-8,24-dien-3-one may be a unique S.cerevisiae (yeast) metabolite. 5α-cholesta-8,24-dien-3-one, also known as zymosterone, belongs to cholesterols and derivatives class of compounds. Those are compounds containing a 3-hydroxylated cholestane core. Thus, 5α-cholesta-8,24-dien-3-one is considered to be a sterol lipid molecule. 5α-cholesta-8,24-dien-3-one is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 5α-cholesta-8,24-dien-3-one can be found in a number of food items such as cloudberry, welsh onion, oil-seed camellia, and loquat, which makes 5α-cholesta-8,24-dien-3-one a potential biomarker for the consumption of these food products. 5α-cholesta-8,24-dien-3-one may be a unique S.cerevisiae (yeast) metabolite.

   

formate

Formic acid, cromium (+3), sodium (4:1:1) salt

CHO2- (44.997654600000004)


Formate, also known as formic acid or methanoic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Formate is soluble (in water) and a weakly acidic compound (based on its pKa). Formate can be found in a number of food items such as mammee apple, chicory roots, malabar spinach, and grapefruit, which makes formate a potential biomarker for the consumption of these food products. Formate (IUPAC name: methanoate) is the anion derived from formic acid. Its formula is represented in various equivalent ways: CHOO‚àí or HCOO‚àí or HCO2‚àí. It is the product of deprotonation of formic acid. It is the simplest carboxylate anion. A formate (compound) is a salt or ester of formic acid . Formate, also known as formic acid or methanoic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Formate is soluble (in water) and a weakly acidic compound (based on its pKa). Formate can be found in a number of food items such as mammee apple, chicory roots, malabar spinach, and grapefruit, which makes formate a potential biomarker for the consumption of these food products. Formate (IUPAC name: methanoate) is the anion derived from formic acid. Its formula is represented in various equivalent ways: CHOO− or HCOO− or HCO2−. It is the product of deprotonation of formic acid. It is the simplest carboxylate anion. A formate (compound) is a salt or ester of formic acid .

   

4alpha-Methylzymosterol

4alpha-Methylzymosterol

C28H46O (398.3548466)


A 3beta-sterol that is zymosterol substituted by a 4alpha-methyl group.

   

14-Demethyllanosterol

4,4-Dimethylzymosterol

C29H48O (412.37049579999996)


A 3beta-sterol formed formally by loss of a methyl group from the 14-position of lanosterol.

   

water

water

H2O (18.0105642)


An oxygen hydride consisting of an oxygen atom that is covalently bonded to two hydrogen atoms

   

Squalene

InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Cholesterin

(3beta)-Cholest-5-en-3-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

ST 28:3;O2

(20R)-3beta-hydroxy-5alpha-cholesta-8,24-diene-4-carbaldehyde

C28H44O2 (412.3341124)


5,6-Epoxyergosterol is a natural product found in Ophiocordyceps sinensis with data available.

   

7-Dehydrocholesterol

(3β)-7-Dehydro Cholesterol

C27H44O (384.3391974)


D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Desmesterol

cholest-5,24-dien-3beta-ol

C27H44O (384.3391974)


A cholestanoid that is cholesta-5,24-diene substituted by a beta-hydroxy group at position 3. It is an intermediate metabolite obtained during the synthesis of cholesterol. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1]. Desmosterol is a molecule similar to cholesterol. Desmosterol is the immediate precursor of cholesterol in the Bloch pathway of cholesterol biosynthesis. Desmosterol, as an endogenous metabolite, used to study cholesterol metabolism[1].

   

3S-squalene-2,3-epoxide

2,3S-epoxy-2,6,10,15,19,23-hexamethyltetracosa-6E,10E,14E,18E,22-pentaene

C30H50O (426.386145)


   

32-hydroxylanosterol

lanosta-8,24-dien-3beta,30-diol

C30H50O2 (442.38106)


   

Lanosterin

Lanosta-8,24-dien-3beta-ol

C30H50O (426.386145)


A tetracyclic triterpenoid that is lanosta-8,24-diene substituted by a beta-hydroxy group at the 3beta position. It is the compound from which all steroids are derived. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Zymosterol

5alpha-cholesta-8,24-dien-3beta-ol

C27H44O (384.3391974)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

7-DHC

cholesta-5,7-dien-3beta-ol

C27H44O (384.3391974)


D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3. 7-Dehydrocholesterol is biosynthetic precursor of cholesterol and vitamin D3.

   

Lathosterol

(3S,5S,9R,10S,13R,14R,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,5,6,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548466)


Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis. Lathosterol is a cholesterol-like molecule. Serum Lathosterol concentration is an indicator of whole-body cholesterol synthesis.

   

ST 27:2;O

27-nor-(24R)-methylcholest-5,22E-dien-3beta-ol

C27H44O (384.3391974)


   

Zymostenol

5alpha-cholest-8(9)-en-3beta-ol

C27H46O (386.3548466)


   

ST 30:2;O2

4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholesta-8,24-dien-3beta-ol

C30H50O2 (442.38106)


   

ST 29:2;O

(2R,15R)-14-[(2R,5R)-5-ethyl-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C29H48O (412.37049579999996)


   

Zymosterone

5alpha-cholesta-8,24-dien-3-one

C27H42O (382.3235482)


   

ST 28:2;O2

4alpha-hydroxymethyl-5alpha-cholesta-8,24-dien-3beta-ol

C28H46O2 (414.34976159999997)


   

ST 29:3;O2

22S,23S-epoxy-24S-ethyl-5alpha-cholest-8(9),14(15)-dien-3beta-ol

C29H46O2 (426.34976159999997)


   

ST 28:2;O

27-Nor-4alpha-methyl-5alpha-ergosta-8(14),22-dien-3beta-ol

C28H46O (398.3548466)


   

ST 29:1;O2

4beta-(hydroxymethyl)-4-methyl-5alpha-cholest-7-en-3beta-ol 4beta-(hydroxymethyl)-4alpha-methyl-5alpha-cholest-7-en-3beta-ol

C29H50O2 (430.38106)


   

ST 30:3;O2

(22R,23R,24R)-7-oxo-22,23-methylene-23,24-dimethylcholest-5-en-3beta-ol

C30H48O2 (440.36541079999995)


   

ST 30:1;O2

4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholest-8-en-3beta-ol

C30H52O2 (444.3967092)


   

ST 29:2;O2

(25R)-5alpha,6alpha-epoxy-24R,26R-dimethyl-26,27-cyclo-cholestan-3beta-ol

C29H48O2 (428.36541079999995)


   

ST 28:3;O

4alpha-methyl-5alpha-cholesta-8,24-dien-3-one

C28H44O (396.3391974)


A 3beta-sterol having double bonds in the 5- and 7-positions and a methylene group at position 24.

   

Coenzyme II

Coenzyme II

C21H25N7O17P3-3 (740.051977)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

delta-Prenyl diphosphate

delta-Prenyl diphosphate

C5H9O7P2-3 (242.9823524)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(R)-Mevalonate

(R)-Mevalonate

C6H11O4- (147.0657306)


The (R)-enantiomer of mevalonate.

   

Demethyldihydrolanosterol

4,4-Dimethyl-5alpha-cholest-8-en-3beta-ol

C29H50O (414.386145)


   
   
   

Lanol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548466)


Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Lanster

(3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,5,6,7,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.386145)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Zymostrol

(3S,5S,10S,13R,14R,17R)-10,13-dimethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,4,5,6,7,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H44O (384.3391974)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

CHEBI:28113

(3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,5,6,7,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H52O (428.4017942)


   

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

C10H12N5O13P3-4 (502.9644492)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

coenzyme A(4-)

coenzyme A(4-)

C21H32N7O16P3S-4 (763.0839062)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Geranyl diphosphate(3-)

Geranyl diphosphate(3-)

C10H17O7P2-3 (311.0449492)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-diphosphate

Adenosine-diphosphate

C10H12N5O10P2-3 (424.0059412)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(R)-5-Diphosphomevalonate

(R)-5-Diphosphomevalonate

C6H10O10P2-4 (303.974922)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-yl diphosphate

(2E,6E)-3,7,11-Trimethyldodeca-2,6,10-trien-1-yl diphosphate

C15H25O7P2-3 (379.107546)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-methylbut-3-enyl pyrophosphate

3-methylbut-3-enyl pyrophosphate

C5H9O7P2-3 (242.9823524)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(R)-5-phosphonatomevalonate(3-)

(R)-5-phosphonatomevalonate(3-)

C6H10O7P-3 (225.016414)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

acetyl-CoA(4-)

acetyl-CoA(4-)

C23H34N7O17P3S-4 (805.0944704000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

acetoacetyl-CoA(4-)

acetoacetyl-CoA(4-)

C25H36N7O18P3S-4 (847.1050346000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

FAD trianion

FAD trianion

C27H30N9O15P2-3 (782.1336550000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

3-hydroxy-3-methylglutaryl-coenzyme A

3-hydroxy-3-methylglutaryl-coenzyme A

C27H39N7O20P3S-5 (906.1183384)


   

4beta-Methylzymosterol-4alpha-carboxylate

4beta-Methylzymosterol-4alpha-carboxylate

C29H45O3- (441.336852)


A steroid acid anion that is the conjugate base of 4beta-methylzymosterol-4alpha-carboxylic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

6-[4-(4-bromobenzoyl)-3-fluorophenoxy]-N-methyl-N-(prop-2-en-1-yl)hexan-1-aminium

6-[4-(4-bromobenzoyl)-3-fluorophenoxy]-N-methyl-N-(prop-2-en-1-yl)hexan-1-aminium

C23H28BrFNO2+ (448.128732)


   

3beta-Hydroxy-5alpha-cholest-8-ene-4alpha-carboxylate

3beta-Hydroxy-5alpha-cholest-8-ene-4alpha-carboxylate

C28H45O3- (429.336852)


A steroid acid anion that is the conjugate base of 3beta-hydroxy-5alpha-cholest-8-ene-4alpha-carboxylic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

4-(2-(1-(4-Chlorocinnamyl)piperazin-4-yl)ethyl)benzoate

4-(2-(1-(4-Chlorocinnamyl)piperazin-4-yl)ethyl)benzoate

C22H25ClN2O2 (384.160446)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D009676 - Noxae > D000963 - Antimetabolites D004791 - Enzyme Inhibitors

   

3beta-Hydroxy-4beta-methyl-5alpha-cholest-8-ene-4alpha-carboxylate

3beta-Hydroxy-4beta-methyl-5alpha-cholest-8-ene-4alpha-carboxylate

C29H47O3- (443.3525012)


A steroid acid anion that is the conjugate base of 3beta-hydroxy-4beta-methyl-5alpha-cholest-8-ene-4alpha-carboxylic acid, obtained by deprotonation of the carboxy group; major species at pH 7.3.

   

N-(6-Aminohexyl)-1-chloro-naphthalene-5-sulfonamide

N-(6-Aminohexyl)-1-chloro-naphthalene-5-sulfonamide

C16H22ClN2O2S+ (341.1090442)


   

trans-1, 4-Bis(2-chlorobenzylaminomethyl)cyclohexane dihydrochloride

trans-1, 4-Bis(2-chlorobenzylaminomethyl)cyclohexane dihydrochloride

C22H30Cl2N2+2 (392.178592)


   

2-[4-[(Z)-1,2-diphenylbut-1-enyl]phenoxy]ethyl-dimethylazanium

2-[4-[(Z)-1,2-diphenylbut-1-enyl]phenoxy]ethyl-dimethylazanium

C26H30NO+ (372.232727)


   

10-[3-(4-Methylpiperazin-1-ium-1-yl)propyl]-2-(trifluoromethyl)phenothiazine

10-[3-(4-Methylpiperazin-1-ium-1-yl)propyl]-2-(trifluoromethyl)phenothiazine

C21H25F3N3S+ (408.17211860000003)


   

2,6-Dimethyl-4-tridecylmorpholin-4-ium

2,6-Dimethyl-4-tridecylmorpholin-4-ium

C19H40NO+ (298.31097300000005)


   

2-p-Chlorophenyl-1-(p-(2-diethylaminoethoxy)phenyl)-1-p-tolylethanol

2-p-Chlorophenyl-1-(p-(2-diethylaminoethoxy)phenyl)-1-p-tolylethanol

C27H33ClNO2+ (438.21996880000006)


   

cis-4-(3-(p-Tert-butylphenyl)-2-methylpropyl)-2,6-dimethylmorpholine

cis-4-(3-(p-Tert-butylphenyl)-2-methylpropyl)-2,6-dimethylmorpholine

C20H34NO+ (304.26402540000004)


   

[(4R)-4-[(3S,8S,9S,10R,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentyl]-dimethylazanium

[(4R)-4-[(3S,8S,9S,10R,13R,14S,17R)-3-hydroxy-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]pentyl]-dimethylazanium

C26H46NO+ (388.3579206)


   

[(4S)-4-cyano-5-methyl-4-phenylhexyl]-methyl-(2-phenylethyl)azanium

[(4S)-4-cyano-5-methyl-4-phenylhexyl]-methyl-(2-phenylethyl)azanium

C23H31N2+ (335.2487106)


   

1-[2-[Oxido(phosphonatooxy)phosphoryl]oxyacetyl]pyrrolidine-2-carboxylate

1-[2-[Oxido(phosphonatooxy)phosphoryl]oxyacetyl]pyrrolidine-2-carboxylate

C7H9NO10P2-4 (328.97017139999997)


   

Carbon Dioxide

carbon dioxide

CO2 (43.98983)


A one-carbon compound with formula CO2 in which the carbon is attached to each oxygen atom by a double bond. A colourless, odourless gas under normal conditions, it is produced during respiration by all animals, fungi and microorganisms that depend directly or indirectly on living or decaying plants for food. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Oxygen

Dioxygen

O2 (31.98983)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Diphosphoric acid

Pyrophosphoric acid

H4O7P2 (177.9432294)


An acyclic phosphorus acid anhydride obtained by condensation of two molecules of phosphoric acid. COVID info from WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Potassium cation

Potassium cation

K+ (38.963708)


   

Magnesium Cation

Magnesium Cation

Mg+2 (23.98505)


   

7-Dehydrodesmosterol

7-Dehydrodesmosterol

C27H42O (382.3235482)


A 3beta-sterol having the structure of desmosterol with an extra double bond at C-7--C-8.

   

Sodium Cation

SODIUM ION CHROMATOGRAPHY STANDARD

Na+ (22.98977)


A monoatomic monocation obtained from sodium.

   

(S)-2,3-epoxysqualene

(S)-2,3-epoxysqualene

C30H50O (426.386145)


A 2,3-epoxysqualene in which the chiral centre has S configuration. It is converted into lanosterol by lanosterol synthase (EC 5.4.99.7) in a key rate-limiting step in the biosynthesis of chloesterol, steroid hormones, and vitamin D.

   

Hydrogen cation

Hydrogen cation

H+ (1.0078246)


   

5alpha-cholesta-7,24-dien-3beta-ol

5alpha-cholesta-7,24-dien-3beta-ol

C27H44O (384.3391974)


   

FF-MAS

4,4-dimethyl-5alpha-cholesta-8,14,24-trien-3beta-ol

C29H46O (410.3548466)


   

formate

formate

CHO2- (44.997654600000004)


A monocarboxylic acid anion that is the conjugate base of formic acid. Induces severe metabolic acidosis and ocular injury in human subjects.

   
   

4alpha-methyl-5alpha-cholesta-8,24-dien-3-one

4alpha-methyl-5alpha-cholesta-8,24-dien-3-one

C28H44O (396.3391974)


   

5alpha-cholest-8-en-3-one

5alpha-cholest-8-en-3-one

C27H44O (384.3391974)


   

4alpha-hydroxymethyl-5alpha-cholesta-8,24-dien-3beta-ol

4alpha-hydroxymethyl-5alpha-cholesta-8,24-dien-3beta-ol

C28H46O2 (414.34976159999997)


   

4alpha-formyl-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol

4alpha-formyl-4beta-methyl-5alpha-cholesta-8,24-dien-3beta-ol

C29H46O2 (426.34976159999997)


   

4alpha-hydroxymethyl-5alpha-cholesta-8-en-3beta-ol

4alpha-hydroxymethyl-5alpha-cholesta-8-en-3beta-ol

C28H48O2 (416.36541079999995)


   

3beta-hydroxylanost-8-en-32-al

3beta-hydroxylanost-8-en-32-al

C30H50O2 (442.38106)


A tetracyclic triterpenoid that is lanost-8-ene carrying hydroxy and oxo substituents at positions 3beta and 30 respectively.

   

4,4-dimethyl-14alpha-formyl-5alpha-cholesta-8,24-dien-3beta-ol

4,4-dimethyl-14alpha-formyl-5alpha-cholesta-8,24-dien-3beta-ol

C30H48O2 (440.36541079999995)


   

4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholest-8-en-3beta-ol

4,4-dimethyl-14alpha-hydroxymethyl-5alpha-cholest-8-en-3beta-ol

C30H52O2 (444.3967092)