Hydrogen cation (BioDeep_00001869020)
Main id: BioDeep_00000014766
PANOMIX_OTCML-2023
代谢物信息卡片
化学式: H+ (1.0078)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: [H+]
InChI: InChI=1S/p+1
数据库引用编号
7 个数据库交叉引用编号
- ChEBI: CHEBI:15378
- KEGG: C00080
- PubChem: 1038
- MeSH: Protons
- CAS: 12408-02-5
- CAS: 28132-48-1
- PubChem: 3380
分类词条
相关代谢途径
Reactome(239)
- Metabolism
- Biological oxidations
- Aflatoxin activation and detoxification
- Phase I - Functionalization of compounds
- Metabolism of vitamins and cofactors
- Metabolism of fat-soluble vitamins
- Retinoid metabolism and transport
- Visual phototransduction
- Sensory Perception
- Metabolism of vitamin K
- Metabolism of proteins
- Post-translational protein modification
- Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation
- Disease
- Phase II - Conjugation of compounds
- Cytosolic sulfonation of small molecules
- Amino acid and derivative metabolism
- Glyoxylate metabolism and glycine degradation
- Diseases of signal transduction by growth factor receptors and second messengers
- FLT3 signaling in disease
- Drug ADME
- Aspirin ADME
- Asparagine N-linked glycosylation
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein
- Synthesis of substrates in N-glycan biosythesis
- GDP-fucose biosynthesis
- Metabolism of lipids
- Metabolism of steroids
- Cholesterol biosynthesis
- Metabolism of cofactors
- Ubiquinol biosynthesis
- Diseases of metabolism
- Diseases of glycosylation
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism
- Transport of small molecules
- SLC-mediated transmembrane transport
- Transport of bile salts and organic acids, metal ions and amine compounds
- Developmental Biology
- Cytochrome P450 - arranged by substrate type
- Xenobiotics
- Aromatic amines can be N-hydroxylated or N-dealkylated by CYP1A2
- Methylation
- Signaling Pathways
- Signaling by Rho GTPases
- RHO GTPase Effectors
- Cell Cycle
- Cell Cycle, Mitotic
- M Phase
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3
- Maternal to zygotic transition (MZT)
- Chromatin modifications during the maternal to zygotic transition (MZT)
- Mycobacterium tuberculosis biological processes
- Mycothiol metabolism
- Mycothiol-dependent detoxification
- Chorismate via Shikimate Pathway
- Immune System
- Innate Immune System
- Antimicrobial peptides
- ROS and RNS production in phagocytes
- Events associated with phagocytolytic activity of PMN cells
- Purine metabolism
- Urate synthesis
- Organic cation/anion/zwitterion transport
- Ion channel transport
- Stimuli-sensing channels
- Nucleotide metabolism
- Nucleotide catabolism
- Purine catabolism
- Disorders of transmembrane transporters
- SLC transporter disorders
- Transport of inorganic cations/anions and amino acids/oligopeptides
- Miscellaneous transport and binding events
- Biosynthesis of specialized proresolving mediators (SPMs)
- Biosynthesis of EPA-derived SPMs
- Fatty acid metabolism
- Mitochondrial Fatty Acid Beta-Oxidation
- mitochondrial fatty acid beta-oxidation of saturated fatty acids
- Beta oxidation of myristoyl-CoA to lauroyl-CoA
- Amino acid synthesis and interconversion (transamination)
- Serine biosynthesis
- Sulfur compound metabolism
- Metabolism of water-soluble vitamins and cofactors
- Azathioprine ADME
- Tryptophan catabolism
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA
- Bile acid and bile salt metabolism
- Synthesis of bile acids and bile salts
- Synthesis of bile acids and bile salts via 27-hydroxycholesterol
- Endogenous sterols
- Sterols are 12-hydroxylated by CYP8B1
- Metabolism of nitric oxide: NOS3 activation and regulation
- eNOS activation and regulation
- eNOS activation
- Signaling by Receptor Tyrosine Kinases
- Signaling by VEGF
- VEGFA-VEGFR2 Pathway
- RHO GTPases Activate NADPH Oxidases
- Cellular responses to stimuli
- Cellular responses to stress
- Detoxification of Reactive Oxygen Species
- Infectious disease
- Latent infection of Homo sapiens with Mycobacterium tuberculosis
- Latent infection - Other responses of Mtb to phagocytosis
- Tolerance of reactive oxygen produced by macrophages
- Gene expression (Transcription)
- RNA Polymerase II Transcription
- Generic Transcription Pathway
- Transcriptional Regulation by TP53
- TP53 Regulates Transcription of Cell Death Genes
- TP53 regulates transcription of several additional cell death genes whose specific roles in p53-dependent apoptosis remain uncertain
- Adaptive Immune System
- Class I MHC mediated antigen processing & presentation
- Antigen processing-Cross presentation
- Cross-presentation of particulate exogenous antigens (phagosomes)
- Infection with Mycobacterium tuberculosis
- Leishmania infection
- Killing mechanisms
- WNT5:FZD7-mediated leishmania damping
- Cellular response to chemical stress
- Cytoprotection by HMOX1
- Bacterial Infection Pathways
- Parasitic Infection Pathways
- Arachidonic acid metabolism
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX)
- Selenoamino acid metabolism
- CYP2E1 reactions
- Peroxisomal lipid metabolism
- Beta-oxidation of pristanoyl-CoA
- Histidine catabolism
- Biosynthesis of electrophilic -3 PUFA oxo-derivatives
- The tricarboxylic acid cycle
- Glycolysis
- Iron uptake and transport
- Carbohydrate metabolism
- Glucose metabolism
- Fatty acyl-CoA biosynthesis
- The citric acid (TCA) cycle and respiratory electron transport
- Pyruvate metabolism and Citric Acid (TCA) cycle
- Citric acid cycle (TCA cycle)
- Pentose phosphate pathway
- Diseases of carbohydrate metabolism
- Lysine catabolism
- Cysteine synthesis from O-acetylserine
- Heme synthesis
- Phospholipid metabolism
- Glycerophospholipid biosynthesis
- Phenylalanine and tyrosine catabolism
- Glycine degradation
- Sulfur amino acid metabolism
- Degradation of cysteine and homocysteine
- Threonine catabolism
- Neuronal System
- Transmission across Chemical Synapses
- Neurotransmitter release cycle
- Norepinephrine Neurotransmitter Release Cycle
- Neurotransmitter clearance
- Tolerance by Mtb to nitric oxide produced by macrophages
- Aspartate and asparagine metabolism
- Phenylalanine and tyrosine metabolism
- Phenylalanine metabolism
- Viral Infection Pathways
- Porphyrin metabolism
- Heme biosynthesis
- Signaling by GPCR
- GPCR ligand binding
- Class A/1 (Rhodopsin-like receptors)
- GPCR downstream signalling
- Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol
- Clearance of seratonin
- Metabolism of serotonin
- Metal ion SLC transporters
- Ion transport by P-type ATPases
- Hemostasis
- Gluconeogenesis
- Glycosaminoglycan metabolism
- Sphingolipid metabolism
- Glycosphingolipid metabolism
- Phosphate bond hydrolysis by NUDT proteins
- Branched-chain amino acid catabolism
- Defects in vitamin and cofactor metabolism
- Diseases associated with glycosaminoglycan metabolism
- APAP ADME
- Glycosphingolipid biosynthesis
- Inositol phosphate metabolism
- Synthesis of IP2, IP, and Ins in the cytosol
- Vitamin D (calciferol) metabolism
- Vitamins
- Metabolic disorders of biological oxidation enzymes
- Defective CYP27B1 causes VDDR1A
- Nicotinate metabolism
- Fatty acids
- De novo synthesis of UMP
- Metabolism of amine-derived hormones
- Thyroxine biosynthesis
- Sphingolipid de novo biosynthesis
- Lipid metabolism
- Sphingolipid catabolism
- Platelet homeostasis
- Signaling by Nuclear Receptors
- Muscle contraction
- Smooth Muscle Contraction
- Ion influx/efflux at host-pathogen interface
- Synthesis of epoxy (EET) and dihydroxyeicosatrienoic acids (DHET)
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA
- Inositol transporters
- Cytokine Signaling in Immune system
- Glycosphingolipid catabolism
- Cytosolic iron-sulfur cluster assembly
- Cytosolic iron-sulfur cluster assembly (yeast)
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
- Synthesis of (16-20)-hydroxyeicosatetraenoic acids (HETE)
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA
- Alpha-oxidation of phytanate
- Beta-oxidation of very long chain fatty acids
- Synthesis of bile acids and bile salts via 24-hydroxycholesterol
- Metabolism of steroid hormones
- Pregnenolone biosynthesis
- Glucocorticoid biosynthesis
- Mineralocorticoid biosynthesis
- Estrogen biosynthesis
- Nicotinamide salvaging
- Metabolism of folate and pterines
- NADPH regeneration
- Eicosanoids
- Miscellaneous substrates
- FMO oxidises nucleophiles
- Mitochondrial iron-sulfur cluster biogenesis
- Electron transport from NADPH to Ferredoxin
- Signaling by Retinoic Acid
- RA biosynthesis pathway
- Defective CYP11A1 causes AICSR
- Defective CYP11B1 causes AH4
- Defective CYP11B2 causes CMO-1 deficiency
- Defective CYP24A1 causes HCAI
- Defective CYP26B1 causes RHFCA
- Defective CYP27A1 causes CTX
- Defective CYP2U1 causes SPG56
- Defective FMO3 causes TMAU
- Glutamate and glutamine metabolism
BioCyc(1041)
- naringenin glycoside biosynthesis
- salvage pathways of pyrimidine ribonucleotides
- superpathway of ribose and deoxyribose phosphate degradation
- pyrimidine ribonucleosides degradation
- nucleoside and nucleotide degradation (archaea)
- superpathway of pyrimidine deoxyribonucleoside salvage
- superpathway of pyrimidine ribonucleosides salvage
- pyrimidine ribonucleosides salvage I
- pyrimidine ribonucleosides salvage II
- pyrimidine deoxyribonucleosides salvage
- superpathway of pyrimidine ribonucleosides degradation
- UTP and CTP dephosphorylation I
- pyrimidine salvage pathway
- pyrimidine ribonucleosides degradation II
- salvage pathways of purine and pyrimidine nucleotides
- creatinine degradation II
- diphenylamine degradation
- echinenone and zeaxanthin biosynthesis (Synechocystis)
- staphyloxanthin biosynthesis
- lysine degradation VI
- 4-hydroxyacetophenone degradation
- 4-aminophenol degradation
- 4-nitrophenol degradation I
- alkylnitronates degradation
- firefly bioluminescence
- superpathway of parathion degradation
- myricetin gentiobioside biosynthesis
- kaempferol gentiobioside biosynthesis
- chitin biosynthesis
- allantoin degradation to ureidoglycolate II (ammonia producing)
- allantoin degradation to glyoxylate III
- O-antigen building blocks biosynthesis (E. coli)
- N-acetylneuraminate and N-acetylmannosamine degradation I
- superpathway of b heme biosynthesis from glycine
- superpathway of L-phenylalanine biosynthesis
- superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation
- patulin biosynthesis
- trehalose degradation II (cytosolic)
- anaerobic energy metabolism (invertebrates, mitochondrial)
- superpathway of anaerobic energy metabolism (invertebrates)
- superpathway of demethylmenaquinol-8 biosynthesis I
- superpathway of N-acetylneuraminate degradation
- superpathway of L-methionine biosynthesis (transsulfuration)
- superpathway of L-homoserine and L-methionine biosynthesis
- L-methionine biosynthesis I
- superpathway of hexitol degradation (bacteria)
- mannitol cycle
- D-sorbitol degradation II
- UDP-N-acetyl-D-glucosamine biosynthesis I
- lupanine biosynthesis
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I
- superpathway of L-aspartate and L-asparagine biosynthesis
- superpathway of aromatic amino acid biosynthesis
- chorismate biosynthesis I
- chorismate biosynthesis from 3-dehydroquinate
- sucrose degradation II (sucrose synthase)
- superpathway of bacteriochlorophyll a biosynthesis
- 2-carboxy-1,4-naphthoquinol biosynthesis
- superpathway of L-tyrosine biosynthesis
- superpathway of menaquinol-8 biosynthesis I
- superpathway of hyoscyamine and scopolamine biosynthesis
- superpathway of chorismate metabolism
- gallate degradation III (anaerobic)
- aspartate superpathway
- betacyanin biosynthesis
- superpathway of betalain biosynthesis
- superpathway of S-adenosyl-L-methionine biosynthesis
- superpathway of L-tryptophan biosynthesis
- pelargonidin conjugates biosynthesis
- superpathway of anthocyanin biosynthesis (from cyanidin and cyanidin 3-O-glucoside)
- superpathway of anthocyanin biosynthesis (from pelargonidin 3-O-glucoside)
- superpathway of anaerobic sucrose degradation
- superpathway of UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis
- tetrapyrrole biosynthesis II (from glycine)
- methanogenesis from acetate
- gallate biosynthesis
- hyoscyamine and scopolamine biosynthesis
- quercetin gentiotetraside biosynthesis
- p-cymene degradation
- p-cymene degradation to p-cumate
- kauralexin biosynthesis
- oryzalide A biosynthesis
- Amaryllidacea alkaloids biosynthesis
- plant sterol biosynthesis
- vitamin K degradation
- Kdo transfer to lipid IVA II
- Kdo8N transfer to lipid IVA
- Kdo transfer to lipid IVA I
- Kdo transfer to lipid IVA III (Chlamydia)
- KDO transfer to lipid IVA I
- spinosyn A biosynthesis
- chlorzoxazone degradation
- aliphatic glucosinolate biosynthesis, side chain elongation cycle
- glucosinolate biosynthesis from tyrosine
- bacteriochlorophyll e biosynthesis
- aromatic glucosinolate activation
- superpathway of tryptophan utilization
- superpathway of melatonin degradation
- melatonin degradation III
- abietic acid biosynthesis
- superpathway of diterpene resin acids biosynthesis
- brassinosteroids inactivation
- superpathway of C28 brassinosteroid biosynthesis
- brassinosteroid biosynthesis I
- superpathway of glycol metabolism and degradation
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- heme b biosynthesis I (aerobic)
- coumarin metabolism (to melilotic acid)
- hordatine biosynthesis
- glycogen degradation I
- glycolate and glyoxylate degradation I
- glycolate and glyoxylate degradation II
- protocatechuate degradation I (meta-cleavage pathway)
- glycolysis IV (plant cytosol)
- anthocyanidin acylglucoside and acylsambubioside biosynthesis
- anthocyanidin sambubioside biosynthesis
- trans-4-hydroxy-L-proline degradation II
- rutin degradation (plants)
- indolmycin biosynthesis
- gossypol biosynthesis
- shinorine biosynthesis
- bacteriochlorophyll c biosynthesis
- bacteriochlorophyll d biosynthesis
- pyrimidine deoxyribonucleotides de novo biosynthesis III
- theophylline degradation
- starch biosynthesis
- L-lysine biosynthesis II
- L-lysine biosynthesis I
- indole-3-acetate activation II
- indole-3-acetate inactivation IX
- superpathway of indole-3-acetate conjugate biosynthesis
- superpathway of fucose and rhamnose degradation
- fucose degradation
- 2-methylpropene degradation
- heme degradation IV
- glucosinolate biosynthesis from hexahomomethionine
- superpathway of sterol biosynthesis
- putrescine biosynthesis IV
- putrescine biosynthesis I
- allantoin degradation to glyoxylate I
- allantoin degradation to ureidoglycolate I (urea producing)
- superpathway of allantoin degradation in yeast
- superpathway of allantoin degradation in plants
- urea cycle
- canavanine degradation
- spermidine biosynthesis III
- superpathway of polyamine biosynthesis I
- nicotine degradation I (pyridine pathway)
- superpathway of arginine and polyamine biosynthesis
- uracil degradation II (oxidative)
- clavulanate biosynthesis
- superpathway of L-citrulline metabolism
- L-citrulline biosynthesis
- L-Nδ-acetylornithine biosynthesis
- urea degradation I
- urea degradation II
- L-arginine degradation VIII (arginine oxidase pathway)
- L-arginine degradation VI (arginase 2 pathway)
- L-arginine degradation XII
- superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation
- L-arginine degradation I (arginase pathway)
- L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
- L-arginine degradation IX (arginine:pyruvate transaminase pathway)
- superpathway of L-arginine and L-ornithine degradation
- creatinine degradation I
- superpathway of purines degradation in plants
- superpathway of citrulline metabolism
- urea degradation
- arginine degradation VI (arginase 2 pathway)
- citrulline biosynthesis
- L-Nδ-acetylornithine biosynthesis
- formaldehyde oxidation (glutathione-dependent)
- superpathway of aromatic compound degradation
- formaldehyde oxidation
- nicotine degradation II
- methanol oxidation to carbon dioxide
- vanillin and vanillate degradation II
- formaldehyde oxidation I
- phosphopantothenate biosynthesis I
- morphine biosynthesis
- methanol oxidation to formaldehyde I
- methanol oxidation to formaldehyde II
- methanol and methylamine oxidation to formaldehyde
- pterocarpan phytoalexins modification (maackiain, medicarpin, pisatin, phaseollin)
- superpathway of C1 compounds oxidation to CO2
- 12-epi-hapalindole biosynthesis
- paerucumarin biosynthesis
- superpathway of trimethylamine degradation
- trimethylamine degradation
- proline betaine degradation
- rhabduscin biosynthesis
- hapalindole H biosynthesis
- melatonin degradation I
- superpathway of dimethylsulfone degradation
- 12-epi-fischerindole biosynthesis
- heme degradation VI
- 4-hydroxycoumarin and dicoumarol biosynthesis
- propane degradation II
- 5,5'-dehydrodivanillate degradation
- glycine betaine degradation I
- superpathway of coenzyme A biosynthesis I (bacteria)
- nicotine degradation IV
- ectoine biosynthesis
- nevadensin biosynthesis
- formaldehyde assimilation II (assimilatory RuMP Cycle)
- formaldehyde assimilation III (dihydroxyacetone cycle)
- formaldehyde assimilation I (serine pathway)
- caffeine degradation IV (bacteria, via demethylation and oxidation)
- caffeine degradation III (bacteria, via demethylation)
- 3-[(E)-2-isocyanoethenyl]-1H-indole biosynthesis
- dimethyl sulfide degradation I
- dimethyl sulfide degradation II (oxidation)
- methylamine degradation II
- methylamine degradation I
- formaldehyde oxidation III (mycothiol-dependent)
- formaldehyde oxidation II (glutathione-dependent)
- formaldehyde oxidation V (bacillithiol-dependent)
- formaldehyde oxidation IV (thiol-independent)
- formaldehyde oxidation VII (THF pathway)
- formaldehyde oxidation VI (H4MPT pathway)
- rutin degradation
- indole glucosinolate activation (herbivore attack)
- colchicine biosynthesis
- formaldehyde oxidation V (tetrahydrofolate pathway)
- glycine betaine degradation
- formaldehyde oxidation V (H4MPT pathway)
- linamarin biosynthesis
- superpathway of linamarin and lotaustralin biosynthesis
- C.p.450 monoglucoside biosynthesis
- matairesinol biosynthesis
- justicidin B biosynthesis
- glucosinolate biosynthesis from dihomomethionine
- 6-hydroxymethyl-dihydropterin diphosphate biosynthesis IV (Plasmodium)
- salvage pathways of purine nucleosides
- purine nucleotide metabolism (phosphotransfer and nucleotide modification)
- aurone biosynthesis
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium)
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- phenylmercury acetate degradation
- isoflavonoid biosynthesis II
- polymethylated kaempferol biosynthesis
- aflatoxins B1 and G1 biosynthesis
- acacetin biosynthesis
- kaempferide triglycoside biosynthesis
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- pulcherrimin biosynthesis
- aurachin A, B, C and D biosynthesis
- L-arabinose degradation I
- L-arabinose degradation II
- D-arabinose degradation II
- D-arabinose degradation I
- superpathway of pentose and pentitol degradation
- pentachlorophenol degradation
- cytokinins degradation
- hentriaconta-3,6,9,12,15,19,22,25,28-nonaene biosynthesis
- dimethyl sulfoxide degradation
- dimethyl sulfone degradation
- dimethyl sulfide degradation III (oxidation)
- hydrogen to dimethyl sulfoxide electron transfer
- formate to dimethyl sulfoxide electron transfer
- NADH to dimethyl sulfoxide electron transfer
- respiration (anaerobic)-- electron acceptors reaction list
- ginsenosides biosynthesis
- 2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis
- superpathway of quinolone and alkylquinolone biosynthesis
- chitin degradation to ethanol
- anhydromuropeptides recycling II
- anhydromuropeptides recycling I
- chitin degradation III (Serratia)
- chitin degradation I (archaea)
- anhydromuropeptides recycling
- acidification and chitin degradation (in carnivorous plants)
- peptidoglycan maturation (meso-diaminopimelate containing)
- choline degradation IV
- glycine betaine biosynthesis III (plants)
- 2,6-dinitrotoluene degradation
- superpathway of pterocarpan biosynthesis (via daidzein)
- meleagrin biosynthesis
- superpathway of roquefortine, meleagrin and neoxaline biosynthesis
- hydroxycinnamic acid tyramine amides biosynthesis
- ubiquinol-10 biosynthesis
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (prokaryotic)
- ubiquinone-10 biosynthesis (eukaryotic)
- superpathway of nicotine biosynthesis
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- superpathay of heme b biosynthesis from glutamate
- berberine biosynthesis
- CMP-N-acetylneuraminate biosynthesis II (bacteria)
- TCA cycle I (prokaryotic)
- L-tryptophan degradation I (via anthranilate)
- stachyose biosynthesis
- γ-butyrobetaine degradation
- aromatic biogenic amine degradation (bacteria)
- curcumin degradation
- 4-deoxy-L-threo-hex-4-enopyranuronate degradation
- superpathway of microbial D-galacturonate and D-glucuronate degradation
- choline-O-sulfate degradation
- choline degradation I
- D-carnitine degradation I
- L-carnitine degradation II
- mixed acid fermentation
- 2-aminophenol degradation
- 2-hydroxybiphenyl degradation
- N-methyl-Δ1-pyrrolinium cation biosynthesis
- nicotine degradation II (pyrrolidine pathway)
- glycerol degradation III
- nicotinate degradation I
- 1,3-propanediol biosynthesis (engineered)
- streptomycin biosynthesis
- L-valine degradation I
- superpathway of CMP-sialic acids biosynthesis
- glycocholate metabolism (bacteria)
- L-arginine degradation V (arginine deiminase pathway)
- superpathway of glycerol degradation to 1,3-propanediol
- superpathway of glyoxylate bypass and TCA
- luteolin triglucuronide degradation
- tetrapyrrole biosynthesis I (from glutamate)
- superpathway of proto- and siroheme biosynthesis
- (-)-dehydrodiconiferyl alcohol degradation
- phenolphthiocerol biosynthesis
- 6-methylpretetramide biosynthesis
- superpathway of tetracycline and oxytetracycline biosynthesis
- bacteriochlorophyll a biosynthesis
- vindoline and vinblastine biosynthesis
- testosterone and androsterone degradation to androstendione
- superpathway of testosterone and androsterone degradation
- nitrite-dependent anaerobic methane oxidation
- methane oxidation to methanol I
- methylphosphonate degradation I
- methylphosphonate degradation II
- dibenzo-p-dioxin degradation
- CMP-pseudaminate biosynthesis
- lolitrem B biosynthesis
- 2,3-cis-flavanols biosynthesis
- plant sterol biosynthesis II
- phenazine-1-carboxylate biosynthesis
- bacteriochlorophyll b biosynthesis
- 3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
- 3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
- 3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
- heme degradation V
- polyamine degradation (N-acetyl pathway)
- phenylacetate degradation
- abscisic acid biosynthesis
- diadinoxanthin and fucoxanthin biosynthesis
- superpathway of carotenoid biosynthesis in plants
- spheroidene and spheroidenone biosynthesis
- superpathway of carotenoid biosynthesis
- CMP-legionaminate biosynthesis II
- CMP-legionaminate biosynthesis I
- serine biosynthesis
- gadusol biosynthesis
- jasmonic acid biosynthesis
- superpathway of gluconate degradation
- superpathway of central carbon metabolism
- IAA biosynthesis I
- pyridoxamine anabolism
- NAD biosynthesis II (from tryptophan)
- tryptophan degradation I (via anthranilate)
- γ-hexachlorocyclohexane degradation
- 1,2,4-trichlorobenzene degradation
- isovitexin glycosides biosynthesis
- superpathway of L-lysine degradation
- purine nucleotides degradation II (aerobic)
- inosine 5'-phosphate degradation
- superpathway of guanosine nucleotides de novo biosynthesis I
- L-lysine fermentation to acetate and butanoate
- tetrahydrofolate biosynthesis
- superpathway of tetrahydrofolate biosynthesis
- superpathway of tetrahydrofolate biosynthesis and salvage
- N10-formyl-tetrahydrofolate biosynthesis
- guanosine ribonucleotides de novo biosynthesis
- L-phenylalanine degradation IV (mammalian, via side chain)
- lactose and galactose degradation I
- geranyl β-primeveroside biosynthesis
- superpathway of ergotamine biosynthesis
- ergotamine biosynthesis
- glyphosate degradation III
- jasmonoyl-L-isoleucine inactivation
- NADH to cytochrome bo oxidase electron transfer I
- NADH to cytochrome bd oxidase electron transfer I
- capsanthin and capsorubin biosynthesis
- isopropanol biosynthesis (engineered)
- acetone degradation III (to propane-1,2-diol)
- acetone degradation I (to methylglyoxal)
- acetone degradation II (to acetoacetate)
- linear furanocoumarin biosynthesis
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation
- pyruvate fermentation to acetone
- superpathway of Clostridium acetobutylicum solventogenic fermentation
- propane degradation I
- ketogenesis
- ammonia oxidation I (aerobic)
- bile acids degradation
- caffeine degradation V (bacteria, via trimethylurate)
- p-HBAD biosynthesis
- scopoletin biosynthesis
- coumarins biosynthesis (engineered)
- esculetin modification
- superpathway of scopolin and esculin biosynthesis
- simple coumarins biosynthesis
- scopolin biosynthesis
- aflatoxins B2 and G2 biosynthesis
- adenosylcobalamin biosynthesis I (early cobalt insertion)
- 5,6-dimethylbenzimidazole biosynthesis
- 1,2-dichloroethane degradation
- D-altritol and galactitol degradation
- galactitol degradation
- D-galactose degradation IV
- galactose degradation IV
- 2,4-dichlorophenoxyacetate degradation
- (-)-maackiain biosynthesis
- tetrahydroxyxanthone biosynthesis (from benzoate)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- plumbagin biosynthesis
- superpathway of pterocarpan biosynthesis (via formononetin)
- superpathway of tetrahydroxyxanthone biosynthesis
- superpathway of formononetin derivative biosynthesis
- salvigenin biosynthesis
- protein S-nitrosylation and denitrosylation
- superpathway of glycolysis and the Entner-Doudoroff pathway
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- superoxide radicals degradation
- Entner-Doudoroff pathway I
- reactive oxygen species degradation
- pentose phosphate pathway
- ethylene biosynthesis III (microbes)
- ethylene biosynthesis
- NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
- superpathway NAD/NADP - NADH/NADPH interconversion (yeast)
- spermidine biosynthesis I
- phosphatidate metabolism, as a signaling molecule
- flavin biosynthesis II (archaea)
- gluconeogenesis I
- D-galactose degradation V (Leloir pathway)
- L-arginine biosynthesis II (acetyl cycle)
- glycolysis II (from fructose 6-phosphate)
- glycolysis I (from glucose 6-phosphate)
- L-rhamnose degradation I
- UDP-α-D-glucose biosynthesis I
- ppGpp biosynthesis
- dolichyl glucosyl phosphate biosynthesis
- superpathway NAD/NADP - NADH/NADPH interconversion
- NAD/NADP-NADH/NADPH cytosolic interconversion
- UDP-glucose biosynthesis
- glycophosphatidylinositol (GPI) anchor biosynthesis
- lipophosphoglycan (LPG) biosynthesis
- glycoinositolphospholipid (GIPL) biosynthesis
- monolignol glucosides biosynthesis
- polymethylated quercetin biosynthesis
- peptidoglycan biosynthesis I
- di-trans,poly-cis-undecaprenyl diphosphate biosynthesis
- seleno-amino acid biosynthesis
- 1,8-cineole degradation
- oleandomycin biosynthesis
- galactose degradation I (Leloir pathway)
- D-galactose degradation I (Leloir pathway)
- menthol biosynthesis
- UMP biosynthesis
- L-phenylalanine biosynthesis I
- validamycin biosynthesis
- 3,4,6-trichlorocatechol degradation
- theobromine biosynthesis II (via xanthine)
- eupatolitin 3-O-glucoside biosynthesis
- phenol degradation I (aerobic)
- phenyl adenosylcobamide biosynthesis from adenosylcobinamide-GDP
- diphenyl ethers degradation
- salicylate degradation III
- nivalenol biosynthesis
- T-2 toxin biosynthesis
- superpathway of trichothecene biosynthesis
- sarcinaxanthin diglucoside biosynthesis
- decaprenoxanthin diglucoside biosynthesis
- glucosinolate biosynthesis from pentahomomethionine
- itaconate biosynthesis
- juvenile hormone III biosynthesis I
- juvenile hormone III biosynthesis II
- brassinosteroid biosynthesis II
- spirilloxanthin and 2,2'-diketo-spirilloxanthin biosynthesis
- lauryl-hydroxychlorobactene glucoside biosynthesis
- ellagic acid degradation to urolithins
- zerumbone biosynthesis
- styrene degradation
- superpathway of histidine, purine and pyrimidine biosynthesis
- nitrogen fixation
- lysine degradation VIII
- glutamate and glutamine biosynthesis
- cysteine biosynthesis/homocysteine degradation
- glutamine biosynthesis II
- methionine biosynthesis
- superpathway of threonine degradation
- glutamate degradation
- threonine degradation II
- glycine cleavage complex
- 2-amino-3-carboxymuconate semialdehyde degradation to 2-oxopentenoate
- cysteine biosynthesis II
- proline biosynthesis II (from arginine)
- tryptophan degradation III (eukaryotic)
- uracil degradation II (reductive)
- histidine degradation III
- Serine degradation II
- heme biosynthesis II
- cysteine biosynthesis III (mammalia)
- arginine biosynthesis IV
- ammonia oxidation III
- ammonia oxidation IV (autotrophic ammonia oxidizers)
- L-asparagine biosynthesis II
- superpathway of L-asparagine biosynthesis
- L-glutamate degradation X
- nitrifier denitrification
- IAA biosynthesis V
- purine nucleotides degradation III (anaerobic)
- purine nucleotides degradation IV (anaerobic)
- folate transformations II (plants)
- glutamate degradation V (via hydroxyglutarate)
- glycine degradation I
- lysine fermentation to acetate and butyrate
- glutamate degradation I
- glutamate degradation VII (to butanoate)
- 4-aminobutyrate degradation V
- glutamate degradation VI (to pyruvate)
- tetrapyrrole biosynthesis I
- alanine degradation II (to D-lactate)
- superpathway of glutamate biosynthesis
- leucine degradation IV
- isoleucine degradation III
- suberin biosynthesis
- dimethylsulfoniopropionate biosynthesis II (Spartina)
- phenylalanine degradation IV (mammalian, via side chain)
- heme biosynthesis I
- ornithine degradation II (Stickland reaction)
- TCA cycle VI (obligate autotrophs)
- tryptophan degradation X (mammalian, via tryptamine)
- glutamine biosynthesis III
- lactate biosynthesis (archaea)
- reductive acetyl coenzyme A pathway II (autotrophic methanogens)
- coenzyme B/coenzyme M regeneration III (coenzyme F420-dependent)
- factor 420 biosynthesis
- tetracycline and oxytetracycline biosynthesis
- gluconeogenesis II (Methanobacterium thermoautotrophicum)
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- 2,4,6-trinitrophenol and 2,4-dinitrophenol degradation
- methyl-coenzyme M oxidation to CO2
- methanogenesis from H2 and CO2
- chitin derivatives degradation
- ubiquinone-9 biosynthesis (eukaryotic)
- superpathway of ergosterol biosynthesis I
- ergosterol biosynthesis I
- superpathway of ergosterol biosynthesis
- ergosterol biosynthesis
- superpathway of cholesterol degradation II (cholesterol dehydrogenase)
- superpathway of cholesterol degradation I (cholesterol oxidase)
- cholesterol degradation to androstenedione I (cholesterol oxidase)
- cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
- limonene degradation II (L-limonene)
- afrormosin conjugates interconversion
- anthocyanidin 3-malylglucoside biosynthesis (acyl-glucose dependent)
- terrequinone A biosynthesis
- 2,4,6-trichlorophenol degradation
- volatile cinnamoic ester biosynthesis
- 5-deoxystrigol biosynthesis
- arabidopyrone biosynthesis
- poly(3-O-β-D-glucopyranosyl-N-acetylgalactosamine 1-phosphate) wall teichoic acid biosynthesis
- L-lysine degradation IV
- L-lysine degradation III
- stephacidin A biosynthesis
- Spodoptera littoralis pheromone biosynthesis
- ephedrine biosynthesis
- prunasin and amygdalin biosynthesis
- phenylpropanoid biosynthesis
- hopanoid biosynthesis (bacteria)
- Ac/N-end rule pathway
- PRPP biosynthesis II
- guanosine nucleotides degradation
- super pathway of glycosphingolipids biosynthesis
- purine nucleotides degradation
- lysine degradation I (saccharopine pathway)
- secologanin and strictosidine biosynthesis
- i antigen and I antigen biosynthesis
- NAD biosynthesis III (from nicotinamide)
- fumigaclavine biosynthesis
- α-dystroglycan glycosylation
- (S,S)-butanediol degradation
- homogalacturonan biosynthesis
- superpathway of 5-aminoimidazole ribonucleotide biosynthesis
- L-homomethionine biosynthesis
- terminal O-glycans residues modification (via type 2 precursor disaccharide)
- 5-aminoimidazole ribonucleotide biosynthesis II
- protein O-mannosylation II (mammals, core M1 and core M2)
- thiosulfate oxidation IV (multienzyme complex)
- allantoin degradation to glyoxylate II
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)
- allantoin degradation IV (anaerobic)
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
- 2-nitrobenzoate degradation I
- procollagen hydroxylation and glycosylation
- ammonia assimilation cycle III
- L-glutamine biosynthesis I
- podophyllotoxin glucosides metabolism
- ethylmalonyl-CoA pathway
- ethylene glycol biosynthesis (engineered)
- rosmarinic acid biosynthesis II
- methylaspartate cycle
- superpathway of heme b biosynthesis from uroporphyrinogen-III
- colanic acid building blocks biosynthesis
- sanguinarine and macarpine biosynthesis
- conversion of succinate to propanoate
- pyruvate fermentation to acetate and lactate II
- (aminomethyl)phosphonate degradation
- CMP-N-acetylneuraminate biosynthesis I (eukaryotes)
- pyruvate fermentation to acetate I
- CDP-archaeol biosynthesis
- archaetidylinositol biosynthesis
- 3-phosphoinositide biosynthesis
- archaetidylserine and archaetidylethanolamine biosynthesis
- methyl indole-3-acetate interconversion
- sucrose biosynthesis II
- suberin monomers biosynthesis
- pyrimidine deoxyribonucleotides de novo biosynthesis I
- L-glutamine degradation II
- protein N-glycosylation initial phase (eukaryotic)
- vitamin B6 degradation
- crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
- superpathway of pyrimidine deoxyribonucleosides degradation
- TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
- diacylglycerol and triacylglycerol biosynthesis
- B series fagopyritols biosynthesis
- A series fagopyritols biosynthesis
- (4S)-carvone biosynthesis
- geraniol and geranial biosynthesis
- sakuranetin biosynthesis
- propanoyl CoA degradation I
- superpathway of rosmarinic acid biosynthesis
- Entner-Doudoroff pathway II (non-phosphorylative)
- pyruvate fermentation to (R)-acetoin II
- L-lysine degradation V
- L-lysine degradation XI (mammalian)
- L-lysine degradation IX
- superpathway of Clostridium acetobutylicum acidogenic fermentation
- grixazone biosynthesis
- 3,3'-disulfanediyldipropannoate degradation
- 3-amino-5-hydroxybenzoate biosynthesis
- gliotoxin biosynthesis
- phosphatidylinositol biosynthesis II (eukaryotes)
- oxalate biosynthesis
- L-glutamate and L-glutamine biosynthesis
- 2-oxobutanoate degradation I
- purine ribonucleosides degradation
- superpathway of purine deoxyribonucleosides degradation
- L-malate degradation I
- phosphatidylcholine biosynthesis I
- L-carnitine degradation III
- D-galactose detoxification
- nitrite oxidation
- superpathway of adenosine nucleotides de novo biosynthesis I
- trehalose degradation IV
- superpathway of purine nucleotides de novo biosynthesis I
- methylgallate degradation
- reductive TCA cycle I
- 4-hydroxymandelate degradation
- D-glucarate degradation I
- hexitol fermentation to lactate, formate, ethanol and acetate
- 4-amino-3-hydroxybenzoate degradation
- orcinol degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- ferrichrome biosynthesis
- 4-hydroxyphenylacetate degradation
- purine nucleobases degradation I (anaerobic)
- purine nucleobases degradation II (anaerobic)
- superpathway of aromatic compound degradation via 3-oxoadipate
- anaerobic energy metabolism (invertebrates, cytosol)
- 3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation
- 2-hydroxypenta-2,4-dienoate degradation
- emetine biosynthesis
- UDP-sugars interconversion
- mevalonate degradation
- norspermidine biosynthesis
- peptidoglycan biosynthesis I (meso-diaminopimelate containing)
- peptidoglycan biosynthesis II (staphylococci)
- superpathway of polyamine biosynthesis III
- drosopterin and aurodrosopterin biosynthesis
- superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP)
- (S,S)-butanediol biosynthesis
- L-leucine degradation I
- superpathway of (R,R)-butanediol biosynthesis
- superpathway of 2,3-butanediol biosynthesis
- taxadiene biosynthesis (engineered)
- vitexin and derivatives biosynthesis
- factor 420 polyglutamylation
- GDP-mannose biosynthesis
- superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis
- cephamycin C biosynthesis
- superpathway of rifamycin B biosynthesis
- ATP biosynthesis
- novobiocin biosynthesis
- D-xylose degradation I
- superpathway of penicillin, cephalosporin and cephamycin biosynthesis
- L-valine biosynthesis
- myo-, chiro- and scyllo-inositol degradation
- CDP-D-arabitol biosynthesis
- superpathway of CDP-glucose-derived O-antigen building blocks biosynthesis
- CDP-4-dehydro-3,6-dideoxy-D-glucose biosynthesis
- myo-inositol degradation I
- oxalate degradation V
- L-histidine biosynthesis
- adenine salvage
- gentisate degradation II
- rhizocticin A and B biosynthesis
- pectin degradation I
- UDP-N-acetyl-D-glucosamine biosynthesis II
- phosphinothricin tripeptide biosynthesis
- isopenicillin N biosynthesis
- oxalate degradation IV
- puromycin biosynthesis
- L-arginine biosynthesis I (via L-ornithine)
- L-threonine degradation II
- L-threonine degradation III (to methylglyoxal)
- β-D-galactosaminyl-(1→3)-N-acetyl-α-D-galactosamine biosynthesis
- Escherichia coli serotype O86 O-antigen biosynthesis
- meta cleavage pathway of aromatic compounds
- 2-nitrophenol degradation
- artemisinin biosynthesis
- superpathway of β-D-glucuronosides degradation
- 5-nitroanthranilate degradation
- CMP-N-acetyl-7-O-acetylneuraminate biosynthesis
- CMP-2-keto-3-deoxy-D-glycero-D-galacto-nononate biosynthesis
- flaviolin dimer and mompain biosynthesis
- glycolysis V (Pyrococcus)
- glycolysis III (from glucose)
- L-rhamnose degradation II
- L-ascorbate degradation I (bacterial, anaerobic)
- catechol degradation II (meta-cleavage pathway)
- catechol degradation I (meta-cleavage pathway)
- aromatic compounds degradation via β-ketoadipate
- catechol degradation III (ortho-cleavage pathway)
- catechol degradation to β-ketoadipate
- guanosine nucleotides degradation III
- L-ornithine biosynthesis I
- pyruvate fermentation to lactate
- superpathway of glycosphingolipids biosynthesis
- glycogen biosynthesis I (from ADP-D-Glucose)
- androstenedione degradation
- UDP-α-D-xylose biosynthesis
- cardiolipin biosynthesis II
- UDP-β-L-arabinose biosynthesis II (from β-L-arabinose)
- gallate degradation II
- superpathway of D-glucarate and D-galactarate degradation
- Entner-Doudoroff pathway III (semi-phosphorylative)
- mandelate degradation to acetyl-CoA
- phosphatidylglycerol biosynthesis II (non-plastidic)
- methylerythritol phosphate pathway I
- methylerythritol phosphate pathway II
- ubiquinol-8 biosynthesis (prokaryotic)
- L-ascorbate biosynthesis IV
- glycerol degradation II
- lipoate salvage II
- superpathway of phylloquinol biosynthesis
- superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
- aminopropanol phosphate biosynthesis II
- D-galacturonate degradation I
- glucose degradation (oxidative)
- D-fructuronate degradation
- D-galactonate degradation
- betalamic acid biosynthesis
- superpathway of hexuronide and hexuronate degradation
- UTP and CTP dephosphorylation II
- UDP-α-D-glucuronate biosynthesis (from myo-inositol)
- superpathway of ubiquinol-8 biosynthesis (prokaryotic)
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis
- violdelphin biosynthesis
- gentiodelphin biosynthesis
- di-myo-inositol phosphate biosynthesis
- superpathway of L-threonine metabolism
- superpathway of anthocyanin biosynthesis (from delphinidin 3-O-glucoside)
- sphingolipid biosynthesis (plants)
- L-carnitine biosynthesis
- trans-4-hydroxy-L-proline degradation I
- 3-chlorocatechol degradation I (ortho)
- 3-chlorocatechol degradation II (ortho)
- neolacto-series glycosphingolipids biosynthesis
- (S)-reticuline biosynthesis I
- ceramide phosphoethanolamine biosynthesis
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
- glucose and glucose-1-phosphate degradation
- 2'-deoxy-α-D-ribose 1-phosphate degradation
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- trehalose biosynthesis III
- trehalose biosynthesis I
- superpathway of L-methionine salvage and degradation
- manganese oxidation I
- manganese oxidation II
- erythro-tetrahydrobiopterin biosynthesis I
- L-isoleucine biosynthesis IV
- S-adenosyl-L-methionine cycle II
- L-isoleucine biosynthesis II
- mucin core 3 and core 4 O-glycosylation
- complex N-linked glycan biosynthesis (vertebrates)
- complex N-linked glycan biosynthesis (plants)
- UDP-D-xylose biosynthesis
- adenosine nucleotides de novo biosynthesis
- superpathway of glutathione metabolism (truncated γ-glutamyl cycle)
- trehalose biosynthesis
- protein N-glycosylation (eukaryotic) initial steps
- limonene degradation III (to perillate)
- zymosterol biosynthesis
- cholesterol biosynthesis I
- cholesterol biosynthesis III (via desmosterol)
- superpathway of cholesterol biosynthesis
- isoprene degradation
- acetyl-CoA degradation to acetate
- glycolysis I
- selenocysteine biosynthesis I (bacteria)
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle
- ethanol degradation II (cytosol)
- epoxypseudoisoeugenol-2-methylbutanoate biosynthesis
- folate polyglutamylation I
- (+)-pisatin biosynthesis
- pyrrolnitrin biosynthesis
- nitrate reduction III (dissimilatory)
- nitrate reduction VIII (dissimilatory)
- NADH to fumarate electron transfer
- nitrate reduction IX (dissimilatory)
- succinate to cytochrome bo oxidase electron transfer
- NADH to cytochrome bo oxidase electron transfer II
- D-lactate to cytochrome bo oxidase electron transfer
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer
- proline to cytochrome bo oxidase electron transfer
- pyruvate to cytochrome bo oxidase electron transfer
- hydrogen to fumarate electron transfer
- holomycin biosynthesis
- ethanol degradation I
- ethanolamine utilization
- guaiacylglycerol-β-guaiacyl ether degradation
- L-threonine degradation IV
- pyruvate fermentation to ethanol I
- versicolorin B biosynthesis
- methylglyoxal degradation VI
- 1,2-propanediol biosynthesis from lactate (engineered)
- okenone biosynthesis
- isoflavonoid biosynthesis I
- formononetin biosynthesis
- 2,2'-dihydroxybiphenyl degradation
- pyrimidine nucleobases salvage II
- superpathway of pyrimidine nucleobases salvage
- wogonin metabolism
- 2,4-xylenol degradation to protocatechuate
- dhurrin biosynthesis
- taxiphyllin biosynthesis
- sitosterol degradation to androstenedione
- fumitremorgin C biosynthesis
- superpathway of fumitremorgin biosynthesis
- 2-amino-3-hydroxycyclopent-2-enone biosynthesis
- coniferin metabolism
- sphingolipid metabolism
- superpathway of phospholipid biosynthesis
- ester phospholipid biosynthesis
- t-anethole biosynthesis
- trans-3-hydroxy-L-proline degradation
- UDP-galactose biosynthesis
- nickel cofactor biosynthesis
- hyperxanthone E biosynthesis
- citronellol degradation
- phylloquinol biosynthesis
- ascorbate glutathione cycle
- trehalose degradation
- superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
- mAGP
- trehalose degradation I (low osmolarity)
- trehalose degradation V
- polyacyltrehalose biosynthesis
- glycogen biosynthesis III (from α-maltose 1-phosphate)
- trehalose biosynthesis II
- trehalose biosynthesis VI
- trehalose biosynthesis VII
- trehalose degradation II (trehalase)
- mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
- purine deoxyribonucleosides degradation
- purine deoxyribonucleosides degradation II
- purine deoxyribonucleosides degradation I
- purine deoxyribonucleosides salvage
- melatonin degradation II
- resorcinol degradation
- γ-resorcylate degradation II
- γ-resorcylate degradation I
- 4-nitrophenol degradation II
- 2,4,5-trichlorophenoxyacetate degradation
- citrulline-nitric oxide cycle
- nitrate reduction VII (denitrification)
- nitrite reduction (hemoglobin)
- NADH to cytochrome bd oxidase electron transfer II
- succinate to cytochrome bd oxidase electron transfer
- nitric oxide biosynthesis II (mammals)
- nitrogen fixation I (ferredoxin)
- nitric oxide biosynthesis I (plants)
- nitric oxide biosynthesis III (bacteria)
- ammonia oxidation II (anaerobic)
- nitrate reduction I (denitrification)
- L-citrulline-nitric oxide cycle
- nitric oxide biosynthesis (plants)
- fumiquinazoline D biosynthesis
- nitrate reduction VIIIb (dissimilatory)
- coenzyme M biosynthesis I
- coelimycin P1 biosynthesis
- benzene degradation
- histamine degradation
- fluorene degradation I
- salicortin biosynthesis
- benzoate biosynthesis I (CoA-dependent, β-oxidative)
- superpathway of benzoxazinoid glucosides biosynthesis
- DIBOA-glucoside biosynthesis
- indole-3-acetate degradation
- folate metabolism
- threonine degradation I
- nostoxanthin biosynthesis
- 4'-methoxyviridicatin biosynthesis
- stipitatate biosynthesis
- myo-, chiro- and scillo-inositol degradation
- myo-inositol degradation
- PIP metabolism
- 1D-myo-inositol hexakisphosphate biosynthesis IV (Dictyostelium)
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza)
- pinitol biosynthesis I
- pinitol biosynthesis II
- superpathway of inositol phosphate compounds
- lychnose and isolychnose biosynthesis
- stellariose and mediose biosynthesis
- myo-inositol degradation II
- superpathway of D-myo-inositol (1,4,5)-trisphosphate metabolism
- superpathway of phospholipid biosynthesis II (plants)
- phosphatidylinositol phosphate biosynthesis
- UDP-D-glucuronate biosynthesis (from myo-inositol)
- curcuminoid biosynthesis
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
- bisphenol A degradation
- isoprene biosynthesis II (engineered)
- isoprene biosynthesis I
- zeaxanthin-β-D-diglucoside biosynthesis
- glycine betaine biosynthesis I (Gram-negative bacteria)
- γ-coniciene and coniine biosynthesis
- proline biosynthesis II
- 7-dehydroporiferasterol biosynthesis
- butachlor degradation
- pyruvate fermentation to isobutanol (engineered)
- butanol and isobutanol biosynthesis (engineered)
- L-valine degradation II
- valine degradation II
- sophorosyloxydocosanoate deacetylation
- triacylglycerol degradation
- (+)-camphor biosynthesis
- acyl-CoA hydrolysis
- nylon-6 oligomer degradation
- S-methyl-5'-thioadenosine degradation I
- L-methionine salvage cycle I (bacteria and plants)
- L-methionine salvage cycle II (plants)
- superpathway of bitter acids biosynthesis
- hyperforin and adhyperforin biosynthesis
- colupulone and cohumulone biosynthesis
- taxol biosynthesis
- tetracenomycin C biosynthesis
- rebeccamycin biosynthesis
- L-glutamate degradation VII (to butanoate)
- L-ascorbate degradation III
- L-ascorbate degradation II (bacterial, aerobic)
- L-ascorbate degradation IV
- indole-3-acetate inactivation VII
- salicin biosynthesis
- daphnin interconversion
- superpathway of erythromycin biosynthesis
- superpathway of megalomicin A biosynthesis
- erythromycin D biosynthesis
- superpathway of erythromycin biosynthesis (without sugar biosynthesis)
- phaseollin biosynthesis
- protein O-[N-acetyl]-glucosylation
- detoxification of reactive carbonyls in chloroplasts
- neurosporaxanthin biosynthesis
- bixin biosynthesis
- myxol-2' fucoside biosynthesis
- crocetin biosynthesis
- superpathway of seleno-compound metabolism
- seleno-amino acid detoxification and volatilization II
- L-homoserine biosynthesis
- superpathway of L-threonine biosynthesis
- cyclopropane fatty acid (CFA) biosynthesis
- superpathway of L-isoleucine biosynthesis I
- paxilline and diprenylpaxilline biosynthesis
- 2,3-trans-flavanols biosynthesis
- prodigiosin biosynthesis
- cardenolide biosynthesis
- teichuronic acid biosynthesis (B. subtilis 168)
- cichoriin interconversion
- (R,R)-butanediol degradation
- (R,R)-butanediol biosynthesis
- superpathway of acetoin and butanediol biosynthesis
- butanediol biosynthesis
- vestitol and sativan biosynthesis
- thiocyanate degradation II
- carbon disulfide oxidation II (aerobic)
- carbon disulfide oxidation III (metazoa)
- polybrominated dihydroxylated diphenyl ethers biosynthesis
- spongiadioxin C biosynthesis
- ajmaline and sarpagine biosynthesis
- dTDP-L-daunosamine biosynthesis
- astaxanthin biosynthesis (bacteria, fungi, algae)
- leucopelargonidin and leucocyanidin biosynthesis
- anthocyanin biosynthesis (pelargonidin 3-O-glucoside)
- glucosinolate biosynthesis from tetrahomomethionine
- androgen biosynthesis
- phenylethanol glycoconjugate biosynthesis
- gibberellin biosynthesis IV (Gibberella fujikuroi)
- GA12 biosynthesis
- superpathway of gibberellin biosynthesis
- superpathway of gibberellin GA12 biosynthesis
- L-threonate degradation
- D-threonate degradation
- uracil degradation I (reductive)
- squid bioluminescence
- sulfur volatiles biosynthesis
- 2-keto glutarate dehydrogenase complex
- arginine degradation (arginase pathway)
- pyridoxal 5'-phosphate biosynthesis
- 4-hydroxyproline degradation II
- (5R)-carbapenem biosynthesis
- TCA cycle variation IV
- purine degradation II (anaerobic)
- O-antigen biosynthesis (E. coli)
- methionine and methyl-donor-molecule biosynthesis
- C4 photosynthetic carbon assimilation cycle
- chlorophyllide a biosynthesis I
- 3-phenylpropionate degradation
- toluene degradation to protocatechuate (via p-cresol)
- fatty acid biosynthesis -- elongase pathway
- glyoxalase pathway
- respiration (anaerobic)
- biopterin metabolism
- ascorbate biosynthesis
- trypanothione redox reactions
- glycerolipid biosynthesis - initial steps
- ether phospholipid biosynthesis
- oxaloacetate degradation to pyruvate
- D-carnitine degradation II
PlantCyc(318)
- UTP and CTP dephosphorylation I
- pyrimidine ribonucleosides salvage I
- superpathway of pyrimidine ribonucleosides salvage
- pyrimidine ribonucleosides salvage II
- pyrimidine salvage pathway
- betacyanin biosynthesis
- quercetin gentiotetraside biosynthesis
- kaempferol gentiobioside biosynthesis
- superpathway of anthocyanin biosynthesis (from pelargonidin 3-O-glucoside)
- superpathway of hyoscyamine and scopolamine biosynthesis
- hyoscyamine and scopolamine biosynthesis
- pelargonidin conjugates biosynthesis
- superpathway of betalain biosynthesis
- flavonol glucosylation I
- myricetin gentiobioside biosynthesis
- lupanine biosynthesis
- superpathway of anthocyanin biosynthesis (from cyanidin and cyanidin 3-O-glucoside)
- superpathway of anaerobic sucrose degradation
- sucrose degradation II (sucrose synthase)
- superpathway of isoflavonoids (via naringenin)
- oryzalide A biosynthesis
- kauralexin biosynthesis
- protein N-glycosylation initial phase (eukaryotic)
- Kdo transfer to lipid IVA I
- lipid IVA biosynthesis
- Kdo transfer to lipid IVA I (E. coli)
- glucosinolate biosynthesis from tyrosine
- aromatic glucosinolate activation
- abietic acid biosynthesis
- superpathway of diterpene resin acids biosynthesis
- brassinolide biosynthesis II
- brassinolide biosynthesis I
- brassinosteroid biosynthesis I
- brassinosteroids inactivation
- superpathway of C28 brassinosteroid biosynthesis
- glycolysis IV (plant cytosol)
- anthocyanidin acylglucoside and acylsambubioside biosynthesis
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- anthocyanidin sambubioside biosynthesis
- coumarin metabolism (to melilotic acid)
- hordatine biosynthesis
- hydroxycinnamic acid tyramine amides biosynthesis
- rutin degradation (plants)
- gossypol biosynthesis
- orientin and isoorientin biosynthesis I
- leucodelphinidin biosynthesis
- luteolinidin 5-O-glucoside biosynthesis
- hesperitin glycoside biosynthesis
- luteolin biosynthesis
- flavonoid biosynthesis (in equisetum)
- leucopelargonidin and leucocyanidin biosynthesis
- eriodictyol C-glucosylation
- indole-3-acetate activation II
- superpathway of indole-3-acetate conjugate biosynthesis
- indole-3-acetate inactivation IX
- urea degradation I
- superpathway of L-citrulline metabolism
- L-arginine degradation VI (arginase 2 pathway)
- canavanine degradation
- putrescine biosynthesis I
- allantoin degradation to ureidoglycolate I (urea producing)
- L-citrulline biosynthesis
- superpathway of allantoin degradation in plants
- allantoin degradation to glyoxylate III
- L-arginine degradation I (arginase pathway)
- allantoin degradation to glyoxylate I
- superpathway of purines degradation in plants
- L-Nδ-acetylornithine biosynthesis
- urea cycle
- urea degradation II
- putrescine biosynthesis IV
- Organic Nitrogen Assimilation
- superpathway of hyoscyamine (atropine) and scopolamine biosynthesis
- formaldehyde oxidation VII (THF pathway)
- nevadensin biosynthesis
- 4-hydroxycoumarin and dicoumarol biosynthesis
- formaldehyde oxidation II (glutathione-dependent)
- colchicine biosynthesis
- indole glucosinolate activation (herbivore attack)
- morphine biosynthesis
- superpathway of linamarin and lotaustralin biosynthesis
- linamarin biosynthesis
- superpathway of pterocarpan biosynthesis (via daidzein)
- adenine and adenosine salvage III
- superpathway of adenosine nucleotides de novo biosynthesis I
- inosine 5'-phosphate degradation
- superpathway of purine nucleotides de novo biosynthesis I
- inosine-5'-phosphate biosynthesis II
- guanosine ribonucleotides de novo biosynthesis
- adenosine nucleotides degradation I
- adenosine ribonucleotides de novo biosynthesis
- ureide biosynthesis
- purine nucleotides degradation I (plants)
- aurone biosynthesis
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium)
- polymethylated kaempferol biosynthesis
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- kaempferide triglycoside biosynthesis
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- ajmaline and sarpagine biosynthesis
- resveratrol biosynthesis
- phytosterol biosynthesis (plants)
- cytokinins degradation
- ginsenosides biosynthesis
- NAD/NADH phosphorylation and dephosphorylation
- superpathway of gibberellin biosynthesis
- guanosine nucleotides degradation II
- nucleobase ascorbate transport I
- urate conversion to allantoin I
- superpathway of guanosine nucleotides degradation (plants)
- guanosine nucleotides degradation I
- glycine betaine biosynthesis III (plants)
- pinobanksin biosynthesis
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (late decarboxylation)
- superpathway of proto- and siroheme biosynthesis
- stachyose biosynthesis
- N-methyl-Δ1-pyrrolinium cation biosynthesis
- superpathway of nicotine biosynthesis
- berberine biosynthesis
- luteolin triglucuronide degradation
- superpathway of Allium flavor precursors
- alliin metabolism
- D-xylose degradation I
- 2,3-cis-flavanols biosynthesis
- 3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
- superpathway of carotenoid biosynthesis in plants
- vindoline, vindorosine and vinblastine biosynthesis
- capsaicin biosynthesis
- linear furanocoumarin biosynthesis
- ketogenesis
- simple coumarins biosynthesis
- scopolin biosynthesis
- simplecoumarins biosynthesis
- scopoletin biosynthesis
- coumarins biosynthesis (engineered)
- esculetin modification
- superpathway of scopolin and esculin biosynthesis
- gibberellin inactivation I (2β-hydroxylation)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- superpathway of tetrahydroxyxanthone biosynthesis
- (-)-maackiain biosynthesis
- superpathway of pterocarpan biosynthesis (via formononetin)
- plumbagin biosynthesis
- tetrahydroxyxanthone biosynthesis (from benzoate)
- superpathway of formononetin derivative biosynthesis
- salvigenin biosynthesis
- reactive oxygen species degradation
- superoxide radicals degradation
- calystegine biosynthesis
- tropane alkaloids biosynthesis
- L-rhamnose degradation I
- 4-hydroxyindole-3-carbonyl nitrile biosynthesis
- superpathway of flavones and derivatives biosynthesis
- kaempferol glycoside biosynthesis (Arabidopsis)
- monolignol glucosides biosynthesis
- polymethylated quercetin biosynthesis
- D-galactose degradation I (Leloir pathway)
- menthol biosynthesis
- eupatolitin 3-O-glucoside biosynthesis
- aliphatic glucosinolate biosynthesis, side chain elongation cycle
- glucosinolate biosynthesis from pentahomomethionine
- juvenile hormone III biosynthesis I
- UMP biosynthesis I
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
- superpathway of pyrimidine ribonucleotides de novo biosynthesis
- glycerol degradation I
- glycerol-3-phosphate shuttle
- L-lysine degradation I
- L-proline degradation
- superpathway of glyoxylate cycle and fatty acid degradation
- superpathway of photosynthetic hydrogen production
- photosynthesis light reactions
- brassinosteroid biosynthesis II
- zerumbone biosynthesis
- ephedrine biosynthesis
- sulfide oxidation III (persulfide dioxygenase)
- thiosulfate disproportionation IV (rhodanese)
- sulfoquinovosyl diacylglycerol biosynthesis
- assimilatory sulfate reduction II
- L-glutamate biosynthesis I
- Inorganic Nitrogen Assimilation
- afrormosin conjugates interconversion
- steviol glucoside biosynthesis (rebaudioside A biosynthesis)
- volatile cinnamoic ester biosynthesis
- 5-deoxystrigol biosynthesis
- matairesinol biosynthesis
- prunasin and amygdalin biosynthesis
- flavonol biosynthesis
- syringetin biosynthesis
- phenylpropanoid biosynthesis
- superpathway of anthocyanin biosynthesis (from delphinidin 3-O-glucoside)
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- phosphatidate metabolism, as a signaling molecule
- oxalate degradation IV
- UDP-α-D-glucuronate biosynthesis (from myo-inositol)
- methyl indole-3-acetate interconversion
- 1,4-dihydroxy-2-naphthoate biosynthesis II (plants)
- L-histidine biosynthesis
- cardiolipin biosynthesis II
- B series fagopyritols biosynthesis
- podophyllotoxin glucosides metabolism
- sakuranetin biosynthesis
- superpathway of phylloquinol biosynthesis
- vitexin and derivatives biosynthesis
- (S)-reticuline biosynthesis I
- (4S)-carvone biosynthesis
- suberin monomers biosynthesis
- UDP-β-L-arabinose biosynthesis II (from β-L-arabinose)
- violdelphin biosynthesis
- S-adenosyl-L-methionine cycle II
- allantoin degradation to glyoxylate II
- allantoin degradation to ureidoglycolate II (ammonia producing)
- palmatine biosynthesis
- D-galactose detoxification
- superpathway of phospholipid biosynthesis II (plants)
- rosmarinic acid biosynthesis II
- sucrose biosynthesis II
- superpathway of rosmarinic acid biosynthesis
- geraniol and geranial biosynthesis
- sphingolipid biosynthesis (plants)
- sanguinarine and macarpine biosynthesis
- phosphatidylglycerol biosynthesis II (non-plastidic)
- homogalacturonan biosynthesis
- artemisinin and arteannuin B biosynthesis
- 2-carboxy-1,4-naphthoquinol biosynthesis
- UDP-galactose biosynthesis (salvage pathway from galactose using UDP-glucose)
- chorismate biosynthesis I
- emetine biosynthesis
- betalamic acid biosynthesis
- phosphatidylglycerol biosynthesis I (plastidic)
- gentiodelphin biosynthesis
- A series fagopyritols biosynthesis
- jasmonoyl-L-isoleucine inactivation
- cholesterol biosynthesis I
- zymosterol biosynthesis
- superpathway of seleno-compound metabolism
- selenate reduction
- pinocembrin C-glucosylation
- hypoglycin biosynthesis
- epoxypseudoisoeugenol-2-methylbutanoate biosynthesis
- tetrahydrofolate salvage from 5,10-methenyltetrahydrofolate
- L-methionine biosynthesis II
- L-methionine biosynthesis II (plants)
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II
- seleno-amino acid biosynthesis (plants)
- cytokinins 7-N-glucoside biosynthesis
- canavanine biosynthesis
- phenylpropanoid volatiles glycoconjugation (tomato)
- guaiacol biosynthesis
- beta-carboline biosynthesis
- wogonin metabolism
- taxiphyllin biosynthesis
- dhurrin biosynthesis
- daidzein conjugates interconversion
- coniferin metabolism
- t-anethole biosynthesis
- L-ascorbate biosynthesis II (plants, L-gulose pathway)
- hyperxanthone E biosynthesis
- saponin biosynthesis III
- ascorbate glutathione cycle
- trehalose biosynthesis I
- trehalose degradation II (cytosolic)
- trehalose biosynthesis VI
- purine deoxyribonucleosides salvage
- DIBOA-glucoside biosynthesis
- superpathway of benzoxazinoid glucosides biosynthesis
- (-)-glycinol biosynthesis
- jasmonic acid biosynthesis
- nostoxanthin biosynthesis
- Amaryllidacea alkaloids biosynthesis
- 3-phosphoinositide biosynthesis
- glycerophosphodiester degradation
- lychnose and isolychnose biosynthesis
- pinitol biosynthesis II
- 1D-myo-inositol hexakisphosphate biosynthesis III (Spirodela polyrrhiza)
- pinitol biosynthesis I
- phosphatidylinositol biosynthesis II (eukaryotes)
- stellariose and mediose biosynthesis
- D-myo-inositol (1,4,5)-trisphosphate biosynthesis
- L-ascorbate biosynthesis VI (plants, myo-inositol pathway)
- curcuminoid biosynthesis
- cholesterol biosynthesis (plants)
- cholesterol biosynthesis (plants, early side-chain reductase)
- isoprene biosynthesis II (engineered)
- isoprene biosynthesis I
- abscisic acid biosynthesis
- (+)-camphor biosynthesis
- L-methionine salvage cycle II (plants)
- L-methionine salvage cycle I (bacteria and plants)
- S-methyl-5'-thioadenosine degradation I
- taxol biosynthesis
- L-ascorbate degradation IV
- L-ascorbate degradation III
- salicin biosynthesis
- daphnin interconversion
- isoflavonoid biosynthesis I
- ppGpp biosynthesis
- phylloquinol biosynthesis
- detoxification of reactive carbonyls in chloroplasts
- bixin biosynthesis
- crocetin biosynthesis
- seleno-amino acid detoxification and volatilization II
- botryococcenes and methylated squalene biosynthesis
- justicidin B biosynthesis
- 2,3-trans-flavanols biosynthesis
- proanthocyanidins biosynthesis from flavanols
- cardenolide biosynthesis
- kaempferol triglucoside biosynthesis
- formononetin biosynthesis
- vestitol and sativan biosynthesis
- astaxanthin biosynthesis (bacteria, fungi, algae)
- glucosinolate biosynthesis from tetrahomomethionine
- gibberellin A12 biosynthesis
- GA12 biosynthesis
- superpathway of gibberellin GA12 biosynthesis
- sulfur volatiles biosynthesis
- fatty acid β-oxidation IV (unsaturated, even number)
代谢反应
0 个相关的代谢反应过程信息。
Reactome(0)
BioCyc(0)
WikiPathways(0)
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
1 个相关的物种来源信息
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Kristina Žuna, Tatyana Tyschuk, Taraneh Beikbaghban, Felix Sternberg, Jürgen Kreiter, Elena E Pohl. The 2-oxoglutarate/malate carrier extends the family of mitochondrial carriers capable of fatty acid and 2,4-dinitrophenol-activated proton transport.
Acta physiologica (Oxford, England).
2024 Jun; 240(6):e14143. doi:
10.1111/apha.14143
. [PMID: 38577966] - Cristina Barallat-Pérez, Michele Pedrotti, Teresa Oliviero, Sara Martins, Vincenzo Fogliano, Catrienus de Jong. Drivers of the In-Mouth Interaction between Lupin Protein Isolate and Selected Aroma Compounds: A Proton Transfer Reaction-Mass Spectrometry and Dynamic Time Intensity Analysis.
Journal of agricultural and food chemistry.
2024 Apr; 72(15):8731-8741. doi:
10.1021/acs.jafc.3c08819
. [PMID: 38579129] - Jingjing Shi, Ke Zhang, Ting Li, Lijuan Wu, Yang Yang, Yuan Zhang, Pengfei Tu, Wenjing Liu, Yuelin Song. Differentiation of isomeric chalcone and dihydroflavone using liquid chromatography coupled with hydrogen-deuterium exchange tandem mass spectrometry (HDX-MS/MS): An application for flavonoids-focused characterization of Snow chrysanthemum.
Journal of chromatography. A.
2024 Apr; 1720(?):464773. doi:
10.1016/j.chroma.2024.464773
. [PMID: 38432106] - Leidy Patricia Bedoya-Pérez, Alejandro Aguilar-Vera, Mishael Sánchez-Pérez, José Utrilla, Christian Sohlenkamp. Enhancing Escherichia coli abiotic stress resistance through ornithine lipid formation.
Applied microbiology and biotechnology.
2024 Apr; 108(1):288. doi:
10.1007/s00253-024-13130-5
. [PMID: 38587638] - Yu Sun, Jie Mu, Yongchen Wang, Chengwei Lü, Li-Wei Zou. Rational synthesis of 1,3,4-thiadiazole based ESIPT-fluorescent probe for detection of Cu2+ and H2S in herbs, wine and fruits.
Analytica chimica acta.
2024 Apr; 1297(?):342379. doi:
10.1016/j.aca.2024.342379
. [PMID: 38438245] - Yeqin Li, Yan Zhang, Liwen Tian, Ju Li, Huihua Li, Ximing Wang, Cuiyan Wang. 3D amide proton transfer-weighted imaging may be useful for diagnosing early-stage breast cancer: a prospective monocentric study.
European radiology experimental.
2024 Apr; 8(1):41. doi:
10.1186/s41747-024-00439-z
. [PMID: 38584248] - Nikhil Bharambe, Zhuowen Li, David Seiferth, Asha Manikkoth Balakrishna, Philip C Biggin, Sandip Basak. Cryo-EM structures of prokaryotic ligand-gated ion channel GLIC provide insights into gating in a lipid environment.
Nature communications.
2024 Apr; 15(1):2967. doi:
10.1038/s41467-024-47370-w
. [PMID: 38580666] - İbrahim Tegin, Bülent Hallaç, Nazmiye Sabancı, Betül Sadik, Mehmet Fidan, Erdal Yabalak. A broad assessment of Eremurus spectabilis M. Bieb: chemical and elemental composition, total phenolic and antimicrobial activity analysis, and quantum chemical calculations of radical scavenging potential.
International journal of environmental health research.
2024 Apr; 34(4):2124-2139. doi:
10.1080/09603123.2023.2214100
. [PMID: 37199334] - Stefan Paula, Andres Acosta, Naiki Judge, Stephanie Ramirez, Amaan Sandhu, David Deamer. Modelling energy-harvesting processes in primitive cells: Proton transport across bilayers driven by the oxidation of sulfite.
Bio Systems.
2024 Apr; 238(?):105189. doi:
10.1016/j.biosystems.2024.105189
. [PMID: 38479655] - Antonella L Grosso, Ksenia Morozova, Giovanna Ferrentino, Franco Biasioli, Matteo Scampicchio. Early detection of acrolein precursors in vegetable oils by using proton transfer reaction - mass spectrometry.
Talanta.
2024 Apr; 270(?):125513. doi:
10.1016/j.talanta.2023.125513
. [PMID: 38128278] - Michał Uflewski, Tobias Rindfleisch, Kübra Korkmaz, Enrico Tietz, Sarah Mielke, Viviana Correa Galvis, Beatrix Dünschede, Marcin Luzarowski, Aleksandra Skirycz, Markus Schwarzländer, Deserah D Strand, Alexander P Hertle, Danja Schünemann, Dirk Walther, Anja Thalhammer, Martin Wolff, Ute Armbruster. The thylakoid proton antiporter KEA3 regulates photosynthesis in response to the chloroplast energy status.
Nature communications.
2024 Mar; 15(1):2792. doi:
10.1038/s41467-024-47151-5
. [PMID: 38555362] - Iwona Budziak-Wieczorek, Dominika Kaczmarczyk, Klaudia Rząd, Mariusz Gagoś, Andrzej Stepulak, Beata Myśliwa-Kurdziel, Dariusz Karcz, Karolina Starzak, Gotard Burdziński, Monika Srebro-Hooper, Arkadiusz Matwijczuk. Cooperativity of ESPT and Aggregation-Induced Emission Effects-An Experimental and Theoretical Analysis of a 1,3,4-Thiadiazole Derivative.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063352
. [PMID: 38542326] - Jamie Mitchel Waterman, Tristan Michael Cofer, Lei Wang, Gaetan Glauser, Matthias Erb. High-resolution kinetics of herbivore-induced plant volatile transfer reveal clocked response patterns in neighboring plants.
eLife.
2024 Feb; 12(?):. doi:
10.7554/elife.89855
. [PMID: 38385996] - Yukun Chen, Gábor Méhes, Bingfu Liu, Liyun Gao, Mingyin Cui, Chenliang Lin, Yoko Hirono-Hara, Kiyotaka Y Hara, Noriyo Mitome, Takeo Miyake. Proton Logic Gate Based on a Gramicidin-ATP Synthase Integrated Biotransducer.
ACS applied materials & interfaces.
2024 Feb; 16(6):7480-7488. doi:
10.1021/acsami.3c15251
. [PMID: 38295806] - Ambili Ramanthrikkovil Variyam, Mikhail Stolov, Jiajun Feng, Nadav Amdursky. Solid-State Molecular Protonics Devices of Solid-Supported Biological Membranes Reveal the Mechanism of Long-Range Lateral Proton Transport.
ACS nano.
2024 Feb; 18(6):5101-5112. doi:
10.1021/acsnano.3c11990
. [PMID: 38314693] - Cai-Peng Yue, Liao Han, Si-Si Sun, Jun-Fan Chen, Ying-Na Feng, Jin-Yong Huang, Ting Zhou, Ying-Peng Hua. Genome-wide identification of the cation/proton antiporter (CPA) gene family and functional characterization of the key member BnaA05.NHX2 in allotetraploid rapeseed.
Gene.
2024 Feb; 894(?):148025. doi:
10.1016/j.gene.2023.148025
. [PMID: 38007163] - Jintao Liu, Dianjue Li, Jing Wang, Qian Wang, Xiao Guo, Qi Fu, Philip Kear, Guangtao Zhu, Xiaohui Yang. Genome-wide characterization of the CPA gene family in potato and a preliminary functional analysis of its role in NaCl tolerance.
BMC genomics.
2024 Feb; 25(1):144. doi:
10.1186/s12864-024-10000-2
. [PMID: 38317113] - Vasyl G Pivovarenko, Andrey S Klymchenko. Fluorescent Probes Based on Charge and Proton Transfer for Probing Biomolecular Environment.
Chemical record (New York, N.Y.).
2024 Feb; 24(2):e202300321. doi:
10.1002/tcr.202300321
. [PMID: 38158338] - Liang Cao, Jianping Zhao, Mei Wang, Ikhlas A Khan, Xing-Cong Li. Rapid preparation and proton NMR fingerprinting of polysaccharides from Radix Astragali.
Carbohydrate research.
2024 Feb; 536(?):109053. doi:
10.1016/j.carres.2024.109053
. [PMID: 38310807] - Amit Kumar Chaturvedi, Orly Dym, Yishai Levin, Robert Fluhr. PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1A redox states alleviate photoinhibition during changes in light intensity.
Plant physiology.
2024 Jan; 194(2):1059-1074. doi:
10.1093/plphys/kiad518
. [PMID: 37787609] - Tonghui Wang, Jinbo Fei, Zhenzhen Dong, Fanchen Yu, Junbai Li. Nanoarchitectonics with a Membrane-Embedded Electron Shuttle Mimics the Bioenergy Anabolism of Mitochondria.
Angewandte Chemie (International ed. in English).
2024 Jan; ?(?):e202319116. doi:
10.1002/anie.202319116
. [PMID: 38225920] - Caroline N Rivera, Carly E Smith, Lillian V Draper, Madison E Kee, Norah E Cook, Macey R McGovern, Rachel M Watne, Andrew J Wommack, Roger A Vaughan. The BCKDH kinase inhibitor BT2 promotes BCAA disposal and mitochondrial proton leak in both insulin-sensitive and insulin-resistant C2C12 myotubes.
Journal of cellular biochemistry.
2024 Jan; ?(?):. doi:
10.1002/jcb.30520
. [PMID: 38226684] - Cong Sheng, Yu Ding, Yaping Qi, Man Hu, Jianguang Zhang, Xiangli Cui, Yingying Zhang, Wanli Huo. A denoising method based on deep learning for proton radiograph using energy resolved dose function.
Physics in medicine and biology.
2024 Jan; 69(2):. doi:
10.1088/1361-6560/ad15c4
. [PMID: 38096569] - Yajie Zhang, Changjiao Shang, Chaofan Sun, Lingling Wang. Simultaneously regulating absorption capacities and antioxidant activities of four stilbene derivatives utilizing substitution effect: A theoretical and experimental study against UVB radiation.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2024 Jan; 304(?):123325. doi:
10.1016/j.saa.2023.123325
. [PMID: 37678043] - Mingxing Han, Qinglong Li, Ting Yang, Jun Li. Amide proton transfer imaging in rats after heatstroke.
Neuroreport.
2024 Jan; 35(1):37-41. doi:
10.1097/wnr.0000000000001974
. [PMID: 37983618] - Sultan Z Mahmud, Thomas S Denney, Adil Bashir. High-resolution proton metabolic mapping of the human brain at 7 T using free induction decay rosette spectroscopic imaging.
NMR in biomedicine.
2024 Jan; 37(1):e5042. doi:
10.1002/nbm.5042
. [PMID: 37767769] - Sávio Fonseca, Neidy S S Dos Santos, Alberto Torres, Marcelo Siqueira, Antônio da Cunha, Vinícius Manzoni, Patricio F Provasi, Rodrigo Gester, Sylvio Canuto. Role of the Solvent and Intramolecular Hydrogen Bonds in the Antioxidative Mechanism of Prenylisoflavone from Leaves of Vatairea guianensis.
The journal of physical chemistry. A.
2023 Dec; 127(51):10807-10816. doi:
10.1021/acs.jpca.3c05725
. [PMID: 38108191] - Yizhi Fu, Plamen P Christov, Philip J Kingsley, Robyn M Richie-Jannetta, Lawrence J Marnett, Michael P Stone. Base-Displaced Intercalated Structure of the 3-(2-Deoxy-β-D-erythropentofuranosyl)-pyrimido[1,2-f]purine-6,10(3H,5H)-dione (6-oxo-M1dG) Lesion in DNA.
Chemical research in toxicology.
2023 12; 36(12):1947-1960. doi:
10.1021/acs.chemrestox.3c00226
. [PMID: 37989274] - Shouguang Huang, Like Shen, M Rob G Roelfsema, Dirk Becker, Rainer Hedrich. Light-gated channelrhodopsin sparks proton-induced calcium release in guard cells.
Science (New York, N.Y.).
2023 12; 382(6676):1314-1318. doi:
10.1126/science.adj9696
. [PMID: 38096275] - Jeffrey D Tamucci, Nathan N Alder, Eric R May. Peptide Power: Mechanistic Insights into the Effect of Mitochondria-Targeted Tetrapeptides on Membrane Electrostatics from Molecular Simulations.
Molecular pharmaceutics.
2023 Dec; 20(12):6114-6129. doi:
10.1021/acs.molpharmaceut.3c00480
. [PMID: 37904323] - Dingyi Lin, Jiaqiang Zhou, Yang Cao, Ziyan Wang, Yi-Cheng Hsu, Fenping Zheng, Hong Li, Shuiya Sun, Hong Ren, Liping Deng, Feng Chen, Min Wang. Echo time optimization for in-vivo measurement of unsaturated lipid resonances using J-difference-edited MRS.
Magnetic resonance in medicine.
2023 12; 90(6):2217-2232. doi:
10.1002/mrm.29807
. [PMID: 37496253] - Ya-Ling Shi, Lu-Yu Shan, Jing-Jing Yang, Miao-Miao Jiang, Hui-Juan Yu, Yue-Fei Wang, Xin Chai. [Variations of glucose content in Massa Medicata Fermentata during processing based on quantitative proton nuclear magnetic resonance].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Dec; 48(23):6396-6402. doi:
10.19540/j.cnki.cjcmm.20230919.301
. [PMID: 38211996] - Qi Jia, Junliang Song, Chengwen Zheng, Jiahui Fu, Bin Qin, Yongqiang Zhang, Zhongjuan Liu, Kunzhi Jia, Kangjing Liang, Wenxiong Lin, Kai Fan. Genome-Wide Analysis of Cation/Proton Antiporter Family in Soybean (Glycine max) and Functional Analysis of GmCHX20a on Salt Response.
International journal of molecular sciences.
2023 Nov; 24(23):. doi:
10.3390/ijms242316560
. [PMID: 38068884] - Chang Zhao, Parker D Webster, Alexis De Angeli, Francesco Tombola. Mechanically-primed voltage-gated proton channels from angiosperm plants.
Nature communications.
2023 11; 14(1):7515. doi:
10.1038/s41467-023-43280-5
. [PMID: 37980353] - Yu Wan, Qi Li, Lixia Zhu, Yongfeng Wan, Lu Yan, Meilin Guo, Hang Yin, Ying Shi. Reconsideration of the ESIPT off mechanism for fluorescent probe MNC in aqueous solution.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2023 Nov; 301(?):122945. doi:
10.1016/j.saa.2023.122945
. [PMID: 37301029] - Jianing Zhao, Ciqin Li, Sihan Wei, Chengwei Lü, Li-Wei Zou. A multifunctional fluorescent probe based on Schiff base with AIE and ESIPT characteristics for effective detections of Pb2+, Ag+ and Fe3.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2023 Nov; 300(?):122904. doi:
10.1016/j.saa.2023.122904
. [PMID: 37229941] - Toshitaka Nakamura, Eikan Mishima, Naoya Yamada, André Santos Dias Mourão, Dietrich Trümbach, Sebastian Doll, Jonas Wanninger, Elena Lytton, Peter Sennhenn, Thamara Nishida Xavier da Silva, José Pedro Friedmann Angeli, Michael Sattler, Bettina Proneth, Marcus Conrad. Integrated chemical and genetic screens unveil FSP1 mechanisms of ferroptosis regulation.
Nature structural & molecular biology.
2023 Nov; 30(11):1806-1815. doi:
10.1038/s41594-023-01136-y
. [PMID: 37957306] - Jie Chen, Jiang Yue, Jingjing Fu, Shengyun He, Qianjing Liu, Minglan Yang, Wang Zhang, Hua Xu, Qing Lu, Jing Ma. A prediction model of liver fat fraction and presence of non-alcoholic fatty liver disease (NAFLD) among patients with overweight or obesity.
Endocrine journal.
2023 Oct; 70(10):977-985. doi:
10.1507/endocrj.ej23-0227
. [PMID: 37599066] - Rik Oude Egberink, Alexander H van Asbeck, Milou Boswinkel, Grigor Muradjan, Jürgen Dieker, Roland Brock. Deciphering Structural Determinants Distinguishing Active from Inactive Cell-Penetrating Peptides for Cytosolic mRNA Delivery.
Bioconjugate chemistry.
2023 10; 34(10):1822-1834. doi:
10.1021/acs.bioconjchem.3c00346
. [PMID: 37733627] - Luca Mazzei, Arundhati Paul, Michele Cianci, Marta Devodier, Davide Mandelli, Paolo Carloni, Stefano Ciurli. Kinetic and structural details of urease inactivation by thiuram disulphides.
Journal of inorganic biochemistry.
2023 Oct; 250(?):112398. doi:
10.1016/j.jinorgbio.2023.112398
. [PMID: 37879152] - Todd P Silverstein. Lee's transient protonic capacitor cannot explain the surface proton current observed in bacteriorhodopsin purple membranes.
Biophysical chemistry.
2023 10; 301(?):107096. doi:
10.1016/j.bpc.2023.107096
. [PMID: 37604049] - Tatyana I Rokitskaya, Ljudmila S Khailova, Galina A Korshunova, Yuri N Antonenko. Efficiency of mitochondrial uncoupling by modified butyltriphenylphosphonium cations and fatty acids correlates with lipophilicity of cations: Protonophoric vs leakage mechanisms.
Biochimica et biophysica acta. Biomembranes.
2023 10; 1865(7):184183. doi:
10.1016/j.bbamem.2023.184183
. [PMID: 37286154] - Xuerong Yang, Peiyuan Liu, Yulu Wei, Jingru Song, Xiaojie Yan, Xiaohua Jiang, Jianxing Li, Xiangqin Li, Dianpeng Li, Fenglai Lu. The Triterpenoids from Munronia pinnata and Their Anti-Proliferative Effects.
Molecules (Basel, Switzerland).
2023 Sep; 28(19):. doi:
10.3390/molecules28196839
. [PMID: 37836681] - Héctor F Escobar-Morreale, María Ángeles Martínez-García, María Insenser, Nicolau Cañellas, Xavier Correig, Manuel Luque-Ramírez. Serum metabolomics profiling by proton nuclear magnetic resonance spectrometry of the response to single oral macronutrient challenges in women with polycystic ovary syndrome (PCOS) compared with male and female controls.
Biology of sex differences.
2023 09; 14(1):62. doi:
10.1186/s13293-023-00547-2
. [PMID: 37736753] - Zhaomei Lu, Sheng He, Muhammad Kashif, Zufan Zhang, Shuming Mo, Guijiao Su, Linfang Du, Chengjian Jiang. Effect of ammonium stress on phosphorus solubilization of a novel marine mangrove microorganism Bacillus aryabhattai NM1-A2 as revealed by integrated omics analysis.
BMC genomics.
2023 Sep; 24(1):550. doi:
10.1186/s12864-023-09559-z
. [PMID: 37723472] - Jürgen Kreiter, Sanja Škulj, Zlatko Brkljača, Sarah Bardakji, Mario Vazdar, Elena E Pohl. FA Sliding as the Mechanism for the ANT1-Mediated Fatty Acid Anion Transport in Lipid Bilayers.
International journal of molecular sciences.
2023 Sep; 24(18):. doi:
10.3390/ijms241813701
. [PMID: 37762012] - Keisuke Ueda, Yui Sakagawa, Tomoki Saito, Taiki Fujimoto, Misaki Nakamura, Fumie Sakuma, Shun Kaneko, Taisei Tokumoto, Koki Nishimura, Junpei Takeda, Yuta Arai, Katsuhiko Yamamoto, Yukihiro Ikeda, Kenjirou Higashi, Kunikazu Moribe. Molecular-Level Structural Analysis of siRNA-Loaded Lipid Nanoparticles by 1H NMR Relaxometry: Impact of Lipid Composition on Their Structural Properties.
Molecular pharmaceutics.
2023 09; 20(9):4729-4742. doi:
10.1021/acs.molpharmaceut.3c00477
. [PMID: 37606988] - Caihong Wang, Chuanjie Bian, Jianyu Li, Lei Han, Dianming Guo, Tianchao Wang, Zhijuan Sun, Changqing Ma, Xiaoli Liu, Yike Tian, Xiaodong Zheng. Melatonin promotes Al3+ compartmentalization via H+ transport and ion gradients in Malus hupehensis.
Plant physiology.
2023 08; 193(1):821-839. doi:
10.1093/plphys/kiad339
. [PMID: 37311207] - Laura C Paweletz, Simon L Holtbrügge, Malina Löb, Dario De Vecchis, Lars V Schäfer, Thomas Günther Pomorski, Bo Højen Justesen. Anionic Phospholipids Stimulate the Proton Pumping Activity of the Plant Plasma Membrane P-Type H+-ATPase.
International journal of molecular sciences.
2023 Aug; 24(17):. doi:
10.3390/ijms241713106
. [PMID: 37685912] - Nikita E Frolov, Anastasia V Shishkina, Mikhail V Vener. Specific Proton-Donor Properties of Glycine Betaine. Metric Parameters and Enthalpy of Noncovalent Interactions in its Dimer, Water Complexes and Crystalline Hydrate.
International journal of molecular sciences.
2023 Aug; 24(16):. doi:
10.3390/ijms241612971
. [PMID: 37629150] - Zhao Yang, Xue Zhang, Shiwei Ye, Jingtao Zheng, Xiaowei Huang, Fang Yu, Zhenguo Chen, Shiqing Cai, Peng Zhang. Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids.
Nature communications.
2023 08; 14(1):4879. doi:
10.1038/s41467-023-40624-z
. [PMID: 37573431] - Hui Shu, Jie Zhang, Dawei Cheng, Xiaorui Zhao, Yue Ma, Chi Zhang, Yong Zhang, Zhihao Jia, Zhiwei Liu. The Role of Proton-Coupled Amino Acid Transporter 2 (SLC36A2) in Cold-Induced Thermogenesis of Mice.
Nutrients.
2023 Aug; 15(16):. doi:
10.3390/nu15163552
. [PMID: 37630739] - Joseph H Holbrook, Emily R Sekera, Arbil Lopez, Brian D Fries, Fernando Tobias, Kubra Akkaya, Maria M Mihaylova, Amanda B Hummon. Enhancement of Lipid Signals in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with Ammonium Fluoride as a Matrix Additive.
Analytical chemistry.
2023 07; 95(28):10603-10609. doi:
10.1021/acs.analchem.3c00753
. [PMID: 37418337] - Florian Becker, Simon Fuchs, Lukas Refisch, Friedel Drepper, Wolfgang Bildl, Uwe Schulte, Shuo Liang, Jonas Immanuel Heinicke, Sierra C Hansen, Clemens Kreutz, Bettina Warscheid, Bernd Fakler, Evgeny V Mymrikov, Carola Hunte. Conformational regulation and target-myristoyl switch of calcineurin B homologous protein 3.
eLife.
2023 07; 12(?):. doi:
10.7554/elife.83868
. [PMID: 37435805] - Yanhui Che, Dayong Fan, Zhiyuan Teng, Tongtong Yao, Zihan Wang, Hongbo Zhang, Guangyu Sun, Huihui Zhang, Wah Soon Chow. Potassium alleviates over-reduction of the photosynthetic electron transport chain and helps to maintain photosynthetic function under salt-stress.
Physiologia plantarum.
2023 Jul; 175(4):e13981. doi:
10.1111/ppl.13981
. [PMID: 37616008] - Xiao-Qin Lu, Shu Qin, Jindong Li. Radical Scavenging Capability and Mechanism of Three Isoflavonoids Extracted from Radix Astragali: A Theoretical Study.
Molecules (Basel, Switzerland).
2023 Jun; 28(13):. doi:
10.3390/molecules28135039
. [PMID: 37446701] - Kiera Ronda, Katelyn Downey, Amy Jenne, Monica Bastawrous, William W Wolff, Katrina Steiner, Daniel H Lysak, Peter M Costa, Myrna J Simpson, Karl J Jobst, Andre J Simpson. Exploring Proton-Only NMR Experiments and Filters for Daphnia In Vivo: Potential and Limitations.
Molecules (Basel, Switzerland).
2023 Jun; 28(12):. doi:
10.3390/molecules28124863
. [PMID: 37375418] - Wahyu Eko Prasetyo, Bram Triadmojo, Triana Kusumaningsih, Soerya Dewi Marliyana, Fajar Rakhman Wibowo, Maulidan Firdaus. Mechanistic insight into the free radical scavenging and xanthine oxidase (XO) inhibitor potent of monoacetylphloroglucinols (MAPGs).
Free radical research.
2023 Jun; ?(?):1-33. doi:
10.1080/10715762.2023.2225731
. [PMID: 37315300] - Alice Di Girolamo, Michele Pedrotti, Alex Koot, Francel Verstappen, Adèle van Houwelingen, Celina Vossen, Harro Bouwmeester, Dick de Ridder, Jules Beekwilder. The use of proton transfer reaction mass spectrometry for high throughput screening of terpene synthases.
Journal of mass spectrometry : JMS.
2023 Jun; 58(6):e4951. doi:
10.1002/jms.4951
. [PMID: 37259491] - Mariam Mohamadi, David Goricanec, Gerhard Wagner, Franz Hagn. NMR sample optimization and backbone assignment of a stabilized neurotensin receptor.
Journal of structural biology.
2023 06; 215(2):107970. doi:
10.1016/j.jsb.2023.107970
. [PMID: 37142193] - Laust Bavnhøj, Jan Heiner Driller, Lorena Zuzic, Amanda Dyrholm Stange, Birgit Schiøtt, Bjørn Panyella Pedersen. Structure and sucrose binding mechanism of the plant SUC1 sucrose transporter.
Nature plants.
2023 06; 9(6):938-950. doi:
10.1038/s41477-023-01421-0
. [PMID: 37188854] - Akın Abbasoğlu, Musturay Karçaaltıncaba, Ali Devrim Karaosmanoğlu, Mustafa Nasuh Özmen, Deniz Akata, İlkay S İdilman. Associations Between Hepatic and Pancreatic Steatosis with Lumbar Spinal Bone Marrow Fat: A Single-Center Magnetic Resonance Imaging Study.
The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology.
2023 06; 34(6):618-625. doi:
10.5152/tjg.2023.22225
. [PMID: 37303245] - Hiroshi Yamamoto, Anthony Cheuk, Julia Shearman, Peter J Nixon, Thomas Meier, Toshiharu Shikanai. Impact of engineering the ATP synthase rotor ring on photosynthesis in tobacco chloroplasts.
Plant physiology.
2023 05; 192(2):1221-1233. doi:
10.1093/plphys/kiad043
. [PMID: 36703219] - Ricky J Milne, Katherine E Dibley, Jayakumar Bose, Anthony R Ashton, Peter R Ryan, Stephen D Tyerman, Evans S Lagudah. Expression of the wheat multipathogen resistance hexose transporter Lr67res is associated with anion fluxes.
Plant physiology.
2023 05; 192(2):1254-1267. doi:
10.1093/plphys/kiad104
. [PMID: 36806945] - Alexander A Shcherbakov, Merissa Brousseau, Katherine A Henzler-Wildman, Mei Hong. Microsecond Motion of the Bacterial Transporter EmrE in Lipid Bilayers.
Journal of the American Chemical Society.
2023 Apr; ?(?):. doi:
10.1021/jacs.3c00340
. [PMID: 37097985] - Takako Ogawa, Kana Kobayashi, Yukimi Y Taniguchi, Toshiharu Shikanai, Naoya Nakamura, Akiho Yokota, Yuri N Munekage. Two cyclic electron flows around photosystem I differentially participate in C4 photosynthesis.
Plant physiology.
2023 04; 191(4):2288-2300. doi:
10.1093/plphys/kiad032
. [PMID: 36703198] - Danila Boytsov, Stefania Brescia, Gustavo Chaves, Sabina Koefler, Christof Hannesschlaeger, Christine Siligan, Nikolaus Goessweiner-Mohr, Boris Musset, Peter Pohl. Trapped Pore Waters in the Open Proton Channel HV 1.
Small (Weinheim an der Bergstrasse, Germany).
2023 04; 19(16):e2205968. doi:
10.1002/smll.202205968
. [PMID: 36683221] - Roman S Kirsanov, Ljudmila S Khailova, Tatyana I Rokitskaya, Iliuza R Iaubasarova, Pavel A Nazarov, Alisa A Panteleeva, Konstantin G Lyamzaev, Lyudmila B Popova, Galina A Korshunova, Elena A Kotova, Yuri N Antonenko. Ester-stabilized phosphorus ylides as protonophores on bilayer lipid membranes, mitochondria and chloroplasts.
Bioelectrochemistry (Amsterdam, Netherlands).
2023 Apr; 150(?):108369. doi:
10.1016/j.bioelechem.2023.108369
. [PMID: 36638678] - Xiafei Li, Weimin Ma, Wangfeng Zhang, Yali Zhang. Novel Insights into the Contribution of Cyclic Electron Flow to Cotton Bracts in Response to High Light.
International journal of molecular sciences.
2023 Mar; 24(6):. doi:
10.3390/ijms24065589
. [PMID: 36982664] - Yvonne Gunning, Kate S Davies, E Kate Kemsley. Authentication of saffron using 60 MHz 1H NMR spectroscopy.
Food chemistry.
2023 Mar; 404(Pt B):134649. doi:
10.1016/j.foodchem.2022.134649
. [PMID: 36288673] - Xiaohong Yue, Xiangsheng Ke, Yafei Shi, Yangsheng Li, Chenhao Zhang, Yetao Wang, Xin Hou. Chloroplast inner envelope protein FtsH11 is involved in the adjustment of assembly of chloroplast ATP synthase under heat stress.
Plant, cell & environment.
2023 03; 46(3):850-864. doi:
10.1111/pce.14525
. [PMID: 36573466] - Senfeng Zhang, Chunting Fu, Yongbo Luo, Qingrong Xie, Tong Xu, Ziyi Sun, Zhaoming Su, Xiaoming Zhou. Cryo-EM structure of a eukaryotic zinc transporter at a low pH suggests its Zn2+-releasing mechanism.
Journal of structural biology.
2023 03; 215(1):107926. doi:
10.1016/j.jsb.2022.107926
. [PMID: 36464198] - Katarzyna Kabała, Małgorzata Janicka. Structural and Functional Diversity of Two ATP-Driven Plant Proton Pumps.
International journal of molecular sciences.
2023 Feb; 24(5):. doi:
10.3390/ijms24054512
. [PMID: 36901943] - Jordan M Johnson, Alek D Peterlin, Enrique Balderas, Elahu G Sustarsic, J Alan Maschek, Marisa J Lang, Alejandro Jara-Ramos, Vanja Panic, Jeffrey T Morgan, Claudio J Villanueva, Alejandro Sanchez, Jared Rutter, Irfan J Lodhi, James E Cox, Kelsey H Fisher-Wellman, Dipayan Chaudhuri, Zachary Gerhart-Hines, Katsuhiko Funai. Mitochondrial phosphatidylethanolamine modulates UCP1 to promote brown adipose thermogenesis.
Science advances.
2023 02; 9(8):eade7864. doi:
10.1126/sciadv.ade7864
. [PMID: 36827367] - Dan Parkin, Mitsunori Takano. Coulombic Organization in Membrane-Embedded Rotary Motor of ATP Synthase.
The journal of physical chemistry. B.
2023 02; 127(7):1552-1562. doi:
10.1021/acs.jpcb.2c07875
. [PMID: 36734508] - Benedikt Söldner, Kristof Grohe, Peter Neidig, Jelena Auch, Sebastian Blach, Alexander Klein, Suresh K Vasa, Lars V Schäfer, Rasmus Linser. Integrated Assessment of the Structure and Dynamics of Solid Proteins.
The journal of physical chemistry letters.
2023 Feb; 14(7):1725-1731. doi:
10.1021/acs.jpclett.2c03398
. [PMID: 36757335] - Gustaf E Degen, Philip J Jackson, Matthew S Proctor, Nicholas Zoulias, Stuart A Casson, Matthew P Johnson. High cyclic electron transfer via the PGR5 pathway in the absence of photosynthetic control.
Plant physiology.
2023 Feb; ?(?):. doi:
10.1093/plphys/kiad084
. [PMID: 36774530] - Ewald Weichselbaum, Timur Galimzyanov, Oleg V Batishchev, Sergey A Akimov, Peter Pohl. Proton Migration on Top of Charged Membranes.
Biomolecules.
2023 02; 13(2):. doi:
10.3390/biom13020352
. [PMID: 36830721] - Jifu Duan, Anja Hemschemeier, David J Burr, Sven T Stripp, Eckhard Hofmann, Thomas Happe. Cyanide Binding to [FeFe]-Hydrogenase Stabilizes the Alternative Configuration of the Proton Transfer Pathway.
Angewandte Chemie (International ed. in English).
2023 Feb; 62(7):e202216903. doi:
10.1002/anie.202216903
. [PMID: 36464641] - Baoxing Xie, Qianqian Chen, Xing Lu, Kang Chen, Yuesheng Yang, Jiang Tian, Cuiyue Liang. Proton exudation mediated by GmVP2 has widespread effects on plant growth, remobilization of soil phosphorus, and the structure of the rhizosphere microbial community.
Journal of experimental botany.
2023 02; 74(3):1140-1156. doi:
10.1093/jxb/erac476
. [PMID: 36455868] - Colin Y Kim, Andrew J Mitchell, David W Kastner, Claire E Albright, Michael A Gutierrez, Christopher M Glinkerman, Heather J Kulik, Jing-Ke Weng. Emergence of a proton exchange-based isomerization and lactonization mechanism in the plant coumarin synthase COSY.
Nature communications.
2023 02; 14(1):597. doi:
10.1038/s41467-023-36299-1
. [PMID: 36737607] - Krzysztof Bryl. Fluorescence Resonance Energy Transfer (FRET) as a Spectroscopic Ruler for the Investigation of Protein Induced Lipid Membrane Curvature: Bacteriorhodopsin and Bacteriorhodopsin Analogs in Model Lipid Membranes.
Applied spectroscopy.
2023 Feb; 77(2):187-199. doi:
10.1177/00037028221135645
. [PMID: 36229916] - Xiaowan Huang, Yanli Wang, Wei Wang, Xiao Zhang, Lei Jiang, Jian Liu, Shuangyan Liu, Keqing Li, Chengping Xie, Qiang Wang. Quantitative 1H NMR with global spectral deconvolution approach for the determination of gamma-aminobutyric acid in Chinese yam (Dioscorea polystachya Turczaninow).
Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.
2023 Feb; 39(2):221-227. doi:
10.1007/s44211-022-00221-4
. [PMID: 36427159] - Jiaming Li, Rongxiang Zhu, Mingyue Zhang, Beibei Cao, Xiaolong Li, Bobo Song, Zhongchi Liu, Jun Wu. Natural variations in the PbCPK28 promoter regulate sugar content through interaction with PbTST4 and PbVHA-A1 in pear.
The Plant journal : for cell and molecular biology.
2023 Jan; ?(?):. doi:
10.1111/tpj.16126
. [PMID: 36710644] - Bao Zhang, Wen-Jie Liu, Ting-Shi He, Bao-Cai Xu, Qiu-Tao Xie. Insight into interfacial adsorption behavior of high-density lipoprotein hydrolysates regulated by carboxymethyl dextrin and in vitro digestibility of curcumin loaded high internal phase emulsions.
Food chemistry.
2023 Jan; 400(?):134006. doi:
10.1016/j.foodchem.2022.134006
. [PMID: 36058041] - Qiao-Yu Zhang, Xing Li, Jing Luo, Xue Li, Jinshuai Song, Donghui Wei. Cofactor-Free Dioxygenases-Catalyzed Reaction Pathway via Proton-Coupled Electron Transfer.
The journal of physical chemistry. B.
2023 01; 127(1):95-103. doi:
10.1021/acs.jpcb.2c03161
. [PMID: 36525303] - Chung-Ta Han, Khanh Dinh Quoc Nguyen, Maxwell W Berkow, Sunyia Hussain, Ahmad Kiani, Maia Kinnebrew, Matthew N Idso, Naomi Baxter, Evelyn Chang, Emily Aye, Elsa Winslow, Mohammad Rahman, Susanna Seppälä, Michelle A O'Malley, Bradley F Chmelka, Blake Mertz, Songi Han. Lipid membrane mimetics and oligomerization tune functional properties of proteorhodopsin.
Biophysical journal.
2023 01; 122(1):168-179. doi:
10.1016/j.bpj.2022.11.012
. [PMID: 36352784] - Themis Lazaridis. Molecular origins of asymmetric proton conduction in the influenza M2 channel.
Biophysical journal.
2023 01; 122(1):90-98. doi:
10.1016/j.bpj.2022.11.029
. [PMID: 36403086] - Julie Hodin, Christof Lind, Anne Marmagne, Christelle Espagne, Michele Wolfe Bianchi, Alexis De Angeli, Fadi Abou-Choucha, Mickaël Bourge, Fabien Chardon, Sebastien Thomine, Sophie Filleur. Proton exchange by the vacuolar nitrate transporter CLCa is required for plant growth and nitrogen use efficiency.
The Plant cell.
2023 01; 35(1):318-335. doi:
10.1093/plcell/koac325
. [PMID: 36409008] - Sucheta Kudrimoti, Jacob Machin, Adedamola S Arojojoye, Samuel G Awuah, Rodney Eisenberg, Clara Fenger, George Maylin, Andreas F Lehner, Thomas Tobin. Synthesis and characterization of d5 -barbarin for use in barbarin-related research.
Drug testing and analysis.
2023 Jan; 15(1):42-46. doi:
10.1002/dta.3357
. [PMID: 35975356] - Niklas Klusch, Maximilian Dreimann, Jennifer Senkler, Nils Rugen, Werner Kühlbrandt, Hans-Peter Braun. Cryo-EM structure of the respiratory I + III2 supercomplex from Arabidopsis thaliana at 2 Å resolution.
Nature plants.
2023 01; 9(1):142-156. doi:
10.1038/s41477-022-01308-6
. [PMID: 36585502] - Alexander L Sukstanskii, Dmitriy A Yablonskiy. Microscopic theory of spin-spin and spin-lattice relaxation of bound protons in cellular and myelin membranes-A lateral diffusion model (LDM).
Magnetic resonance in medicine.
2023 Jan; 89(1):370-383. doi:
10.1002/mrm.29430
. [PMID: 36094730] - Ya Hou, Yating Zhang, Shengnan Jiang, Na Xie, Yi Zhang, Xianli Meng, Xiaobo Wang. Salidroside intensifies mitochondrial function of CoCl2-damaged HT22 cells by stimulating PI3K-AKT-MAPK signaling pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Jan; 109(?):154568. doi:
10.1016/j.phymed.2022.154568
. [PMID: 36610162] - Sara Omer, Claire Macero, Dayishaa Daga, Kelly Zheng, Jeeyon Jeong. An Adapted Protocol for Quantitative Rhizosphere Acidification Assay.
Methods in molecular biology (Clifton, N.J.).
2023; 2665(?):37-46. doi:
10.1007/978-1-0716-3183-6_4
. [PMID: 37166591] - Theresia Ziegs, Andrew Martin Wright, Anke Henning. Test-retest reproducibility of human brain multi-slice 1 H FID-MRSI data at 9.4T after optimization of lipid regularization, macromolecular model, and spline baseline stiffness.
Magnetic resonance in medicine.
2023 Jan; 89(1):11-28. doi:
10.1002/mrm.29423
. [PMID: 36128885] - Małgorzata Janicka, Małgorzata Reda, Natalia Napieraj, Adrianna Michalak, Dagmara Jakubowska, Katarzyna Kabała. Involvement of Diamine Oxidase in Modification of Plasma Membrane Proton Pump Activity in Cucumis sativus L. Seedlings under Cadmium Stress.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010262
. [PMID: 36613704] - Iwona Budziak-Wieczorek, Lidia Ślusarczyk, Beata Myśliwa-Kurdziel, Martyna Kurdziel, Monika Srebro-Hooper, Izabela Korona-Glowniak, Mariusz Gagoś, Grzegorz Gładyszewski, Andrzej Stepulak, Dariusz Kluczyk, Arkadiusz Matwijczuk. Spectroscopic characterization and assessment of microbiological potential of 1,3,4-thiadiazole derivative showing ESIPT dual fluorescence enhanced by aggregation effects.
Scientific reports.
2022 12; 12(1):22140. doi:
10.1038/s41598-022-26690-1
. [PMID: 36550169] - Tatyana I Rokitskaya, Alexander M Arutyunyan, Ljudmila S Khailova, Alisa D Kataeva, Alexander M Firsov, Elena A Kotova, Yuri N Antonenko. Usnic Acid-Mediated Exchange of Protons for Divalent Metal Cations across Lipid Membranes: Relevance to Mitochondrial Uncoupling.
International journal of molecular sciences.
2022 Dec; 23(24):. doi:
10.3390/ijms232416203
. [PMID: 36555847] - Abhinav, Piotr Jurkiewicz, Martin Hof, Christoph Allolio, Jan Sýkora. Modulation of Anionic Lipid Bilayers by Specific Interplay of Protons and Calcium Ions.
Biomolecules.
2022 12; 12(12):. doi:
10.3390/biom12121894
. [PMID: 36551322]